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Reusable Memories in the Light of the Old 
Arbitrarily Varying and a New Outputwise 

Varying Channel Theory 
Rudolf Ahlswede and Gabor Simonyi 

· 'Abstract-"-Arbitrarily. varying ·(AV) . channels were introduced 
a,s a 111od~l ,for tra._s111ission. in .cases •. of. jamming. It is shown 
tllat th!!ir th~ry ap~lies naturally to 111e01ories and yields, in a 
unified way,'some . new and •qid ciiP,a~ity theol"(lms for write-· 
tiliidirectional (and 'more general) 'memories With side informa­
tion: If the encOder has no si~e information, if iir still' not 
understoOd what the optimal rates 'for:many cycles are. More 
insight through a theory of outputwise varying (OV) channels is 
expected. 

Index Terms-Memories capacity channels, side information, 
Markov channels. 

For all i, all j, arid yn E T;0 (resp. T,1), there exists a 
y m E 7]1 (resp. 7]0 ) with 

(1.3) 

The partial order ";;:::" is defined by yrn = (y~, · · ·, y~);;::: 
yn=(y1,· • ·,yn), iff y;;;::y1 for t=1,2,· ··,n. 

Such a ·code can be used as follows. At every time 
instant the memory is in a state y n E ~ . ..-n. There are two 
persons (or devices): the encoder E and the decoder D. 
They use the memory in so called cycles. In odd (resp. 

I. INTRODUCI'ION even) cycles the encoder c~m.piint only 1's (resp. O's) in 

T .. I:IE STARTING POINT of our investigations are some of the n positions, that is change ynin those 
. capacitY problems fbr, a ce,rtain .kind of reusable positions to 1 (resp. 0). This is an updating of the mem­

memories, called WUM, which is an abbreviation for ory. The purpose ofthe encoder is to s!orea new message 
write-unidirectional memory. They have been introduced i E {1, · · ·,M}, which can be dec6ded (read) by ~he de­
by Borden · [5] and . WilleiTis,... Virick'[15] .. These aut~ors coder. 
eXJ)lain how the concept arose in modeling an optical disk Any word in the set Tw (resp: Til) can. repres~nt mes­
as a, storage devic_e with updating constraints imposed by . sage i in an even (resp. odd} cycle. Havii1g. read this word, 
laser technology. The reader is advised to consult Simonyi by (1.1) the decoder can recover the message. Kriowing 
[14] and Cohen [6] for an account of the. known results · the state of thememory, by (1.3), the encoder can change 
relevant for us here. We start right away with some basic this. state in the next cycle in order to store a new 
definitions· and go on with our own work. message. 

Acfually the models of Borden and Willems-Vinck are Clearly, the code concept presented is for a situation, 
slightly different. This led· to· different notions of codes. where the encoder knows the state of the memory before 
Hen;w~ discuss only the WUM code in Willems-Vinck's changing it to the .next state, but the decoder needs to 
sense, which has later been called alternating WUM code know Only the state he is actually reading, 
by Simoriyi [14]. . The issueof side information has played an important 

Definition:. A family ~ = {S;: ~::;;; i::;;; M} of subsets of role in multiuser source and channel coding .. We use the 
wn ={O,l}n is an alternating wtJM code if notation E+ (resp. D+), if the encoder (resp. decoder) 

for i=l,· ··,M. 

(1.1) 

(1.2) 
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has a specified· side information, arid ' the notation E _ 
(resp. D _ ), if the en,cdder (resp .. decoder) .does. not>h~ve 
this side .. information. For memory ·.cells the side inform~~. 
tion refers ·to the knowledge of the content of the memozy ~ 
before a new enco~ing; For WGM:s, papers [12] ancH9l 
consider the case (E+,D'-)and [17]analyze the remain-: 
ing cases. 

The case for WUM described above is (E+,D_). 
In [13] the other. cases were first investigated. Using 
E-error or 0-error as performance criteria, results in eight 
cases with corresponding capacities .. C(E+,D+, e), 
C(E +• D _, 0), etc. The known results are described in [6], 
(see Theorem 0). · 

0018-9448j~lj0700-1143$01.00 · ©1991 IEEE 
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We derive a lower bound for C(E_,D_,e) (Theorem 
1) and we give a complete characterization for 
C(E _, D +'e) (Theorem 2). Perhaps more importantly, we 
derive all known capacities by a unified approach, that is, 
A V-channel theory. 

Furthermore, we gain a first understanding of the role 
of cycles via QV-channels, a concept we introduce. The 
name refers to "outputwise varying channels." ~n particu­
lar we derive exact conditions for memories to have 
positive capacity "in the long run." Actually all our re­
sults are for much more general memories than the WUM. 

ll. RESULTS 

According to Cohen's survey [6], at least four capacities 
are known. We summarize the results. 

Theorem 0: 

a) C(E+,D+,e)= C(E+,D_,e)= log(1+,IS)j2"' 
0.694; 

b) C(E +• D +• 0) = C(E +• D _, 0) = log(1 +,IS) /2. 

Our first contribution is the following. 

Theorem 1: 

C(E_,D_,e) ~ 0.545. 

This result has been first claimed by Godlewski according 
to [6]. He had the idea to relate the capacity of the WUM 
to the transmission capacity of the so called z.:channel. 
However, neither the orally presented sketch of a proof 
nor the sketch in [6] provide a complete set of ideas 
necessary foi: a proof. The gap can naturally be closed 
with.the help of AV~channel theory. 

Next we show that our approach gives the complete 
solution for another case. 

Theorem 2: 

C(E_, D+,e) = log(1 +,IS)j2. 

Moreover, we show that all other known results (Theo­
rem 0) can be derived in a unified way. Phenomena from 
the theory of AY-channels (see [3]) have complete analogs 
for WUM's as for instance the factthat 

(2.1) 

Remarks: We draw attention to the fact that I. Csiszar 
has shown (lecture· at the Information Theory Meeting in 
Oberwolfach, 1989) ·that certain storage·· problems for 
memories can be viewed as coding problems for AY­
channels. For instance memories with some cells stuck at 
zero and one can be regarded as A VC's with three 
possible states (cells stuck at zero, stuck at one, or good). 

However we emphasize that this connection is entirely 
different from ours. In the present paper, methods from 
the theory of A VC's, in particular robu~_tification tech­
niques, serve as tools for solving memory problems. The 
memories are not modeled as AY-channels. 

The second part of the paper was motivated by an 
attempt to prove a converse for Theorem 1. The con-

verses of Willems [16] and Ozarow-Wyner (mentioned in 
[16]) address only 1-cyclic coding strategies. (This means 
that encoding and decoding strategies are the same for 
every cycle-modulo the change of the role of O's and l's.) 
Similarly "r-cyclic" means that they are the same for the 
block of the first r consecutive cycles, the block of the 
next r consecutive cycles, etc. In this sense "oo-cyclic" 
means, that all coding strategies are permitted. It is not 
clear whether the upper bound obtained holds for any 
number of cycles. An attempt to understand this question 
has convinced us that the "cycle problem" constitutes a 
new area of research in information theory. We try to 
understand it from. first principles and ask a seemingly 
simple question such as "under which condition is 'for 
memories the oo-cyclic capacity positive?". This nat:Ui:a}ly 
ieads us to introduce and study QV-channels. Theirdefi­
nition follows. 

Let 9:', W be finite sets, let ../ be a set of states,· and 
let :»"={w(-l.·ls): sE/} be a set ofstochastic l,q::"lx IWi­
matrices. It is assumed that 

../=W. (2.2) 

(This assumption describes the typical character of 
WUM's or of a more general memory concept, namely 
that the result of the previous writing determines the ne~ 
state that governs what can happen at the next writing. 
For WUM's, cf. the remark in Section VII.) . · 

Thus the sequence (:»"n):=I• with 

n 

w( ynixnisn) = L w(Y1ixtist), (2.4) 
1=1 

for all Xn = (x1, · · ·, Xn) E g:-n, yn E Wn and Sn E Wn 
defines a special AY-channel. We speak here-of an QV­
channel if the mode of operation is such that in the lth 
cycle of length n. there is a probability distribution Q1 on 
the states ../'n that equals the output distribution in tpe 
(l-l)st cycle. We say that {(u;(/), D1(l)): 1 .:::;; i .:::;; M1; 1.:::;: 
[.:::;; L} is an (n,(M1, • • ·, ML), A)-code for the OVC, if 

u1(/) E ,q:'!', 

D1(l) n D1.(l) = 0, for i=F i', (2.6) 

for 1.:::;; l.:::;; L, (2.7) 

where 

1 Mt-l 

Q1(sn)=M L L w(sniu;(l-1)ism)Q1_ 1(s'n) 
1-1 i=l s'"E./" 

(2.8) 

and Q0 is any initial distribution on ../n. One way to 
define capacity is this. 



AHLSWEDE AND SIMONY!: REUSABLE MEMORIES OF CHANNEL THEORY 1145 

R is (n, X) achievable if in the definition above L = oo 

and for any 8 > 0 
1 L' 1 

liminf- .L -logM1 :?.R-8. (2.9) 
L'->oo L' 1= 1 n 

R is X achievable, if (2.9) holds for all n:?. n0(A, 8). 
Finally R is achievable if it is A achievable for all A > 0. 
The maximal achievable rate R is the capacity. The main 
point of this definition is that it expresses what is achiev­
able in the "long run," that is, with repeated cycles. It will 
become clear from our proof of Theorem 1 that the 
problem reduces t9 an investigation ·of the behavior of 
information quantities. For this it suffices to consider the 
case n = 1, to fix.an initial distribution .Q0 on ..:/and to 
choose a sequence P0 , P1,. • ·, PK of distributions on the 
input alphabet [!C. They· determine a state sequence 
Q0 ,Q1,· • ·,QK and "average channels" W(·l·IQ)= 
Esw( ·l·ls )Q;(s). 

Determine 
1 K . 

C(Q0)~ lim max -,LI(P;,W(·I·IQ;)). 
K-+a> Po,PI,···,PK K i=O 

In. particular it is of inter,est to know when C ~ 
minQo C(Q0) > 0. We give a complete answer' to this ques­
tion. We also give conditions for C(Q0 ) to be positive. A 
memory-like d~vice can be used with positive rate if there 
is any Q0 with C(Q0 ) > 0, so in this sense C* ~ 
maxQo C(Q0 ) is the relevant quantity .. Our. an~lysis is 
based on well-known facts about the limiting behaViour of 
Markov chains with finite state space gt = {1, 2, · · ·, c} ~ A 
good presentation can be ·found in (18]. 

We need some definitions. Let W: :J1 ·~%/be a stochas~ 
tic matrix defining a Markov chain. 

For Q ~ (Q.1, • • ·, Q) E .9(:J!), the set of PD's on :J!, we 
call 

holds here for t sufficiently large. The second index 
v + t is taken mod dP. 

c) For every Dp,v there is actually one qp,v E .9'([}), 
supp (qp,) c Dp,v with qp,vW' = qp,v+t (t = 
0, 1, 2, · · · ). Furthermore, for all Q E .9([;), 
supp(Q) c Dp,v• 

lim llQW'- qp,v+tll = 0 ( exponentially fast). 
(->a> 

d) For every Q E 9(:JI) there is exactly one q s 
conv{qp,v: p=l,- · ·,r; v=O,· · ·,dP-1} with 

Iim IIQW'- qW'll = 0 ( exponentially fast): 
t---J>·oo 

We callQ=(Q0,Q11 ···,Qb-l) ab-orbit of W, iffor 
i = 0, · · ·, b -1 and j = 1, 2, · · · 

(2.12) 

and denote the set of these b~orbits by &(W,b). Also, 
&(W) =o Ub'= 1&(W, b), Finally, we abbreviate the 
stochastic.matrix (W(·lx,s))se./ by~-

.Theorem 3: 

C>O~ n &(~)=0. 
xe,q' 

The structure of the sets &(~) is known as far as the 
q;,v corresponding to ~ in Theorem 2 are known. The 
positivity of C(Q0 ) is harder to analyze; The following 
result shows that for l..:/'1 = 2 the positivity of C(Q0} is 
equivalent to that of C. 

Theorem 4: If l../1 = 2, then for all Q0 on ..:/ C(Q0 ) > 0 
exactly if nx EEl:"&(~) = 0. (An eqUiValent, ffiOre eX­
Rlicit condition is (7.13).) 

Ill. PROOF OF THEOREM 1 
supp(Q) ~ {ziQz =F 0} (2·10) A. Heuristics 

the support of Q and we denote the trace of Q under W 
by 

tr(Q) = U supp(QW')~ (2.11) 
t=O 

For Q=8z we ~lsowrite tr(z)=tr(o). The set lc;;,Z is 
called W-invariant, iftr(z) c;;, I for all z E /.An invariant 
I + 0 is called ~nimal invariant, if no proper nonempty 
iubset is iilvaria,nt. . 

Theorem (see {18]): For the stochastic matrix W: :JI ~ 
:J!, there is a partition · 

&/=EUD1 ".' UDr 

with subpartitions 

Dp=Dp,oU · · · UDp;d"_ 1, 

for p = 1, · · ·, r, which has the following properties. 

According to [6] Godlewski had the idea to look at the 
WUM in case.(E_,D_) as follows: Two users U1 and U2 
"communicate" over the WUM. User U1 (odd cycles) 
transforms certain O's in the memory to l's and· U2 (even 
cycles) certain 1's to O's. Let us look firstat odd cycles 
and let us assume that "in average" th~?re .are ,.., Q(O)~',o•s 
in the memory, that is, sn e SQ~8 , the set· .of typis~I 
sequences with 8 deviation. If U1 enC<)des rness~·~~s 
1, .. ;,M by u 1,u2, .. ·,uM E g;n, and sends u;, tfl~n'ih 
receives u; v s". Let us 'also assume that u i. E Yp~J f~r 
i = 1, · · ·,M. Then "in the average" the received y.'! ·= 
U; V Sn is in .9(:£!,~·, where 

Q'=P·W(·l·lQ) with W(·i·IQ) = 0 
1 

and therefore this writing can be "visualized'' as the 
a) DP is minimal~ invariant with respect to W. operation of a Z•cha:nnel W( ·I·IQ). · 
b) For Q E.9(&/) with supp(Q)~ Dp,v necessarily We get a lower bound on its capacity by lmp<isjng 

supp(QW') sDp,v+ik= 0, 1,2, · · ·) and equality symmetry: The density Q'(O) of O's before U2 ..yriHis'shall 
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be equal to Q(l), the density of l's before U1 writes. The 
situation in the cycles are then symmetrically the same. 

The imposed condition is 

Q'(O) = P(O)Q(O) = Q(l). (3.1) 

We get the mutual information 

(1- P(O))h(Q(O)) = (z- Q~O) )h(Q(O)) 

and the optimal rate 

Cz ~ ma~(z-: ~)h(p). (3.2) 
p<!-,; p 

The maximum is assumed at Q*(O),.., 0.776 and has the 
value ,..,0.545. In "conclusion" C(E_,D_;e)-:?:. 0.545. 

Apparently this is not a rigorous proof, because in the 
original model there are no probabilities ruling the states 
of the memory. The performance has to be good for every 
state of the. memory and not only for some kind of an 
average expressed by the Z-channel. This is exactly the 
kind of situation for which AY-channel theory is appro­
priate! 

Define JY={w(-I·IO),w(·l·l1)} with 

w(·I·Kl)=(~ ~). w(·l·l1)=(~ ~) (3.3) 

and a DMC with transmission matrix 

W( ·I·IQ) = w(' I·IO)Q(O) + w( ·I· I1)Q(1). (3.4) 

Thus 

s" 

where 
n 

Qn= flQ. 
1 

We need two methods from the theory of AY-channels, 
which were developed in [1] and [2]. The present formula­
tions are essentially those from [3]. A few definitions are 
needed. 

B. Some Notation 

We use for any finite set ~ the following notions: 
.9(~) £ s~t of all distributions on [1, .9(n, ;p) £ {p E 
P(~): p(z)n is integral for all z E [p}; zn = (z 1, • • ·, zn) is 
sliid to be {q, 5}-typical (in the terminology of [2]) if 

ll{t: z1 = z}l-:- q( z)nl ~ Bn, for all z E ;p, and ;pn(q; J>) 

is the set of those sequences in ;pn. (q,O)~typical se­
quences are also said to be of type q. Often, if the 
reference set is clear, with a hint to typicality ;pn(q, 8) is 
written as .9,;;~8 • For 8 = 0 we omit the 8. We use the 
symmetric group Ln, that is, the group of permutations 
acting on {1, 2,- · ·, n}. Every -r E En induces a bijection 7r: 
./n ~ ./n defined by 'TT'Sn £ (s,.(l)• · · ·, S,-(n)) for Sn = 
(s1, .. ·,s~)E../n. ITn denotes the group of these bijec­
tions. Their restrictions to ./n( p ), p E .9(n, ../), are also 
"bijective. 

C. The Robustification Technique 

Theorem RT· If g: ./11 ~ [0, 1] satisfies for an a E [0, 1] 
the inequality 

for pn = TI~p with p E .9(n, ../),then it also satisfies the 
inequality 

1 - L g('7Tsn)>1-an, forallsnE../n(p), 
n! 1rEiln 

where a,;= a(n + 1)1..:1"1. 

Proof' The first inequality is equivalent to 

s" 

because 7r is bijective. Since pn(7rsn) = pn(sn), it follows 
that 

Here (1-(1/n!)I:,.g('TT'sn))-:?:. 0 and therefore the left side 
is decreased when summing for sn E ._.}m(p) only. For 
these sn E.,.g(7rsn) is constant and we get 

( 1- :! Fg( 'TT'Sn) )Pn( ./n(P)) <a, for sn ~ ./n(P),. 

With the well~known fact 

pn(../n(p))-:?:. (n+1) -IJ'I, 
we finally conclude 

(1-~ Lg(7rsn))(n+1)-l./l <a, 
n . .,. 

and thus the result follows. 

D. Application of Theorem RT 

We need the following concepts. A correlated (n, M)­
code is specified by a finite probability space (f,~-t) and a 
collection {(~-t),D{): 1::::;; i::::;; M}'Yer of (n,M)-codes. In 
using such a code, the index y is chosen according to the 
random experiment er, ~-t), and thm; sender and receiver 
use the code indexed by 1'· Since y has to be made known 
to both of them, there must be a coinmon knowledge or 
correlation .in the system. It serves here only as a mathe­
matical tool. For any ../*n c ../n the average error is 
measured by 

1 M 
.max •• L 1-t(Y)-M L w((DTflujlsn). 

s e../ 'Yer i=l 

Suppose now that for some (n, M)-code {(u;, D): 1::::;; 
i::::;; M} and for Q E .9(n, ./) 

1 M 
- L I: w( D;lu;lsn)Qn(sn) > 1- a, (3.5) 
M i=l sne../n 

where a is exponentially small. 
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For g: Jn ~ [0, 1] defined by 

1 M 
- L w(Diiuiisn), 
M;~l 

(3.6) 

the inequality (3.5) ensures the validity of the hypothesis 
of Theorem RT and therefore 

1 1 M 
1 L M L w(D;iu;!-rr·sn) > 1-an 
n. 7TEll~ i=l · 

or, equivalently, for sn e .../n(Q) 

1 1·.M · 
1 L M L w( '7T- 1D;i'7T- 1U;isn) > 1-an. (3.7) 
n. 7TEiln i~l · 

But this says that . the· correlated code specified by the 
collection of codes 

{( '7T-
1
U;,'7T-1D;): 1 ~ i ~ M}.,.errn 

and the uniform distribution on IIn has an average error 
probability less than lX.n for all sn E V"""n(Q). Clearly, 
an~ e-En for a= (n + l)-1/ie-En: 

Now we go a step further. Let 

.9'Q.,1j(n,J) 

= { Q' e .9'(n,J): ~.IQ*(s)- Q'(s)i ~ 77} (3.8) 

be the set of types ,in the 77-neighbourhood of Q*:'-Which 
was defined in th.e line following (32) .. From the1 theOfY. of 
~oinpound channels ([19])we know that an (n, M, a)-code 
{(u;, D): 1 ~ i ~M} e~sts such that (3.5) holds ·for al{ 
Q e .9'Q.,

11
(n, <.:>""')and 

1 
-logM~ max min l(P,W('i·IQ))-r 
n p e EP(ff) Q e EPQ •• ~(n, d") 

~ mJxl( P, W( ·I· IQ*))!( 77, r), 

where 

lim f( 71,r) = 1 and n ~ n0 ( 71,r); 
17-> O,r->0 . 

Theorem RT implies now that (3.7) holds for all sn e 
UQ eY'Q·.~{n,J') Jn(Q). 

E. Applications of the Elimination Technique (ET) 

We use a result of [1], which· says how the randomiza­
tion in a correlated code can be reduced drastically. 

Theorem ET: If for € > 0, A e (0, 1) and n sufficiently 
large for any· V"""rn c Jn the average error of the corre­
lated code 

(f,JL;(JLI,Dl): l~i~M).yer 

satisfies for all sn e ../m 

1 M 
L JL( Y) M L w( ( DJflujlsn) ~ e-En, 

'Y.er .i=l 

then a f* c r with 

lf*l ~ n2 

and a JL * exist such that the code 

(f*,p.*;(uT,Dt): l~i~M)reP 

satisfies for its (even maximum) probability of error 

(3.9) 

max max E JL*(y)w((DTfiujisn)~A. 
lsi,;;M s"E/'" yef• 

Since U1 and U2 can "clean" the memory by sending l's 
resp. O's only, they obviously can communicate over the 
WUM at a positive rate. By sending the outcome of 
(f*,p.*), perfomied at the sender's side, the correlation 
can be eliminated totally without ail essential loss in rate. 

F. Updating in Many Cycles 

We know, from the theory of compound channels, that 
the code in E can actually be chosen with the properties 

D; c U ~n(w(" lu;IQ')), 
Q'e9Q •• ~(n,J') 

(3.10) 

that is, the decoding sets contain only sequences gener­
ated from u; by some W( ·I·IQ') from the neighborhood of 
W(·i·IQ*). Since u; is (P,O)-typical all sequences in 
U i'!, 1D; are (Q,O)-typical for some Q E .9'Q. ~(l)(n,V"""). 
Notice that 77(1) ~ 0 as (S, 77) ~ (0, 0). ' 

If the received sequence yn is not in U f'!, 1D; an error 
is declared. Its probability is smaller than A. For 'the 
second cycle, the first procedure will be iterated with 
.9'Q., 11(n, .../)replaced by the slightly larger .9'Q. (l)(n, /). 
~eiteration L times results in a total error p~obability 
less than L ·A and an increasing sequence 77<1>, • • ·; ·i'J<Ll. 
The ·choice 17(/) = l· 77 would work: just make· for a con­
stant L,. A and 17 small enough. Finally, after L cycles,. 
spend one cycle to clean the memory and in the next cycle 
use '?odewords u e .9""Q! (or just one of.them) to get into 
the proper states. Now repeat the L cycles as before. 0 

IV. PROOF OF THEOREM 2 

As in the proof of Theorem 1, we impose the symmetry 
condition yielding (3.1). We apply now random coding in 
the following form: V1, • • ·, VM are i.i.d. RV's taking val­
ues in .r; with equal probabilities. ~e de~oding }e.t~ 
D;(Vl, . .. 'VM; sn) are obtained by maximum likelil:\o<)d 
decoding via the channel w( ·i·isn) and omission of th9s~ 
sequences yn that are not generated by V; via this chan~ 
nel. Then for the expected average error probability 

IEA5n(Vl,. · ·, VM; D 1(sn),- · •, DM(sn)) ~A, 

provided that for y > 0 and n ~ ~0(A,y) 
log M~ I(P X .. · X P, W( ·i·isn)) -yn. 

As before we ~onsider only states 

sne U /n(Q), 
Q eEP?l.~(n,d") 
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where Q is determined below. Then the new states have 
the desired properties as in the previous proof. A random 
code is a correlated code and Theorem ET applies also, if 
codewords and j or decoding sets depend on sn (see [3]). 

Now, for sn E ../n(Q), 

I(Px ··· xP,w("l·lsn))=Q(O)h(P(O)), 

and by (3.1) this equals Q(O)h((l- Q(O))j Q(O)). Thus we 
get that 

is an. achievable rate. 
Notice that this is Borden's formula for C(E +• D, _, 0), 

which is shown to equal C(E +• D _,e) in [6]. But this 
equals also C(E+,D+,e) (Theorem 0, Part a)). Since 
obviously C(E +•D +,e)~ C(E _,D +,e), the proof iscom­
plete. D 

V. AV-CHAN!.;IEL ThEORY GIVES ALSO THEOREM 0 

If the sender and the receiver known sn then they can 
use a code 

{(u;(sn),D;(sn)): 1~i~M}, 

for w(·l·lsn)with 
n 

logM~ E max/(P1 ,w(·l·ls1))--yn 
t=l P, 

and error probability 0. 
Using .symmetry. and restricting sn as usual, gives again 

the same optimaLrate, because for this. special AY-chan­
nel (WUM!) the maximizing P/s can be · chosen to be 
equal. This· gives Theorem 0, Part a), In particular we 
understand why in the case (E +• D +) the capacity is the 
same for both error concepts. The same phenomenon 
occurs in case (E+,D_) exactly as for AY-channels in 
general (see [3]). 

The formula in [3, p. 622], 

CQ = max [I(U AY)- l(U AS)] 
(U,S,X)e~Q 

yields now 

C(E+, n-,o) ~ max{CQ: Q satisfies (3.1) }. 

As in the Appendix of [3] one can choose U such that 
U'= Y with probability 1. The~ l(U AY)- /(U AS)= 
H(Y) .:_ H(Y) + H(YIS) = Q(O)h(P(O)), a familiar expres­
sion. 

VI. PROOF OF THEOREM 3 

For Q=(Q0 ,· • '•Qb_ 1)E nxeP£t5'(JV,J, we have for 
the initial distribution Q0 that Q0W) is independent of x 
and therefore, for any P1, P2 ,- • ·, 

E(Q0W))P,(x) is independent of P1 • 

Thus, l(P0 W( ·I·IQ1)) = 0 for all t, hence C(Q0) = 0 and 
finally c = 0. Conversely, if nx E g; O'(W) = 0 choose 

P1 =P2 = ··· =Cl/12.'"1, .. ·,1/12.'"1) and the associated 
stochastic matrix W = I:)l/ I2.'"DWx. Determine 6(W). 
For any initial Q0 , we have asymptotically the periodic 
behavior of Q 0W1 described in Part d) of the Theorem in 
terms of the ii./,., ~rrespo!!_c!ing to W. Denote the limit­
ing cycle by (q,i'JW,· · ·,qwb- 1). The cycles in O'(W..) 
have as a common period n;<.:{dP(x) and therefore the 
cycles in (U xeP£6(W))u &(W) have as common period 

(. TI n dp(x)) TI JP g, n, say. 
xe,q'p=1 p=l 

Since tl{W.,)~ {q: (q,- · ·,) E &(Wx)} is compact, 
n X E _q-0'(~) = 0 implies 

.a 
· sup inf E llqW)- q'W}II ~ e, 

X' .P X q E O'l(W,) t = 1 
q' E O'l(W,,) 

and therefore, 

(T+l)!l - , E 

lim max L lli'JWt -· qW)II ~-. 
T->oo x T!l+l 2 

This ,implies C(Q0 ) ~ f(e) > 0 for all Q0 and hence C> 0. 

VII. CoNDITIONs FOR C(Q0) TO BE PosiTIVE: 

PROOF OF THEOREM 4 

By Theorem 3 the condition nx 8(~) = 0 is sufficient 
for C(Q0 ) to be positive. However, the condition may not 
be necessary, because starting in Q0 it may be possible by 
suitable choice of U\, Pz, ·: ·) to avoid the common cy­
cles. We shall show firstthat in case ,q'"=../={O,l}this 
is only possible at the price of having for Pt = (pt>pt) 

limp,p,=O (7.1) 
/->00 

and thus, 

lim I(Pn ·) =0 .. (7.2) 
t-+oo 

Therefore, here still C(Q o) equals 0 if n X O'(W) * 0. 
To see this, we investigate first the consequences of this 

condition for the two matrices 

w(·I·IO)=(~ ~). w(·l·ll)=(; ~)· 
Suppose that q=(q0 ,q1,- • ·,qb_ 1) is a common orbit. 
Then necessarily 

qoWo = qoW1. (7 .3) 

Therefore QW0 = QW1 must· at least have a solution in 
Q = (q, i'j), that is, 

qa +(1- q)'Y = qf3 + (1- q)8 

and thus the condition 

(a-{3)q=(8-y)q. (7A) 

We see that there is at most one such Q unless 8 = :y, 
a= {3. 

In the latter W(·I·IQ') has identical rows for all q' and 
thus C(Q0) = 0 for all Q0 • We· first simplify matters by 
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assuming w.l.o.g. that a~ /3. By (7.4), o ~ y. Now by the 
assumed commonness of the orbits 

qtWo=qtWt 

and therefore necessarily q 1 = Q = q0 • Hence, 

Remark: For the WUM 

{(6 ~).(i ~)), 
(7.8) does not hold, therefore C > 0. 

QWo=QWt =Q, (7.5) Case: l,q-1 =a~ 2. We are given 

and b can be chosen to equal 1. 
We analyse tl:lis constraint next .. Clearly qa -t-(1- q)y 

=q or 
(7.6) 

(7.7) 

and thus 

a:{F=y:S. (7.8) 

Clearly I(P, WCI•IQ)):=; o for all P e.9(ff). 
But now we start in any Q0 and try to choose P 1, P2 , • • • 

to do better! At step t we have Qt ={qt, q) with q1 = q + 
tlq1• Then at step t + 1 

qt+l = Pt( q + tlqt)a + iitC q .f. tlqr)/3 

+ Pt(q- tlqt)'Y + Pt(ii...;. llqt)S 

= (ptqa +iitqf3 + Prii'Y +iitiio) 

+(p1a + jj1f3- P~'Y- firS) Aq1 • 

Since by (7.6) and (7.7) the term in the first bracket 
equ~ls p/qa + q(i)+ Ji/qfJ + qjj) = p1q + Ji1q __ = q and 
since the term in the.second. bracket equals (p/a- y) + 
iikW- o))tlq0 we conclude that · · 

ltlqt+tl = lqt+l- ql ~ illq1 iiP1(a- 'Y) + Pi(/3- o)l. 
(7.9) 

This is readily analysed by cases. Clearly, limn .... oo qn = q, 
if 

max(la- yl, 1/3- ol) < 1. 

Otherwise, also if m£ min(la- yl, 1{3- ol) < 1, we use a 
new argument. If e ~ p1 ~.1- e fore> 0, then lp1(a- y) 
+ Ji/{3- o)l ~ 1.,... e + e ·m= 1- e(1- m). 

However, if P1 does not satisfy the bounds, then I(P1 , ·) 

$ f(e) ~ 0 (e ~ 0) and we cannot maintain positive rate. 
We are left with the cases: 

la- yl = 1/3- ol = 1. (7.10) 

In case a = 1, {3 = 0, y = 0, o = 1, we get directly from 
(7.9) 

ltlqt+tl ~ tlqtl2p; -11 

and, for e~p1 ~1-e, we have l2p1 -1l::5;1-2e. The 
previous argument _applies again. 

By the restriction to a~ {3, we are finally left with the 
cases 

{ ( ~ u' 0 ~)} and { (i ~) ' ( ~ u} 
as sets of matrices. This results in identical'· rows for every 
Q' E .9'(./) and thus in I(P, ·) = 0. 

( 

a(1) 

w("I·IO) = : 

a( a) 

w( ·1·11) = ( f3(t) 

f3(a) 

If nxeBrO'(W) * 0, then (7.3) to (7.8) take the form 

QW., = QJ¥x., 

qa(x) = qf3(x), 

a(x): a(x') = f3(x): f3(x'), 

forx,x'eq' (7.11) 

for x e q- (7.12) 

for x,x' E ,q". (7.13) 

Furthermore, 

qt+!= L P1(x)(q+Aq 1)a(x) 
xeff 

+ E P1(x)(q-llq1 ){3(x) 
xe.'?r 

= E P 1(x)( qa(x) + qf3( x)) 
xeff 

+. E P1(x)(a(x)-{3(x))tlq1 

xe.'?r 

= q + Aq1 E P1(x)( a(x)- f3(x)), by (7.12). 
xeff 

In the case M£ maxx la(x)- {3(x)l < 1, we get ltlq1+11 = 

lq1+t -.ql ~Mitlq1 l and the proof works as in the case 
lq-'1 =2. Otherwise we have to go through cases again. 
First w:l.o.g. we can choose the ordering 

a(1) ~·a(2) ~ · · · ~a( a) 

and then bY (7.13) necessarily 

{3(1)~{3(2)~ ··· ~{3(a). 

Further reduction consists of omission up to one of those 
W., that equals another Wx'· Furthermore, there are the 
following four candidates for a Wx with 0 and 1 as entries 
only: · 

(10) 
(10) 
(01) 
(01) 

(01) 
(10) 
(01) 
(10) 

q 
arbitrary 

1 
0 
I 
2· 

Here the first column corresponds to state 0 and the 
second column to state 1. The values for q associated with 
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them allow only to combine the first row with any of the 
three other rows. 

(i ~), (~ ~); (~ ~), (~ i) 
(~ ~), (~ ~). 

Thus we arrived at the situation 

9l'-={x: la(x)-.B(x)l<1}, 

9l'+ = {x: la(x)- ,B(x)i = 1}, 

We write 9l'+·= {x1, • • • }, 1-5£ maxxeSi""ia(x)­
,B(x)i. We analyze (7.12) for the first case: 

~x~.9CP,(x)( a(x)- ,B(x)) I~ xe~-P,(x)(1- 5) + P,(x1) 

= e(1- 8) + 1- E"- P,(x 2 ), 

if e = E PtCx), 
x e.9C-

= 1- e8- P,(x2 ). 

This gives bad contraction only if e ~ 0, P,(x2 ) ~ b (t ~ 
oo), but then P,(x1) ~ 1 (t ~ oo) and I(P" ·) ~ 0 (t ~ oo). 
The second case is similar and the third case is also easily 
settled. 

Remark: The positivity for C(Q0 ) can be formulated 
without any reference to information theory. For Q0 , {Wx: 
x E 9l'} and a sequence (P)~=l• define Q, = Q0Wp

1
; • • 

Wpt-1 and consider 
1 

C'(Q0) = sup lim -
(P,)~-l n-><ri n 

· f. min ( max IIQ,W,- Q,Wp,ll, min (1- P,( x))). 
t=l xe.9C xea'" 

Now C'(Q0 ) > 0 ~ C(Q0) > 0. 
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