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SEPARATING PARTITION SYSTEMS AND
LOCALLY DIFFERENT SEQUENCES*
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Abstract. The problem of perfect hashing is generalized and somie initial results are obtained. As a corollary,
an improvement on earlier results for (i, j)-separating systems of partitions is provided.
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1. Separating partition systems. Separating partition systems have been studied
under different names by several authors. Our attention was drawn to this subject by a
very stimulating paper by Fredman and Komlos [1] who used information theory to
derive nonexistence bounds for separating partition systems in two special cases: systems
of perfect hash functions and (i, j)-separating systems. For the latter model, stronger
results exist in Djackov and Rykov {2], Erdés, Frankl, and Fiiredi [3], and Hwang and
Sos [41in the case i = 1. However, if i > 1, j > 1, no appropriate method seems to be
available. By establishing an interesting connection between this probleir an a new
generalization of perfect hashing, we will improve upon earlier results for (2. 2 j-s¢ parating
systems; the special case is singled out in the pioneering paper of Friedman, Graham,
and Ullman [5].

DEFINITION [S]. An (i, j)-separating system for the set S is a family of bipartitions
Py, ++-, P, of §such that for every pair of disjoint subsets 4, B of $ such that | 4] =
| B| = j, there is at least one partition P, in the given family for which 4 and B are
contained in (the two) different classes of P,.

Write | $| = n and denote by M(i, j, n) the minimum number ¢ of partitions in
any (i, j)-separating partition system (SPS) for S. In the puiers [1j-{5] saymoptotic
bounds have been obtained for M(i, j, n) if n tends to infinity, while / and j remain
fixed. The case i = | seems to have raised the most interest since it has applications in
conflict resolution in multi-access communication. The case i > 1, j > 1 is treated only
in [1}and {5]. We will return to it at the end of this paper in order to improve on the
asymptotic bounds for M(2, 2, n).

Qur starting point is, however, a dxﬁ‘erent separating partition system, known under
the name of perfect hash functions. 7

DEFINITION {1]. A (b, k)-system of perfect hash functions for the set S is a system
of partitions P,, - -+, P, of S into at most b classes such that for every k-element subset
A of S there is at least one partition P, in the system for which every element of A falls
into a different class of P,. (Clearly, such a system existsonly if k £ b.)

Following Fredman and Komlos [1], we denote by Y (b, k, n) the smallest ¢ for
which a (b, k)-system of perfect hash functions exists for | S| = n. The best asymptotic
bounds for Y (b, k, n) in the case of n —> oo, arbitrary finite b and & can be found in
Kdérner and Marton [6] (cf.-also [1] and K&mer [7]). The problem seems to be hopelessly
difficult and no exact asymptotic value of Y (b, k, n) is known except for the trivial case
b= 2.
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Clearly, the nonbinary case has a different flavor, and in particular, has no natural
reformulation using the familiar language of extremal set theory. In the hope that problems
for binary sequences are appealing to a larger set of combinatorialists, we are now intro-
ducing a generalization of perfect hash functions. Our new problem is very nontrivial
already in the binary case and will lead to a new treatment of A(2, 2, n).

L.og’s and exp’s are binary.

2. Locally different sequences. Let B be a sct of b elements represented by

{0, 1, --+, b — 1}, which we will consider as our alphabet. Let B’ denote the set of
sequences of length ¢ of elements from B. Given a set 4 < B’ we say that the coordinates
iy, b2, -+, § form a separating domain for A if the subsequences

Xig Xz xy of x=xy-+x, x€A4

are all different. Let L(A) denote the smallest number / for which a separation domain
with [ coordinates exists for 4. In this language, the existence of a (b, k)-system of perfect
hash functions for an n-element set with ¢ = Y (b, k, n) partitions is equivalent to the
existence of an n-element set £ < B’ such that for every 4 < E with | 4| = k we have
L(A4) = 1. In other words, Y (b, k, n) is the smallest length for which 7 sequences of
length 1 can be constructed from a b-ary alphabet under the condition that for any k
sequences (out of these n) their separation domain has just one element.

Intuitively, we shall imagine that a set of sequences is locally different if they have
a small separation domain. Systems of perfect hash functions in the sense of Fredman
and Komlds {1] are an example of this concept. To be more precise, we shall give the
following definition.

DEFINITION. The set A < B' is I-different if its smallest separatlon domain has at
most [ coordinates. Let Z (b, k, n, 1) be the smallest ¢ for which there exists an n-element
set £ < B’ such that every k—clement subset of E is /-different.

Then Z(b, k, n, 1) = Y (b, k, n). Clearly, if  is large relative to k, the problem of
determining Z (b, k, n, I) becomes trivial. In fact, we have Proposition 1.

PrRoOPOSITION 1. IfIZ k— 1, then Z(b, k, 1, n) =logn/logb.

Proof. We shall prove that every k-element subset of B’ is (k — 1)-different, the
rest being trivial. We will use induction on k. Notice that no other parameter is relevant.

The statement is obvious for k = 2, Therefore set k > 2 and suppose that the
statement is true for k' < k. Let A < B have k elements. As all its elements differ, consider
an arbitrary coordinate in which at least two of them differ. Let 4, be the set of thosc
sequences in 4 that have ¢ € B in this coordinate. Then, by definition for some c € B
both A, and A\ A, are nonempty. The induction hypothesis implies -

L(A)=[A) —1 and L(A\A) S |A\A.| — 1.
Therefore,
LAYS 1+ L(A) + L(AA) S 14| — 1. 0

It scems to us that the information-theoretic technique used in [6]is quite inefficient
in dealing with the problem of locally different sequences if / > 1. Unfortunately, we
cannot suggest any alternative in the general case. Rather, we have attempted to work
on the first nontrivial examples. In fact, from now on, we restrict ourselves to the bmary
alphabet, i.e., b = 2. We know that for k = 2 the problem is trivial. The case k = 3 is
settled by Proposmon 1. We note that in order for Z(b, k, n, I) to be finite, we

must have
> log k '
log b
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The first k for which / can be smaller than k — 1 is k = 4. Unfortunately, we do not
know the full answer here. We have no reason to believe that any of our bounds is tight.
Their main interest is to provide nontrivial estimates in an arca characterized by a lack
of methods.

3. Two-different quadruples and (2, 2)-separation. Qur Key result is Theorem 1.
THEOREM L. For every sufficiently large n
Z(2,4,2,n) 3
=
log n log $

353 = ~ 7.23.

Proof. Let us fix some n and let us write 1 = Z(2, 4, 2, n). Thus we can construct
n binary sequences of length ¢ such that for any quadruple of these sequences there are
two distinct coordinates where the corresponding four binary pairs are

00
01
10
11

in an arbitrary order.

We claim that this property of our n sequences is equivalent to the following: for
any two disjoint pairs of sequences there exists a coordinate in which the two members
of both differ simultaneously. In fact, suppose first that our original condition is satisfied.
In other words, for every quadruple of our n elements there exist two different binary
equipartitions (BEP), generated by the coordinates of the respective sequences. Let us
now consider any two disjoint pairs of scquences and their prescribed configurations.
Because the two coordinates involved represent BEPs, the two pairs are either both
different or both equal, simultaneously. But they can both be equal in at most one of
the two coordinates. In the other direction, look at an arbitrary quadruple and form two
disjoint pairs in it arbitrarily. There is a coordinate in which both differ simultancously.
This gives one BEP in which the zeros are one class, and the ones are the other class.
Now consider these two classes as the two disjoint pairs. Their simultaneous separation
gives a new BEP that differs from the previous one.

Let us now proceed to prove

3.53logn s Z(2,4,2,n).

Consider the fixed optimal configuration of n sequences. For x€ {0, 1}/, y€
{0, 1} let the Hamming distance d(x, y) be the number of coordinates in which they
differ. Let & be the minimum Hamming distance between sequences in our optimal
configuration and let (x*, y*) be a pair of sequences achieving it. Let the set of the
remaining (n — 2) sequences be denoted by C,. Then the minimum Hamming distance
between different elements of C, is at least 4. On the other hand, ary pair of sequences
in C, must difler in at least one of those coordinates in which x* and y* disagree, and
hence C, cannot have more elements as there are binary scquences of length d.
This gives

n—2s24

This can be viewed as a relation between the cardinality of C, and its minimum Hamming
distance, for every n. Denoting =~

log (n — 2)
Rl:: g ) ’
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we obtain

(H R =

~

{or the sequence £ = ((n), where n — oo, Let us denote
1 |
R(D):YlogiD! and 6(D)=7mm{d(x,y);x€ D,yeD, x+#y}

forany D {0, 1 }'. We are interested in how large a set with a given minimum Hamming
distance can be. We write

R,(8) = max {R(D); (D) s 9, D<= (0, 1)'},

and R{3d) = lim sup, .. . R,(3). Our bound on Z (2, 4, 2, n) will follow from (1) and an
analysis of the function R(d). In fact, let us suppose that we have a sequence of con-
structions satisfying (1) with

lim sup Ry, = Ro.

n-vw

Clearly, for this Ry we must have
Ro < max {9; R(3) = d}.

Obviously, R(@) is a monotonically decreasing function of 9, and hence it has a unique
point 8* for which

R(3*) = 4d*.
Thus, by the previous inequality,
Ry S R(8*).

Although the value of R(3*) is unknown, coding theory provides us with interesting
upper bounds on the function R(d) that we can use to evaluate our last inequality. Using
the celebrated linear programming bound on R(9) by McEliece et al. [8], we get

Ry = max {9, R¥(9) =3},
where RY(8) is the rate-distance bound in [8]. As in the previous argument,
R() < Ru(a* *)

where 8* * is the unique point in which R¥(d**) = 8**, Looking up the values of R"(3)
we complete the proof.

The upper bound can be obtained by randomly selecting the binary sequences,
independently and equiprobably among all possible sequences of the stated length. We

omit the calculations. O
As an immediate consequence of the lower bound in the above theorem, we obtain

a lower bound on M(2, 2, n) that is stronger than the one in [1}. We have Theorem 2.
THEOREM 2. For every sufficiently large n,

M2.2n) 3o
logn  log} o

353 =

Proof. The upper bound can be obtained by random selection, as in the previous
proof. Similarly nonconstructive bounds for this problem can be found in [5]. For this
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case those authors obtain 4 /log §. A more careful evaluation gives the above. Once again,
we omit the details.
The lower bound will follow upon noticing that

(2) Z(2,4,2,n) S M(2,2, n).

In order to prove (2), it is enough to observe that a (2, 2)-separating partition
system can be described equivalently as a set of binary sequences such that for every
quadruple of these binary sequences there exist three coordinates in which they represent
three different BEPs. By the first part of the proof of Theorem | we also know that in
any set of binary sequences satisfying the conditions of that theorem, for every quadruple
of sequences there are two coordinates where we have two different BEPs. Thus, our
present conditions are stronger. This proves (2); whence the original statement follows

by Theorem 1. a
It seems unfortunate to reduce this problem to a weaker one and we would like to

sce a better argument.
Related problems are discussed in {9].
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