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Abstract

By a celebrated theorem of Morley, a theory T is ℵ1-categorical if and only if it is κ-categorical

for all uncountable κ. In this paper we are taking the first steps towards extending Morley’s

categoricity theorem “to the finite”. In more detail, we are presenting conditions, implying

that certain finite subsets of certain ℵ1-categorical T have at most one n-element model for

each natural number n ∈ ω (counting up to isomorphism, of course).
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1 Introduction

By a celebrated theorem of Morley, a (countable, first order) theory T is ℵ1-categorical if and only
if it is κ-categorical for all uncountable κ, see [7] or Theorem 7.1.14 of [1]. In this paper we are
taking the first steps towards extending Morley’s categoricity theorem “to the finite”. The most
natural generalization would be that if a first order theory T is ℵ1-categorical then, up to isomor-
phism, T has a unique n-element model for each finite natural number n. We will see below, that
this statement is obviously false. If we are dealing with finite models, then it is natural to consider
finite subsets of T . More concretely, if Φ is a (finite) set of formulas then we will say that A is a
Φ-elementary substructure of B iff A ⊆ B and for every ϕ ∈ Φ and d̄ ∈ A, the statements A � ϕ(d̄)
and B � ϕ(d̄) are equivalent. We will study Φ-elementary substructures of certain ℵ1-categorical
structures. If Φ is finite then such a Φ-elementary substructure may still remain finite.

We will investigate some conditions on T , which, together with T being ℵ1-categorical, imply
that

(∗) for every large enough finite subset Φ ⊆ T , up to isomorphism, models of T has at most
one Φ-elementary substructure of cardinality n for all n ∈ ω.

Infinitely categorical structures are ℵ0-categorical and ℵ0-stable. Studying ℵ0-categorical, ℵ0-
stable structures in their own right has a great tradition. In this direction we refer to [3], [15],
[16], where, among others, it was shown, that ℵ0-categorical, ℵ0-stable structures are smoothly
approximable, particularly, they are not finitely axiomatizable. For more recent related results we
refer to Cherlin-Hrushovski [2]. By a personal communication with Zilber and Cherlin, it turned
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out, that (∗) follows from ℵ0-categorical, ℵ0-stable theories from already known results. However,
to show this, ℵ0-categoricity plays a critical role. In this paper we do not assume ℵ0-categoricity.

At that point one would temple to think that if T is ℵ1-categorical then (∗) would follow
without any additional condition. In fact, the situation is more complicated. To illustrate the
nature of (∗), we insert here three simple examples.

Example 1. By a result of Peretyatkin (see [8]) there exists a finitely axiomatizable ℵ1-categorical
structure A; let T be the theory of A. Infinite structures with a finitely axiomatizable theory can-
not be pseudo-finite, so large enough finite subsets of T do not have finite models. Consequently,
(∗) holds for T , for trivial reasons.

Example 2. Let T be the theory of algebraically closed fields of a fixed positive characteris-
tic. Then T is ℵ1-categorical but not ℵ0-categorical and already the field axioms are finitely
categorical: two finite fields are isomorphic iff their cardinalities are the same. We also note, that
T is not pseudo-finite, hence - similarly to the previous example - (∗) holds for it.

Example 3. The theory of dense linear orders are not stable (hence are not ℵ1-categorical),
but each pairs of finite linear orders of the same cardinality are isomorphic.

In order to provide conditions for T which makes (∗) true, we will deal with ‘finitary analogues’ of
some classical notions such as elementary and Φ-elementary substructures. Here are some more
‘finitary’ notions we will need below.

Definition 1.1. If A is a structure X ⊆ A and ∆ is a set of formulas then by aclA∆(X) we
understand the smallest (w.r.t. inclusion) set Y containing X which is closed under ∆-algebraic
formulas, i.e. whenever ϕ ∈ ∆, ȳ ∈ Y and A0 = {a : A � ϕ(a, ȳ)} is finite then A0 ⊆ Y .

It is worth to note here that if v0 = v1 ∈ ∆ then acl∆ is a closure operator. In addition,
acl∆(X) is not the same as the set of those elements which are algebraic over X witnessed by a
formula in ∆. In fact, if we denote this latter set by X∆ then

aclA∆(X) =
⋃
n∈ω

Xn,

where X0 = X and Xn+1 = X∆
n for all n ∈ ω.

We write CBX for the usual Cantor-Bendixson rank over the parameter set X (the definition
will be recalled in Section 2). Our aim is to prove the following theorem.

Theorem 5.2. Suppose A is an ℵ1-categorical structure satisfying (a)-(b) below:

(a) For any finite set ε of formulas there exists another finite set ∆ ⊇ ε of formulas such that
whenever ∆′ ⊇ ∆ is finite and g is a ∆′-elementary mapping then there exists a ∆-elementary
mapping h extending g such that dom(h) = acl∆′(dom(g)).

(b) For each finite ā ∈ A and each infinite subset E of A definable over ā there exists a function
∂E : Formā → Formā such that CBā(∂Eϕ) = 0 for all formula ϕ and ϕ(x̄, d̄) defines an atom
of the Boolean–algebra of E–definable relations of A if and only if A � ∂Eϕ(d̄).

2



Then, up to isomorphism, every large enough T ⊆ Th(A) has at most one n-element model for
each n ∈ ω.

We note that every elementary mapping f can be extended to an elementary mapping to
acl(dom(f)); clause (a) is a finitary analogue of this well known fact. We will informally refer to
(b) as “E-atoms have a definition schema”, for infinite, definable E (see Definition 2.3 below).
We are going to discuss these two notions in detail in Section 2 (in fact, Section 2 is completely
devoted to a brief motivation, explanation and analysis of these notions).

We say that a theory T has the Finite Morley Property iff it satisfies (∗) (the conclusions of
Theorem 5.2). As we mentioned, here we are investigating sufficient conditions for the Finite
Morley Property.

Before going further, let us list a couple of examples for which our theorem can be applied (i.e.
structures satisfying clauses (a) and (b) above).

Example A1. Infinite dimensional vector spaces V = 〈V,+, λ〉λ∈F over a finite field F. Here the
language contains a binary function symbol for addition and a unary function symbol for each
scalar in the field. Then V, as it is ℵ0-categorical, satisfies our clause (b) by Proposition 2.6.
Further, it is easy to check clause (a): if a function preserves unnested atomic formulas then it
is a linear map, therefore it extends to an automorphism of V. Note that V is pseudo-finite and
clearly any two vector spaces of the same finite dimension are isomorphic.

Example A2. Let F be an algebraically closed field with a given positive characteristic. Then,
similarly to the case of vector spaces, F satisfies condition (a), and since it is strongly minimal,
Proposition 4.5 implies, that it has the Finite Morley Property. Note, that F is not ℵ0-categorical.

Example B. Take any finite structure X (in a finite language) and let A =
⊔
ω X be the disjoint

union of ℵ0 many copies of X . If a function g preserves the diagram of X then it extends to an
automorphism h of A, hence clause (a) holds. Since A is ℵ0-categorical clause (b) holds, too (see
Proposition 2.6). A has, for any finite set ∆ of formulas, a ∆-elementary substructure, and any
two of them, for large enough ∆, are isomorphic.

Example C. The structure A = 〈A,U, g〉 where g : nU → Ar U is a one-to-one mapping and U

is a one-place relation symbol. Then A also satisfies the conditions of our Theorem 5.2.

Example D. Let n ∈ ω be fixed and let A0, . . . , An−1 be pairwise disjoint sets of the same infinite
cardinality. Further, for all i < n let fi : A0 → Ai be a bijection and set A =

⋃
i<nAi. It is not

hard to check that the structure A = 〈A,A0, . . . , An−1, f0, . . . , fn−1〉 satisfies all of the assump-
tions of Theorem 5.2.

Example E. Let q ∈ ω be a prime power. Consider the group
⊕

ω Z/qZ. It is totally categorical
and has a finite base for elimination of quantifiers. By Proposition 2.7 this structure satisfies
the assumptions of Theorem 5.2. We also note that by total categoricity, this group has finite
∆-elementary substructures for all finite ∆ (which, for large enough ∆, are unique up to isomor-
phism, according to our Theorem 5.2).
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Example F. Any ℵ1-categorical structure having a finite elimination base. Theorem 5.2 applies
to all of these structures, see Proposition 2.7.

We will see in Proposition 4.5, that in the case, when A is strongly minimal, the conditions
of Theorem 5.2 may be simplified (in fact, we need to assume a weak version of (a) only, and do
not need to assume (b)). We note, that the structures in Examples C, D, E and F above are not
strongly minimal, but satisfy the conditions of Theorem 5.2.

The proof of Theorem 5.2 is divided into two parts. First we establish some basic properties
of finite substructures of a structure satisfying conditions (a)-(b). Then we examine a method
to find isomorphisms between ultraproducts acting “coordinatewise”. This method is related to
(but does not depend on) the results of [9], [4], [11]. To establish further investigations of finitary
generalizations of Morley’s theorem, we are trying to be rather general. We offer a variety of
notions which perhaps may be used in related investigations. Some of them may seem rather
technical, or complicated. However, we hope, these notions will be useful to find more natural
finitary generalizations of Morley’s Theorem.

The rest of the present paper is organized as follows. At the end of this section we
are summing up our system of notation. In Section 2 we present some basic observations about
ℵ1-categorical structures also satisfying some variants of the conditions of Theorem 5.2. Subsec-
tion 2.1 contains the definitions needed in later sections; Subsection 2.2 is devoted to establishing
connections between definitions given in Subsection 2.1 and traditional model theoretic notions.
These investigations (combining with the examples given above) may illustrate how general our
results are. Subsection 2.2 is inserted to the paper for completeness, we do not use its results in
later sections. Readers, who would prefer to see our main results rather than the brief analysis of
the notions involved, may simply skip Subsection 2.2.

Section 3 makes some preliminary observations on stable structures. In Section 4 we are
dealing with ultraproducts of finite structures. This section contains the technical cornerstones
of our construction. Here decomposable sets play a central role: a subset R of an ultraproduct
A = Πi∈IAi/F is decomposable iff for every i ∈ I there are Ri ⊆ Ai such that R = Πi∈IRi/F ,
for more details see [9], [11] and [4]. As another tool, we also will use basics of stability theory.
In general, our strategy is as follows: to obtain results about finite structures first we study an
infinite ultraproduct of them. A similar approach may be found in [14] and in [10].

The main goal of Section 4 is to prove Theorem 4.24 which claims, that Theorem 5.2 (the main
result of the paper) is true, if we add to our assumptions, that there exists a ∅-definable strongly
minimal set. Section 4 is divided into three subsections.

In Subsection 4.1 we are dealing with strongly minimal structures. Here the goal is to establish
the Finite Morley Property for certain strongly minimal structures. This is achieved in Proposi-
tion 4.5.

In Subsection 4.2 We assume that our structures contain a ∅-definable strongly minimal set.
Using Zilber’s ladder theorem (which will be recalled at the beginning of Subsection 4.2), in
Theorem 4.17 we show, that certain decomposable elementary mappings defined on a ∅-definable
strongly minimal set can be extended to a decomposable elementary embedding.

In Subsection 4.3 we are combining the results of the previous two subsections to obtain The-
orem 4.24; as we already mentioned, this theorem establishes the Finite Morley Property for
ℵ1-categorical structures containing a ∅-definable strongly minimal set and satisfying (a) and (b)
of Theorem 5.2.
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On the basis of these results, in Section 5 we are presenting the main result of the paper: we
show, that assuming the existence of a ∅-definable strongly minimal set may be omitted. Thus,
under some additional technical conditions, Morley’s Categoricity Theorem may be extended to
the finite. For the details, see Theorem 5.2. Finally, at the end of Section 5 we mention further
related questions which remained open.

Notation

Sets.
Throughout ω denotes the set of natural numbers and for every n ∈ ω we have n = {0, 1, . . . , n−1}.
Let A and B be sets. Then AB denotes the set of functions from A to B, |A| denotes the cardi-
nality of A, [A]<ω denotes the set of finite subsets of A and if κ is a cardinal then [A]κ denotes
the set of subsets of A of cardinality κ.

Sequences of variables or elements will be denoted by overlining, that is, for example, x̄ denotes
a sequence of variables x0, x1, . . .

Let f be a function. Then dom(f) and ran(f) denote the domain and range of f , respectively.
If A is a set, f : A→ A is a unary partial function and x̄ is a sequence of elements of A then, for
simplicity, by a slight abuse of notation, we will write x̄ ∈ A in place of ran(x̄) ⊆ A. Particularly,
x̄ ∈ dom(f) expresses that f is defined on every member of x̄, that is, ran(x̄) ⊆ dom(f).

Structures.
We will use the following conventions. Models are denoted by calligraphic letters and the universe
of a given model is always denoted by the same latin letter.

If A is a model for a language L and R0, . . . , Rn−1 are relations on A, then 〈A, R0, . . . , Rn−1〉
denotes the expansion of A, whose similarity type is expanded by n new relation symbols (with
the appropriate arities) and the interpretation of the new symbols are R0, . . . , Rn−1 respectively.
The set of formulas of a language L is denoted by Form(L). Throughout L will be fixed so we may
simply write Form instead. If X is a set (of parameters), then by FormX we understand the set of
formulas in the language extended with constant symbols for x ∈ X.

Throughout, we denote the relation defined by the formula ϕ in A by ‖ϕ‖A, that is,

‖ϕ‖A = {ā ∈ A : A � ϕ(ā)}.

If A is clear from the context, we omit it.
We will rely on the following natural convention. If M is a structure and X ⊆ M can be

defined with a formula ϕ and A is any structure then by XA we understand ‖ϕ‖A. In particular
if A = Πi∈ωAi/F then every definable subset of A is decomposable and hence

XA = ‖ϕ‖A = Πi∈ω‖ϕ‖An/F = Πi∈ωX
An/F

in this case. If A is a ϕ-elementary substructure of M then XA = A ∩XM. Sometimes, when it
is clear from the context, we omit the superscript.

2 Basic definitions and preliminary observations

This section is devoted to study the conditions occurring in the main result (Theorem 5.2) of the
paper. In Subsection 2.1 we present our basic definitions; in Subsection 2.2 we provide a brief
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analysis for them. As we already mentioned, later sections do not depend on Subsection 2.2, so it
may be skipped if the reader would prefer doing so.

Recall, that we are working with a fixed finite first order language L.

2.1 Definitions and some explanations for them

Let A be a first order structure and let X ⊆ A be arbitrary. Then aclA(X) denotes the algebraic
closure of X in A. When A is clear from the context, we omit it. Recall, that acl∆ was defined
in Definition 1.1.

By a partial isomorphism we mean a partial function f : A → A such that if ā, b ∈ dom(f)
then for every relation symbol R and function symbol g we have
A � R(ā) iff A � R(f(ā)) and
A � g(ā) = b iff A � g(f(ā)) = f(b).

We remark that f is a partial isomorphism if and only if it is elementary with respect to the set
of unnested atomic formulas (for the definition of an unnested atomic formula see [5, p. 58]).

Let us recall, for completeness, the notion of Cantor-Bendixson rank CB.

Definition 2.1. Suppose that M is a structure A ⊆ M and φ(v) is a formula with parameters
from A. We recall the usual definition of CBMA (φ), the Cantor-Bendixson rank of φ in M. First,
we inductively define CBMA (φ) ≥ α for α an ordinal.

(i) CBMA (φ) ≥ 0 if and only if ‖φ‖M is nonempty.

(ii) if α is a limit ordinal, then CBMA (φ) ≥ α if and only if CBMA (φ) ≥ β for all β < α.

(iii) for any ordinal α, CBMA (φ) ≥ α + 1 if and only if there is a sequence 〈ψi(v, āi) : i ∈ ω〉 of
formulas with parameters āi ∈ A such that 〈‖ψi(v, āi)‖M : i ∈ ω〉 forms an infinite family of
pairwise disjoint subsets of ‖φ(v̄)‖M and CBMA (ψi) ≥ α for all i.

If ‖φ‖M is empty, then CBMA (φ) = −1. If CBMA (φ) ≥ α but CBMA (φ) � α+ 1, then CBMA (φ) = α.
If CBMA (φ) ≥ α for all ordinals α, then CBMA (φ) =∞.

If CBMA (φ) = α for all finite set A ⊆ M then we write CBM(φ) = α. If M or A is clear from
the context, we may omit them.

Definition 2.2. Let M be a structure and let E ⊆ M , ē ∈ E. Then we say that ϕ(x, ē) is an
E-atom if ‖ϕ(x, ē)‖M is an atom of the Boolean-algebra of E-definable relations of M. Similarly
if a subset A is defined by an E-atom ϕ(x, ē) then we may simply write A is an E-atom.

As we mentioned in the introduction, if X ⊆ M then FormX denotes the set of formulas that
may contain parameters from X. Now we turn to discuss condition (b) of Theorem 5.2.

Definition 2.3. Let E be an infinite subset of M definable by parameters from X ⊆M . Then a
function ∂E : FormX → FormX is defined to be an atom defining schema for E overM if ‖ϕ(x, ē)‖
is an E-atom if and only if M � ∂Eϕ(ē) and CBX(∂Eϕ) = 0.

We say that the structure M has an atom defining schema if for all infinite definable subset
E there exist the corresponding function ∂E . Further, when it is clear from the context, we may
simply write ∂ instead of ∂E .

Having an atom defining schema expresses, that for a fixed infinite, definable relation E and
formula ϕ, the fact, that ϕ(v, d̄) defines an atom in the Boolean-algebra of E-definable relations
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of A, is a first order property of d̄. Particularly, ϕ(v, d̄) is an atom if and only if A � ∂Eϕ(d̄) for
a first order formula ∂Eϕ. We also require the Cantor-Bendixson rank of ∂Eϕ to be equal to zero.
This condition expresses that whenever ϕ(v, d̄) isolates a type in the Stone space S(E), the type
tp(d̄/∅) is also an isolated point of Sn(∅) (where n is the length of d̄). In this point of view, our
condition can be seen as a transfer principle stating, that utilizing ϕ, isolated points of S(E) may
be obtained from isolated points of Sn(∅), only.

We will see in Proposition 2.6, that ℵ0-categoricity implies the existence of an atom defining
schema.

Next, we analyze condition (a) of Theorem 5.2.

Definition 2.4. A structure A is said to have the extension property if the following holds. For
any finite set ε of formulas there exists another finite set ∆ ⊇ ε of formulas such that whenever
∆′ ⊇ ∆ is finite and g is a ∆′-elementary mapping then there exists a ∆-elementary mapping h
such that h ⊇ g and such that the following hold:

dom(h) = acl∆′(dom(g)) and

ran(h) = acl∆′(ran(g)).

As we mentioned in the Introduction, every elementary mapping f can be extended to an
elementary mapping to acl(dom(f)); this fact will be called ‘extension property for elementary
mappings’ (EPE, for short). Definition 2.4 above is a finitary version of EPE. Let f : X → Y be
a function that we would like to extend to another function f ′. To get a finitary version of EPE
it is useful to isolate three hidden parameters occurring in it:

- which formulas are preserved by f ;

- which formulas are preserved by f ′ (the extension of f);

- what is the relationship between dom(f) and dom(f ′).

Roughly, our extension property expresses, that if ε is a finite set of formulas, and ∆′ is an-
other large enough finite set of formulas then an ε-elementary function f can be extended to
acl∆′(dom(f)) and the extension remains elementary enough. If we do not require finiteness of
ε,∆ and ∆′, and letting them equal to the set of all formulas, then clause (a) reduces to the
original notion of EPE. We will see shortly that if the theory of A has a finite elimination base for
quantifiers, (particularly, if a countable elementary substructure of A is isomorphic to the Fräısse
limit of its age), then A has the extension property.

We will also deal with a special weaker form of the extension property, mainly in Subsection
4.1, which we call the weak extension property. We will see in Theorem 4.6, that for strongly
minimal structures this weaker property already implies the Finite Morley Property.

Definition 2.5. The structure A satisfies the weak extension property if and only if (∗) below
holds for it.

(∗) There exists a finite set ∆ of formulas such that whenever ∆′ ⊇ ∆ is a finite set of
formulas and f is a ∆′-elementary mapping then there exists a partial isomorphism f ′

extending f so that dom(f ′) = acl∆′(dom(f)) and ran(f ′) = acl∆′(ran(f)).
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We note, that this condition is somewhat weaker than the condition obtained from the exten-
sion property by letting ε in it to be the set of unnested atomic formulas.

We will see in Proposition 2.7, that the presence of a finite elimination base implies the exten-
sion property.

2.2 Connections with traditional notions

We start by providing sufficient conditions that imply the extension property and the existence of
an atom defining schema.

Proposition 2.6. Suppose A is ℵ0-categorical and let E be an infinite X-definable subset of A
for some finite X ⊆ A. Then there is an atom-defining schema ∂E for E in A.

Proof. Suppose ϕ(v, d̄) defines an E-atom. Then this is a property of d̄, which is invariant
under those elements of Aut(A) that fix X pointwise. Hence tpA(d̄/∅) determines it. But A is
ℵ0-categorical, thus this type can be described with one single formula. Let ∂ϕ be this formula.

To see CBX(∂ϕ) = 0 we need to prove that ‖∂ϕ‖ cannot split into infinitely many parts
using a fixed finite set P of parameters. But this follows immediately from the fact that after ad-
joining P as constant symbols to the language of A, the resulting structure is still ℵ0-categorical.

Proposition 2.7. Suppose A has a finite elimination base. Then A satisfies the extension property
and has an atom defining schema.

Proof. If A has a finite elimination base then it is ℵ0-categorical whence, by Proposition 2.6 it
has an atom defining schema.

To show A has the extension property suppose ∆ is a finite set of formulas which forms an
elimination base, i.e. any formula is equivalent to a Boolean combination of formulas in ∆. Then
if f is ∆-elementary then it is elementary, as well, consequently it can be extended to acl(dom(f))
as an elementary function (see e.g. Hodges [5]), thus extension property easily follows.

Next, we turn to study the weak extension property.

Proposition 2.8. Any ℵ0-categorical structure with degenerated algebraic closure has the weak
extension-property.

For the proof we need some further preparation.

Definition 2.9. The algebraic closure operator acl (on the structure A) is said to be k-degenerated
if

acl(X) =
⋃
{acl(Y ) : Y ∈ [X]k} for all X.

The algebraic closure is uniformly bounded if there exists a function s : ω → ω such that for all
n ∈ ω and X ∈ [A]n we have |aclA(X)| ≤ s(n).

Remark. If acl is k-degenerated and |acl(X)| ≤ s(k) for X ∈ [A]k, then it is uniformly bounded
since |acl(X)| ≤

(
l
k

)
s(k) for X ∈ [A]l.
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Lemma 2.10. Let A be a structure having degenerated, uniformly bounded algebraic closure.
Then for any finite set ε of formulas there exists another finite set of formulas ∆ such that for
all ∆-elementary mapping f : A → A there exists an ε-elementary mapping h with f ⊆ h and
dom(h) = aclA(dom(f)).

Proof. Let k be the constant such that for all X we have acl(X) =
⋃
{acl(Y ) : Y ∈ [X]k}. Notice,

that because ε is finite there are only finitely many ε-types over any finite set. Denote by def(X)
the set of subsets of X definable by parameters from A. Two k-element subsets X and Y of A are
said to be equivalent (X ∼ Y for short) if the following stipulations hold:

(i) there is an ε-elementary mapping between acl(X) and acl(Y );

(ii) there exists a bijection ϑX,Y : acl(X)→ acl(Y ) such that

ϑX,Y [R] ∈ def(acl(Y )) if and only if R ∈ def(acl(X)).

We are going to define ∆ in such a way that if f is ∆-elementary then the following two stipulations
hold:

(a) X ∼ f [X] for all X ∈ [A]k;

(b) if acl(X) ∩ acl(X ′) 6= ∅ then ϑX,f [X] ∪ ϑX′,f [X′] is a function, for any X,X ′ ∈ [A]k.

By assumption if |X| = k then |acl(X)| ≤ s(k), consequently ∼ has finitely many equivalence
classes, say X0/∼, . . . , Xl−1/∼. Let χ′i be the ε-diagram of acl(Xi) and let χ′′i be the diagram of
def(acl(X)). Further, let ξ′i,j be the formula described in (b) above with X = Xi and X ′ = Xj : if
acl(Xi) ∩ acl(Xj) 6= ∅, and

acl(Xi) = {s` : ` < |acl(Xi)|},

acl(Xj) = {t` : ` < |acl(Xj)|},

and

{y` : ` < |acl(Xi)|},

{z` : ` < |acl(Xj)|}

are arbitrary and such that ϑ : t` 7→ y` and ϑ′ : s` 7→ z` for ` < |acl(Xi)| preserve def(acl(Xi)) and
def(acl(Xj)) respectively, then ϑ ∪ ϑ′ is a function.

For χ′i, χ
′′
i and ξ′i,j denote by χi, χ

∗
i and ξi,j , respectively the formulas obtained by replacing

the constant symbols by variables and let ∆ be the existential closure of the conjunctions of the
formulas {ξi,j , χi, χ∗ : i, j < l}. We claim that this ∆ satisfies the statement of the Lemma.

Suppose f : A → A is ∆-elementary. Then we define its desired extension h as follows. For
a ∈ acl(dom(f)) there exists X ∈ [dom(f)]k such that a ∈ acl(X). Because f is ∆-elementary the
set Y = f [X] is equivalent to X: X ∼ Y . Therefore, there is a function ϑX,Y : acl(X) → acl(Y )
with property (ii). Now define h(a) to be equal to ϑX,Y (a). We claim that h is a well defined
ε-elementary mapping satisfying the requirements of the present lemma.

First we shall prove that h is well defined. Suppose a ∈ acl(X) ∩ acl(X ′) for two k-element
subsets X,X ′ of dom(f) and let Y = f [X] and Y ′ = f [X ′]. We have to prove that ϑX,Y (a) =
ϑX′,Y ′(a). But this follows from the fact (encoded by the ξ-s in ∆), that in such cases ϑX,Y ∪ϑX′,Y ′

is a function.
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It remains to show that h is ε-elementary. Let ψ ∈ ε and suppose A � ψ(ā) where ā ∈
acl(dom(f)). Divide ā into two parts ā = aab̄. Then there exists X ∈ [dom(f)]k such that a ∈
acl(X). Let Y = f [X] and further let R be the smallest (w.r.t inclusion) definable relation in which
a is contained. Suppose, seeking a contradiction, that A � ¬ψ(h(ā)). If we let ϕ(x) = ¬ψ(x, h(b̄))
then by property (ii) of ϑX,Y , the relation

R′ = ϑ−1
X,Y

(
ϑX,Y [R] ∩ ‖ϕ‖A

)
is also definable and R′ would be a proper subset of R containing a, which contradicts to the
choice of R.

Lemma 2.11. Let A be a structure. Then

(i) If A is ℵ0-categorical, then aclA is uniformly bounded.

(ii) If A is ℵ1-categorical and aclA is uniformly bounded, then it is ℵ0-categorical.

We note that this statement is already known. For (ii) see e.g. Theorem 6.1.22 in [6]. A
variant of (i) can be found e.g. in Section 7.4 of [5]. For completeness, we include here a proof.

Proof. First we prove (i). Suppose A is ℵ0-categorical and let ā ∈ kA for some k ∈ ω. Then
SA(ā) is finite, by ℵ0-categoricity, hence there is a number sā such that |acl(ā)| ≤ sā. If ā and b̄

are on the same orbit according to Aut(A), then |acl(ā)| = |acl(b̄)| since for the automorphism α

which moves ā onto b̄ we have α[acl(ā)] = acl(b̄). But Aut(A) has only finitely many orbits on kA.
Choose a representative āi of every orbit. Then s(k) = max{sā0 , sā1 , . . .} is as desired.

Next, we turn to prove (ii). Since A is ℵ1-categorical, it is ℵ0-stable as well, and hence there
exists a prime model P of Th(A) and a strongly minimal formula φ(v, ā) with parameters ā from
P . Let now B and C be two countable models (of Th(A)). Then we may consider these two models
as elementary extensions of P. If

dimB(‖φ(v, ā)‖B/ā) = dimC(‖φ(v, ā)‖C/ā),

then there is an elementary mapping f : ‖φ‖B → ‖φ‖C . Now, B is prime over ‖φ‖B since else there
would be a proper elementary submodel D ≺ B which is prime over ‖φ‖B, but then (D,B) would
be a Vaughtian pair contradicting ℵ1-categoricity. In the same way C is prime over ‖φ‖C . But
then f extends to an elementary mapping f ′ : B → C which implies B ∼= C.

So it remained to show that the dimension above are equal. The fact that aclA is uniformly
bounded can be expressed by first order formulas. Hence aclB and aclC are uniformly bounded,
too. In particular, the algebraic closure of a finite set is finite hence the dimensions above cannot
be finite (because ‖φ‖ is infinite). Therefore both dimensions are countably infinite, hence equal.

Proof of Proposition 2.8. By Lemma 2.11, every ℵ0-categorical structure has uniformly
bounded algebraic closure, thus Lemma 2.10 applies: let ε be the set of unnested atomic for-
mulas and let ∆ be the finite set of formulas obtained from Lemma 2.10. Finally, observe that if
f is a ∆′ elementary mapping for some ∆′ ⊇ ∆, it is ∆-elementary, as well. So, the statement
follows from Lemma 2.10.
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3 Stability and categoricity

3.1 Splitting chains

We start by recalling the definition of splitting (c.f. Definition I.2.6 of [13]).

Definition 3.1. Let p ∈ SAn (X) and Y ⊆ X. Then p splits over Y if there exist ā, b̄ ∈ X and
ϕ ∈ Form such that tpA(ā/Y ) = tpA(b̄/Y ), but ϕ(v, ā) ∈ p and ¬ϕ(v, b̄) ∈ p.

Lemma 3.2. Suppose A is a λ-stable structure, D ⊂ A and 〈A, D〉 is λ+-saturated. Then there
exist AD ⊆ D, pD ∈ S(AD), and aD ∈ ArD, such that |AD| ≤ λ, aD realizes pD, and if c ∈ ArD
realizes pD then tpA(c/D) does not split over AD.

Proof. We apply transfinite recursion. Let a0 ∈ ArD be arbitrary, A0 = ∅ and p0 = tpA(a0/A0).
Let β < λ be an ordinal and suppose for all α < β that aα, Aα ⊆ D, and pα are already defined,
such that pα ∈ S(Aα), |Aα| ≤ |α|+ ℵ0, and aα realizes pα.
I. β is successor, say β = α + 1. First, suppose there exists c ∈ A r D which realizes pα but
tpA(c/D) splits over Aα (it may happen that c = aα). Then by definition there exist d̄0, d̄1 ∈ D
and ϕ such that tpA(d̄0/Aα) = tpA(d̄1/Aα), but ϕ(v, d̄0) ∈ tpA(c/D) and ϕ(v, d̄1) /∈ tpA(c/D).
Let Aβ = Aα ∪ {d̄0, d̄1}, pβ = tpA(c/Aβ), and aβ = c. If there are no such c ∈ A r D with
tpA(c/D) splitting over Aα, then Aβ , pβ and aβ are undefined, and the transfinite construction is
complete.
II. β is a limit ordinal. Let Aβ = ∪α<βAα and pβ = ∪α<βpα. By assumption 〈A, D〉 is λ+-
saturated hence there exists aβ ∈ ArD which realizes pβ .
III. Clearly, for each α, pα+1 splits over Aα, hence by Lemma I.2.7 of [13] this construction stops
at a level β < λ. Let AD = Aβ , pD = pβ , and aD = aβ .

Lemma 3.3. Let A be λ-stable, and D ⊆ A such that 〈A, D〉 is a λ+-saturated structure. Then
there exist a ∈ ArD and sets A(a) ⊆ B(a) ⊆ D such that

(1) |A(a)| ≤ λ and tpA(a/D) does not split over A(a);
(2) |B(a)| ≤ λ and every type over A(a) can be realized in B(a);
(3) for all b ∈ ArD the following holds:

tpA(a/B(a)) = tpA(b/B(a)) =⇒ tpA(a/D) = tpA(b/D).

Proof. (1) Let AD, pD and aD be as in Lemma 3.2, and let A(a) = AD and a = aD. Then
tpA(a/D) does not split over A(a).

(2) Choose an arbitrary realization of each type over A(a), and let their collection be B(a).
By (1) we have |A(a)| ≤ λ, hence by stability

|B(a)| ≤ ℵ0 · |
⋃
i∈ω

SAi (A(a))| ≤ ℵ2
0λ = λ.

Clearly A(a) ⊆ B(a), and every type over A(a) can be realized in B(a).
(3) We prove that B(a) fulfills (3). Suppose tpA(a/B(a)) = tpA(b/B(a)) and ϕ(v, d̄) ∈

tpA(a/D). We have to show ϕ(v, d̄) ∈ tpA(b/D). By (2) there exists d̄′ ∈ B(a) such that
tpA(d̄/A(a)) = tpA(d̄′/A(a)). By (1) tpA(a/D) does not split over A(a) hence

ϕ(v, d̄′) ∈ tpA(a/B(a)) = tpA(b/B(a)).
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Since b realizes pD, Proposition 3.2 implies that tpA(b/D) does not split over A(a) as well. There-
fore ϕ(v, d̄) ∈ tpA(b/D), as desired.

3.2 Elementary extension in the ℵ1-categorial case

Lemma 3.4. Suppose A and B are elementarily equivalent, their common theory is uncountably
categorical, f : A→ B is an elementary mapping such that D = dom(f) 6= A, R = ran(f) 6= B and
〈A, D〉, 〈B, R〉 are ℵ1-saturated. Then there exists an elementary mapping f ′ strictly extending f .

It is well known that every saturated structure A is strongly homogeneous: every elementary
mapping f of A with |f | < |A| can be extended to an automorphism of A; for more details, we refer
to Proposition 5.1.9 of [1]. The basic idea of the proof of this theorem is that by saturatedness, if
f : A→ A is a “small” elementary mapping, and a /∈ dom(f), then the type f [tpA(a/dom(f))] can
be realized outside of ran(f). In our case the problem is that it is not only the “small” mappings
which we would like to extend. For instance if A is an ultraproduct and f is decomposable then
|f | might be as big as |A|, and since A can not be |A|+-saturated we can not hope anything like
above. The point here is, that our statement may also apply to cases when |dom(f)| = |A|, so
ordinary saturation cannot be used.

Proof. We distinguish two cases.

Case 1: D = dom(f) is not an elementary substructure of A. Then by the  Loś-Vaught test,
there is a formula ψ, and constants d̄ ∈ D, such that A � ∃vψ(v, d̄), but there is no such v ∈ D.
Since A is uncountably categorical, it is ℵ0-stable. Hence, the isolated types over D are dense in
SA1 (D). Consequently, there is an isolated type p ∈ SA1 (D) containing ψ(v, d̄). Let a ∈ A be a re-
alization of p (such a realization exists since p is isolated). Then A � ψ(a, d̄), so a 6∈ D. Let b ∈ B
be a realization of f [p] in B. Again, since f [p] is isolated, b exists. Finally let f ′ = f ∪ {〈a, b〉}.
Clearly, f ′ is an elementary mapping strictly extending f .

Case 2: D ≺ A is an elementary substructure. Let a ∈ ArD, A(a) ⊆ B(a) ⊆ D as in Lemma
3.3. It is enough to show that p = f [tpA(a/B(a))] can be realized in Brran(f) because if b realizes
p in B r ran(f) then f ′ = f ∪ 〈{a, b}〉 is the required elementary mapping strictly extending f .
Note, that A and B are ℵ1-categorical, hence they are ℵ0-stable. Consequently, Lemma 3.3 (2)
ensures |B(a)| ≤ ℵ0.

Adjoin a new relation symbol R to the language of B and interpret it in B as ran(f). By
saturatedness it is enough to show that each φ ∈ p can be realized in B r R. Let φ ∈ p be
arbitrary, but fixed. By assumption, D is an elementary substructure of A, so it follows that a is
not algebraic over D. Hence, because of f is elementary, the relation defined by φ in B is infinite
as well. In addition, B is uncountably categorical, consequently 〈B, f [D]〉 is not a Vaughtian pair
(see, for example, Theorem 6.1.18 of [6]). Thus the relation defined by φ in B can be realized in
B rR, therefore ¬R(v) ∧ φ(v) can be satisfied in B, for all φ ∈ p.

4 Extending decomposable mappings

In this section we are presenting a method for constructing so called decomposable isomorphisms
between certain ultraproducts. As introduced in [9], and further studied in [4] and [11], a relation
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R in an ultraproduct Πi∈IAi/F is defined to be decomposable iff for all i ∈ I there are relations
Ri on Ai such that R = Πi∈IRi/F . Similarly, a function f : Πi∈IAi/F → Πi∈IBi/F is called
decomposable iff “f acts coordinatewise”, that is, iff for all i ∈ I there are functions fi : Ai → Bi

such that f = Πi∈Ifi/F .
Our method is similar in spirit to [14]: in order to prove certain properties of finite structures,

we are dealing with infinite ultraproducts of them. As we already mentioned, to establish further
applications, we are trying to present our construction in a rather general way.

Definition 4.1. A sequence 〈∆n ∈ [Form]<ω : n ∈ ω〉 is defined to be a covering sequence of
formulas if the following properties hold for it.

1. The sequence is increasing: ∆i ⊆ ∆j whenever i ≤ j ∈ ω;

2. For all n ∈ ω the finite set of formulas ∆n is closed under subformulas;

3.
⋃
{∆n : n ∈ ω} = Form, i.e. the sequence covers Form.

IfM is a structure and An ≤M is a ∆n-elementary substructure then Πn∈ωAn/F is elementarily
equivalent to M.

Our aim in this section is to prove the following Theorem.

Theorem 4.24. Let M be an ℵ1-categorical structure with an atom–defining schema, having
the extension property. Suppose that there is a ∅-definable strongly minimal subset M0 of M
and suppose for each n ∈ ω the finite structures An and Bn are equinumerous, ∆n–elementary
substructures of M. Then there is a decomposable isomorphism

f = 〈fn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F .

We split the proof into three parts: each part is contained in a different subsection. We sketch
here the main line of the proof. If M is an ℵ1-categorical structure with M0 ⊆ M being a ∅-
definable strongly minimal subset then by Zilber’s Ladder Theorem (Theorem 0.1 of Chapter V
of [16]) there exists a finite increasing sequence

M0 ⊆M1 ⊆ . . . ⊆Mz−1 = M

of subsets of M such that M` is ∅-definable for all ` ∈ z (and certain other remarkable properties
which will be recalled later).

First, in Subsection 4.1 we extend certain decomposable elementary mappings to the whole
of M0 (see Proposition 4.7). Then, in Subsection 4.2 we continue to extend the mapping along
Zilber’s ladder to M (see Theorem 4.17). Finally, in Subsection 4.3, we combine our results
obtained so far to get Theorem 4.24.

From now on, throughout this section M is a fixed ℵ1-categorical structure satisfying
the extension property and having an atom-defining schema. Further, we assume that
M0 ⊆M is a ∅-definable strongly minimal subset of M .

For completeness, we note that, we do not need all these properties in all of our steps. To
be more concrete, in Subsection 4.1 we need M to be ℵ1-categorical satisfying the extension
property, and in Subsection 4.2 we need M to be ℵ1-categorical having an atom-defining schema
for ∅-definable infinite relations.
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4.1 The strongly minimal case

We will deal first with strongly minimal structures N and we provide a method to extend certain
decomposable mapping in this case (Proposition 4.5). Then we move on to the case when the
whole structure is not strongly minimal (Proposition 4.7). We will need several Lemmas.

Lemma 4.2. Let A be a structure and let M ⊆ A be ∅-definable and strongly minimal. Then there
exists a function ε : [Form]<ω → ω such that for all ∆ ∈ [Form]<ω if B ≤ A is a ∆-algebraically
closed substructure with B ⊆M and |B| ≥ ε(∆) then B is a ∆-elementary substructure of A.

Proof. By strong minimality, for any formula ϕ either ‖ϕ‖ ∩ M or (A r ‖ϕ‖) ∩ M is finite,
i.e. ϕ is algebraic or transcendental, respectively. Let ∆ be a finite set of formulas and let B be
a ∆-algebraically closed substructure of A with B ⊆ M . Let ∆′ be the smallest set of formulas
containing ∆ and closed under subformulas. We shall define the number ε(∆) so that if |B| ≥ ε(∆)
then B is a ∆-elementary substructure. Pick ϕ ∈ ∆ and b̄ ∈ B.
Case 1. Suppose ϕ(x, b̄) is algebraic and suppose A � ϕ(a, b̄) for some a ∈ A. Then a ∈ B

because B is ∆-algebraically closed. In this case let n(ϕ) = 0.
Case 2. Suppose ϕ(x, b̄) is transcendental. By compactness, there exists n(ϕ), depending on ϕ

only, such that
∣∣M r‖ϕ(x, b̄)‖

∣∣ ≤ n(ϕ). Thus if |B| > n(ϕ) then there must exists c ∈ B such that
B � ϕ(c, b̄).

Setting ε(∆) = max{n(ϕ) + 1 : ϕ ∈ ∆′}, a straightforward induction on the complexity of
elements of ∆′ completes the proof.

The next lemma can be regarded as a kind of converse of Lemma 4.2.

Lemma 4.3. Let A be strongly minimal and let B be a substructure of A. Then for all finite set
ε of formulas there exists a finite set δ of formulas such that if B is a δ-elementary substructure
then B is aclAε -closed.

Proof. For all ϕ ∈ ε, by compactness, there is a natural number n(ϕ) (depending only on ϕ)
such that if ϕ(v, b̄) is algebraic for some b̄ ∈ B, then ϕ(v, b̄) can have at most n(ϕ) pairwise
distinct realizations in A (else, there would exists an infinite–co-infinite definable subset in some
elementary extension, contradicting strong minimality). Let ϕn(ȳ) denote the next formula:

ϕn(ȳ) = ∃nxϕ(x, ȳ) = “ϕ(x, ȳ) has exactly n realizations′′.

Clearly ϕn can be made a strict first order formula, for all fixed n ∈ ω. Put

δ = {ϕn : n ≤ n(ϕ), ϕ ∈ ε} ∪ ε.

Clearly, if B is δ-elementary then it is aclAε -closed.

Lemma 4.4. Let ∆ ∈ [Form]<ω be closed under subformulas. Let B, C be ∆-elementary substruc-
tures of A. If f : B → C is an isomorphism then f is a ∆-elementary mapping of A.

Proof. A straightforward induction on the complexity of the formulas in ∆; the details are left
to the Reader.
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Let N be a fixed strongly minimal (hence ℵ1-categorical) structure with the weak extension
property (see Definition 2.5). Recall that by the weak extension property there exists a finite set
∆ of formulas satisfying (∗) of Definition 2.5. Let Φ be a set of formulas such that if X = aclΦ(X)
then X is a substructure. Such Φ exists and can be chosen to be finite because our language is
finite. Fix a covering sequence of formulas 〈∆n ∈ [Form]<ω : n ∈ ω〉 in a way that Φ,∆ ⊆ ∆n for
all n ∈ ω. By Lemma 4.3, after a possibly rescaling, we may assume that

(∗∗) An and Bn are aclN∆n
-closed substructures of N .

Proposition 4.5 can be considered as the strongly minimal case of Theorem 4.24.

Proposition 4.5. Let N be a strongly minimal structure with the weak extension property. Sup-
pose for each n ∈ ω the finite structures An and Bn are ∆n-elementary (hence, by (∗∗), acl∆n

-
closed) substructures of N with |An| ≤ |Bn|. Let

g = 〈gn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F

be a decomposable elementary mapping with{
n ∈ ω : gn is ∆n − elementary and |dom(gn)| ≥ ε(∆n)

}
∈ F ,

where ε comes from Lemma 4.2. Then g can be extended to a decomposable elementary embedding.

We remark, that if |An| = |Bn| for all (in fact, almost all) n, then the resulting extension is a
decomposable isomorphism.

Proof. Let A = Πn∈ωAn/F and B = Πn∈ωBn/F . Note that A and B are elementarily equivalent
with N because the increasing sequence ∆n covers Form. By transfinite recursion we construct a
sequence 〈fα : α ≤ κ〉 such that for α ≤ κ the following properties hold:

(P1) fα = 〈fαn : n ∈ ω〉/F : A→ B is a decomposable elementary mapping;

(P2) fγn ⊆ fνn for γ < ν ≤ κ and all n ∈ ω;

(P3) dom(fαn ) is an aclN∆n
-closed substructure of An for all n ∈ ω;

(P4) ran(fαn ) is an aclN∆n
-closed substructure of Bn for all n ∈ ω;

(P5) fαn is ∆n-elementary for all n ∈ ω.

If dom(fκ) = A then we are done, because since each Ai and Bi are finite, it follows that fκ

is a decomposable elementary embedding.

Now we construct the first element f0 of the sequence. By assumption

J =
{
n ∈ ω : gn is ∆n − elementary and |dom(gn)| ≥ ε(∆n)

}
∈ F .

Because ∆ in the weak extension property is contained in each ∆n, it follows that for all n ∈ J
there exists a partial isomorphism hn extending gn, with dom(hn) = aclN∆n

(dom(gn)) and ran(hn) =
aclN∆n

(ran(gn)). Note that because An is ∆n-algebraically closed, it follows that dom(hn) ⊆ An.
Therefore dom(hn) is a substructure of N (hence of An, too). By |dom(hn)| ≥ ε(∆n) and by
Lemma 4.2 we get dom(hn) is a ∆n-elementary substructure of (N and hence of) An. Similarly
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ran(hn) is a ∆n-elementary substructure of Bn. But then Lemma 4.4 applies: hn is also a ∆n-
elementary mapping. Let

f0
n =

{
hn if n ∈ J
∅ otherwise,

and f0 = 〈f0
n : n ∈ ω〉/F . Then properties (P1)-(P5) hold.

Now suppose 〈fα : α < β〉 has already been defined for some β ≤ κ. Then we define fβ as
follows.

I. Successor case

Suppose β = α + 1. We may assume A r dom(fα) 6= ∅, since otherwise the construction would
stop. Because fα is decomposable we have

〈A, dom(fα)〉 = Πn∈ω〈An, dom(fαn )〉/F

and thus 〈A, dom(fα)〉 is ℵ1-saturated (and similarly with 〈B, ran(fα)〉). Consequently Lemma 3.4
applies: there exist a ∈ Ardom(fα), b ∈ Br ran(fα) such that f = fα∪{〈a, b〉} is an elementary
mapping. If a = 〈an : n ∈ ω〉/F and b = 〈bn : n ∈ ω〉/F then

I = {n ∈ ω : an /∈ dom(fαn ), bn /∈ ran(fαn )} ∈ F .

Thus if

fn =

{
fαn ∪ {〈an, bn〉} if n ∈ I
fαn otherwise,

then f = 〈fn : n ∈ ω〉/F . By  Loś lemma

J = {n ∈ ω : fn is ∆-elementary } ∈ F .

We claim that for each n ∈ J , fn is not only ∆-elementary but ∆n-elementary. To see this, let
ϕ ∈ ∆n, d̄ ∈ dom(fn) and suppose An � ϕ(d̄). We have to show that Bn � ϕ(fn(d̄)). Let us
replace all the occurrences of an in d̄ with a variable v and denote this sequence by vad̄′. Then
d̄′ ∈ dom(fαn ) and an ∈ ‖ϕ(v, d̄′)‖An . Since dom(fαn ) is aclN∆n

-closed (by (P3)), it follows that
ϕ(v, d̄′) is not a ∆n-algebraic formula since else it would imply an ∈ dom(fαn ). Since N is strongly
minimal, exactly one of ϕ(v, d̄′) or ¬ϕ(v, d̄′) is algebraic, thus if ϕ(v, d̄′) is not algebraic then
ϕ(v, fαn (d̄′)) is not algebraic, too. The same is the situation in Bn, hence bn /∈ ‖¬ϕ(v, fαn (d̄′))‖Bn ,
and thus bn ∈ ‖ϕ(v, fαn (d̄′))‖Bn , as needed.

So, fn is ∆n-elementary and ∆ ⊆ ∆n hence by the weak extension property, for all n ∈ J

there exists a partial isomorphism hn extending fn with dom(hn) = aclN∆n
(dom(fn)). Then by

Lemma 4.2, dom(hn) is a ∆n-elementary substructure of An (similarly ran(hn) is a ∆n-elementary
substructure of Bn) and hence by Lemma 4.4, hn is a ∆n-elementary mapping. Let us define fβn
as follows:

fβn =

{
hn if n ∈ J
fαn otherwise.

Set fβ = 〈fβn : n ∈ ω〉/F . Then clearly, stipulations (P1)-(P5) hold for fβ .

II. Limit case

Suppose β is a limit ordinal. Set fβn =
⋃
α<β f

α
n for all n ∈ ω, and let fβ = 〈fβn : n ∈ ω〉/F . Then
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(P2)-(P4) are true for fβ and for (P1) we only have to show that fβ is still elementary. For this
it is enough to prove that fβn preserves ∆n for all n ∈ ω, i.e. fβn is a ∆n-elementary mapping. But
this is exactly (P5) which property is preserved under chains of ∆n-elementary mappings.

As an immediate corollary of the results established so far, in Theorem 4.6 below, we prove,
that a strongly minimal structure with the weak extension property can be obtained an essentially
unique way, as an ultraproduct of its certain finite substructures.

Theorem 4.6 (First Unique Factorization Theorem). Let N be a strongly minimal structure
having the weak extension property (see Definition 2.5). Suppose An, Bn are equinumerous finite,
acl∆n

-closed substructures of N for all n ∈ ω such that sup{|An| : n ∈ ω} is infinite. Then

{n ∈ ω : An ∼= Bn} ∈ F ,

for any non-principal ultrafilter F .

Proof. Since sup{|An| : n ∈ ω} is infinite by assumption, it follows that for all n ∈ ω there exists
γ(n) ∈ ω such that |Aγ(n)| ≥ ε(∆n), where ε comes from Lemma 4.2. Hence the structure Aγ(n) is
a ∆n-elementary substructure of N . For simplicity, to avoid ugly notation, by replacing An with
Aγ(n) we may suppose An and Bn are equinumerous ∆n-elementary finite substructures of N . Let
A = Πn∈ωAn/F and let B = Πn∈ωBn/F . The increasing sequence ∆n covers Form hence A and B
are both elementarily equivalent with N . By universality, taking a large enough ultrapower A′ of
A, N can be elementarily embedded into A′. Hence An is a ∆n-elementary substructure of A′ as
well. Now taking an elementary substructure of A′ of power |A| containing (the image of) An it is
isomorphic to A by categoricity. Hence we may assume that An is a ∆n-elementary substructure
of A for all n ∈ ω. By a similar argument we may also assume that Bn is a ∆n-elementary
substructure of B.

For all n ∈ ω because An is finite, by  Loś Lemma, there exists n ≤ β(n) ∈ ω such that Aβ(n)

and Bβ(n) contains an isomorphic copy of An. By ∆n ⊆ ∆β(n) we get Aβ(n) and Bβ(n) are also
∆n-elementary substructures. Consequently there exist partial isomorphisms gβ(n) : Aβ(n) →
Bβ(n) whose domains are the An-s. By Lemma 4.4 these partial isomorphisms are ∆n-elementary
mappings.

Let A∗ = Πn∈ωAβ(n)/F and B∗ = Πn∈ωBβ(n)/F . Then g = 〈gβ(n) : n ∈ ω〉/F : A∗ → B∗ is a
decomposable elementary mapping which, by Proposition 4.5, extends to a decomposable isomor-
phism f = 〈fn : n ∈ ω〉/F : A∗ → B∗. Then the statement follows from  Loś Lemma (applied to
the structure 〈A∗,B∗, f〉).

Now we turn to the case when the whole structure is not strongly minimal. As we mentioned,
M is a fixed ℵ1-categorical structure satisfying the extension property and M0 is a ∅-definable
strongly minimal subset of M .

Proposition 4.7. Suppose for each n ∈ ω the finite structures An,Bn are ∆n-elementary sub-
structures of M such that {

n ∈ ω : |MAn
0 | ≤ |M

Bn
0 |

}
∈ F .
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Let g = 〈gn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F be a decomposable elementary mapping with
dom(gn) ⊆MAn

0 and ran(gn) ⊆MBn
0 for all n ∈ ω. Assume that{

n ∈ ω : gn is ∆n-elementary and |dom(gn)| ≥ ε(∆n)
}
∈ F

where ε comes from Lemma 4.2. Then g can be extended to a decomposable elementary mapping
g+ = 〈g+

n : n ∈ ω〉/F such that dom(g+
n ) = MAn

0 and ran(g+
n ) ⊆MBn

0 (almost everywhere).

We note, that if |MAn
0 | = |MBn

0 | almost everywhere, then we get dom(g+
n ) = MAn

0 and
ran(g+

n ) = MBn
0 for almost all n.

Proof. We intend to use Proposition 4.5. To do so we have to ensure that M0 is not just a strongly
minimal set but a structure. In general this cannot be guaranteed in the original language of M.
Our plan is to apply Proposition 4.5 for a sequence of strongly minimal structures defined in terms
of relations of M0.

Since we will use different first order languages in this proof, let us denote by L(M) the
language of M. For each L(M)-formula ϕ let us associate a relation symbol Rϕ whose arity
equals to the number of free variables in ϕ. Let L(R) be the language consists of these new
relation symbols:

L(R) =
{
Rϕ : ϕ ∈ Form(L(M))

}
.

Next, we turn M into an L(R)-structure as follows: if ϕ(x̄) is an L(M)-formula then interpret
Rϕ in M as follows:

RMϕ = ‖ϕ‖M ∩ |x̄|M0.

It is easy to see that relations definable with L(R)-formulas (in M) are also definable with
L(M)-formulas. In fact by an obvious induction on the complexity of formulas of L(R) one can
easily check that there is a function ι : Form(L(R)) → Form(L(M)) such that for any formula
ψ ∈ Form(L(R)) we have

‖ψ‖M = RMι(ψ).

For a set ∆ of L(M)-formulas we write

R(∆) = {Rϕ : ϕ ∈ ∆}.

Let us enumerate Form(L(M)) as

Form(L(M)) = 〈ϕn : n ∈ ω〉.

For ` ∈ ω let us define a structure N` as follows.
By the extension property of M, for ε` = {ϕ0, . . . , ϕ`−1} there exists a corresponding finite

set of formulas ∆`. Let
N` = 〈M0, R

M
ϕ 〉ϕ∈∆`

.

Thus the language L(N`) consists of the relation symbols {Rϕ : ϕ ∈ ∆`}. We have the next few
auxiliary claims.

(1) N` is strongly minimal: To see this, let ψ ∈ Form(L(N`)) be any formula. Then ‖ψ‖M =
RMι(ψ) = ‖ι(ψ)‖M ∩M0 which is either finite or cofinite (because ι(ψ) ∈ Form(L(M))).
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(2) N` has the weak extension property described in Definition 2.5: We have to find a set ∆ (a
finite set of L(N`)-formulas) such that whenever ∆′ ⊇ ∆ and f is a ∆′-elementary mapping then
it can be extended to a partial isomorphism to acl∆′(dom(f)). Now we claim that ∆ = R(∆`)
works. To see this, suppose ∆′ ⊇ ∆ and f is a ∆′-elementary mapping. We have to extend f in
a way that the extension preserves all the formulas in R(∆`) (this would mean that the extension
is a partial isomorphism in the language L(N`)).
(i) Observe first, that we may assume that ι[R(∆`)] = ∆`, because the formulas in the two sides
of the equation define the same relations in M0.
(ii) Clearly, we have ι[∆′] ⊇ ∆`.
(iii) If f preserves an L(R)-formula ψ then it preserves ι(ψ) as well. Therefore f is ι[∆′]-elementary.
Consequently, by the extension property of M, there is a ∆`-elementary (in the language L(M))
extension f ′ of f whose domain and range are respectively aclι[∆′](dom(f)) and aclι[∆′](ran(f)).
Clearly, if f ′ preserves ∆` then it also preserves R(∆`). Thus f ′ is a partial isomorphism in the
language L(N`), as desired.

(3) Let i ∈ ω be arbitrary. Then there exists ` such that ∆i ⊆ {ϕk : k ∈ `}. Since Ai is a ∆i-
elementary substructure ofM, it follows that MAi

0 (which equals Ai∩M0 if i is large enough) is the
underlying set of an R(∆i)-elementary substructure of N`. If 〈∆i : i ∈ ω〉 is a covering sequence
of Form(L(M)) then 〈R(∆i) : i ∈ ω〉 can be considered as a covering sequence of Form(L(R)):
note, that for each ψ ∈ Form(L(R)) we have ‖ψ‖M = RMι(ψ) and ι(ψ) ∈ ∆i for large enough i. By
(2) above, N` has the weak extension property and gn is R(∆n)-elementary for almost all n ∈ ω.
Observe, that R(∆i) and ∆i define the same relations in M0, hence ε(R(∆i)) and ε(∆i) in Lemma
4.2 are equal. Consequently, conditions of Proposition 4.5 are satisfied.

By Proposition 4.5 for all ` ∈ ω there exists a decomposable elementary embedding g` =
〈g`n : n ∈ ω〉/F (it is elementary in the language L(N`)) extending g, with dom(g`n) = MAn

0 and
ran(g`n) ⊆MBn

0 .
Let 〈In : n ∈ ω〉 be a decreasing sequence with In ∈ F , I0 = ω and ∩n∈ωIn = ∅. Write

Jn = {i ∈ In : gni is ∆n − elementary and dom(gni ) = MAi
0 , ran(gni ) ⊆MBi

0 }.

Then Jn ∈ F for all n ∈ ω and for a fixed i the set {n : i ∈ Jn} is finite. Let

ν(i) = max{n ∈ ω : i ∈ Jn}

and put
g+ = 〈gν(i)i : i ∈ ω〉/F .

Then g+ is the desired extension.

4.2 Climbing Zilber’s ladder

Recall, thatM is a fixed ℵ1-categorical structure with an atom–defining schema ∂ for ∅-definable
infinite relations (see Definition 2.3). By Zilber’s Ladder Theorem (Theorem 0.1 of Chapter V of
[16]) if M is ℵ1-categorical and M0 ⊆ M is ∅-definable and strongly minimal then there exists a
finite increasing sequence

M0 ⊆M1 ⊆ . . . ⊆Mz−1 = M
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of subsets of M such that for all ` ∈ z we have

1. M`+1 is ∅-definable;

2. Gal(A,M`) is ∅-definable together with its action on A for all M`-atom A ⊆M`+1. Moreover
Gal(A,M`) ⊆ dcl(M`).

Here by Gal(A,M`) we understand the group of all M`-elementary automorphisms of the set A.
We note that Gal(A,M`) acts transitively on A because A is an atom. We fix this ladder and z

will denote its length.
The main proposition in this subsection is Theorem 4.17. In order to prove it we make use of

the following Lemmas.

Lemma 4.8. Suppose M has an atom-defining schema. Then for all infinite, definable E and
formula φ there exists a finite set Tφ ⊆ SM(∅) of types such that if φ(v, ē) defines an E-atom,
then tpM(ē) ∈ Tφ.

Informally we will refer to this fact as “the formula ϕ has finitely many atom-types over E”.

Proof. Suppose, seeking a contradiction, that {ei ∈ ‖∂Eϕ‖ : i ∈ ω} is such that

H = {tpM(ei) : i ∈ ω}

is infinite. Then H ⊆ SM(∅) is an infinite topological subspace of SM(∅), hence it has an infinite
strongly discrete subspace: there is an injective function s : ω → ω and there are pairwise disjoint
basic open sets Ui ⊆ SM(∅) such that tpM(es(i)) ∈ Uj if and only if i = j. Thus there are
pairwise contradictory formulas {γi : i ∈ ω} (γi corresponds to Ui) such that ‖γi‖ ⊆ ‖∂Eϕ‖ and
γi ∈ tpM(es(i)). Then CB(∂Eϕ) > 0 which is a contradiction.

Note, that here the γi-s are parameter-free formulas.

Lemma 4.9. M`-atoms cover M`+1 rM` for all ` ∈ z, that is, every element m ∈M`+1 rM` is
contained in a (unique) M`-atom.

Proof. Since M is ℵ1-categorical it is prime, hence atomic over M`. Consequently, only isolated
types are realized. Therefore for all m ∈ M`+1 the type tpM(m/M`) is isolated by some formula
ϕm. Clearly ϕm defines an M`-atom in which m is contained.

Lemma 4.10. Let E be a definable subset ofM. Then there exists a finite set Γ of formulas such
that any E-atom can be defined by a formula ψ ∈ Γ. In more detail, if ϕ(x, ē) defines an E-atom
in M, then ‖ϕ(x, ē)‖M = ‖ψ(x, ē′)‖M for some formula ψ(x, ȳ) ∈ Γ and parameters ē′ ∈ E.

Proof. Suppose the contrary. Then for all finite Γ there is an E-atom which cannot be defined
by a formula from Γ, in particular, there is an element aΓ such that whenever ψ(v, ē) defines an
E-atom, where ψ ∈ Γ and ē ∈ E then aΓ /∈ ‖ψ(v, ē)‖M.

Since E is definable andM has an atom defining schema, this fact can be expressed by a first
order formula. In fact, the formula

θΓ(v) =
∧
ψ∈Γ

∀ē
(
E(ē) ∧ ∂Eψ(ē)→ ¬ψ(v, ē)

)
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is realized by aΓ.
Therefore the set H = {θΓ : Γ ∈ [Form]<ω} is finitely satisfiable and since M is ℵ1-categorical

it is saturated so H is realized by some a ∈ M . But then a cannot be contained in any atom
which contradicts to Lemma 4.9.

Lemma 4.11. The action of the group Gal(A,M`) is regular (in other words, Gal(A,M`) is sharply
transitive) for each ` ∈ z, that is, if A is an M`-atom and a, b ∈ A then there is a unique
g ∈ Gal(A,M`) such that g(a) = b.

Proof. The group G = Gal(A,M`) acts transitively on A because A is an E-atom. Suppose
g(a) = h(a) = b for some elements g, h ∈ G. We shall prove g = h. Consider the set

H = {x ∈ A : g−1h(x) = x}.

Then a ∈ H, so H 6= ∅. But A is an E-atom and H is definable over E. It follows, that H = A,
whence g−1h = id, consequently g = h.

If A ⊆M is a subset and d̄ ∈M rA is a finite set of parameters then by Θ(d̄) we denote the
equivalence relation on A where

(a, b) ∈ Θ(d̄) if and only if tpM(a/d̄) = tpM(b/d̄).

Θ(d̄) is called a cut with parameters d̄. By a partition of Θ(d̄) we understand an equivalence class
of it. Θ(d̄′) is defined to be a refinement of Θ(d̄) iff each partition of the prior is contained in a
partition of the latter; we denote this fact by

Θ(d̄′) ≤ Θ(d̄).

Clearly, if d̄ ⊆ d̄′ then Θ(d̄′) is a refinement of Θ(d̄). We say Θ(d̄) is minimal if no further
refinement can be made by increasing d̄, i.e. for all d̄′ ⊇ d̄ we have Θ(d̄′) = Θ(d̄).

Lemma 4.12. Every M`-atom has minimal cuts, in more detail, if A is an M`-atom, then there
exists a finite d̄ ∈M rA such that Θ(d̄) is minimal.

Proof. Let A be an M`-atom defined by the formula ψ with parameters ē ∈ M`. Starting from
d̄0 = ē we build a chain of refinements

Θ(d̄0) 
 Θ(d̄1) 
 . . . 
 Θ(d̄i) 
 . . . ,

in such a way that d̄i ( d̄j for all i ≤ j. For each cut Θ(d̄) define G(d̄) to be the subgroup of
Gal(A,M`) containing those permutations of Gal(A,M`) which preserve each partitions of Θ(d̄).
Auxiliary Claim: For any finite d̄ containing ē, partitions of Θ(d̄) and orbits of G(d̄) coincide.
In other words, the following are equivalent:
(i) tpM(a/d̄) = tpM(b/d̄);
(ii) a and b are in the same orbit according to the action of G(d̄).
Proof: Direction (ii)⇒(i) is easy, so we prove (i)⇒(ii). Assume (i) holds. By saturatedness ofM
there exists an automorphism α ∈ Aut(M) which fixes d̄ and maps a onto b. Then α � A is M`-
elementary because of the following. Let x ∈ A and observe, that α(A) = A because ē = d̄0 ⊆ d̄ is
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fixed by α. Therefore, since A is an M`-atom, tp(x/M`) = tp(α(x)/M`). Hence α � A ∈ G(d̄).

We recall that by Theorem 7.1.2 of [6] any descending chain of definable subgroups of an ℵ0-
stable group is of finite length. We claim that G(d̄) is a definable subgroup of Gal(A,M`) (which
is ℵ0-stable since it is definable in M). For a formula ψ let Cψ(d̄) be the subgroup defined as

Cψ(d̄) =
{
g ∈ Gal(A,M`) : ∀a ∈ A (M � ψ(a, d̄)←→ ψ(g(a), d̄))

}
.

Then
G(d̄) =

⋂
ψ

Cψ(d̄).

This intersection gives rise to a chain of definable subgroups which must stop after finitely many
steps. Consequently, G(d̄) can be defined using those finitely many formulas appeared in the chain.

It is easy to see that if Θ(d̄i) 
 Θ(d̄j) is a proper refinement, then G(d̄i) 
 G(d̄j), and we
just have seen, that each group G(d̄) is a definable subgroup of Gal(A,M`). Thus for our chain
of refinements Θ(d̄0) 
 Θ(d̄1) 
 . . . there exist a corresponding (proper) descending chain of
subgroups

Gal(A,M`) = G(d̄0) 
 G(d̄1) 
 . . . 
 G(d̄i) 
 . . . .

Again, by Theorem 7.1.2 of [6] any descending chain of definable subgroups of an ℵ0-stable group
is of finite length, hence, our chain of cuts above stops in finitely many steps. The last member of
the chain is minimal.

Lemma 4.13. Let A be an M`-atom and let Θ(d̄) be a minimal cut with the corresponding subgroup
G = G(d̄). Then G has finitely many orbits, or equivalently, the cut is finite: it has finitely many
partitions.

Proof. Since d̄ is finite, by ℵ0-stability there are at most ℵ0 many types over d̄, hence G has at
most ℵ0 many orbits. Suppose, seeking a contradiction, that G has infinitely many orbits, say
〈Oi : i ∈ ω〉. For each i fix oi ∈ Oi and let ϕi(v) be the formula expressing

v ∈ A but v /∈ Oi.

Then {ϕn : n ∈ ω} is finitely satisfiable, hence by ℵ1-saturatedness of M it can be realized. But
this is a contradiction, therefore G has finitely many orbits.

Let us introduce the finitary analogue dclΓ of dcl, in a similar spirit as we defined aclΓ (in our
investigations below the parameter Γ will be a finite set of formulas).

Definition 4.14. If M is a structure X ⊆ M and Γ is a set of formulas then by dclMΓ (X) we
understand those points of dclM(X) which are witnessed by a formula in Γ, i.e.

dclMΓ (X) =
{
a ∈M :M � ∃!vϕ(v, x̄) ∧ ϕ(a, x̄) for some x̄ ∈ X and ϕ ∈ Γ

}
.

We stress the difference between the definitions of dclΓ and aclΓ.

Lemma 4.15. Suppose g = 〈gn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F is a decomposable
elementary mapping. Then there exists a decomposable elementary mapping g+ = 〈g+

n : n ∈ ω〉
extending g such that dom(g+) ⊇ dcl(dom(g)).
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We note, that dcl(dom(g)) is not necessarily decomposable.

Proof. Our plan is to find two covering sequences Γn and Φn of formulas in such a manner that
we can extend gn to g+

n defined on dclΓn
(dom(gn)) so that this extension is Φn-elementary. Then

because
Πn∈ωdclΓn

dom(gn)/F ⊇ dcl(dom(g)),

we get the desired decomposable elementary mapping extending g by setting

g+ = 〈g+
n : n ∈ ω〉/F .

Let ρ(x0, . . . , xn) be any formula and let Φ be a finite set of formulas. We write

ρΦ =
{
∀x0 . . .∀xn(ϕ0(x0, ȳ0) ∧ . . . ∧ ϕn(xn, ȳn)→ ρ(x0, . . . , xn)) : ϕi ∈ Φ

}
.

Then ρΦ is a finite set.
We define now the sets Γn and Φn as follows.

Γn =
{
ϕ(x, ȳ) : gn preserves ∃!xϕ(x, ȳ)

}
, and

Φn =
{
ρ : gn preserves ρΓn

}
.

Then it is easy to see that for any formulas ϕ and ρ we have

{n : ϕ ∈ Γn} ∈ F and {n : ρ ∈ Φn} ∈ F .

Now we claim that gn can be extended to g+
n , defined on dclΓn(dom(gn)) in such a way that

g+
n is Φn-elementary. First we give the extension. If a ∈ dclΓn

(dom(gn)) then there is a formula
ϕ ∈ Γn witnessing this: there are parameters ȳ ∈ dom(gn) such that

An � ∃!xϕ(x, ȳ) ∧ ϕ(a, ȳ).

Since ϕ ∈ Γn, we have Bn � ∃!xϕ(x, gn(ȳ)). Let ba ∈ Bn be this unique element and put

g+
n = gn ∪

{
〈a, ba〉 : a ∈ dclΓn(dom(gn))

}
.

We claim that g+
n is Φn-elementary: if gn preserves ρΓn then g+

n preserves ρ. For, suppose
An � ρ(ā) for ā ∈ dclΓn(dom(gn)). Then there are formulas ϕi ∈ Γn and parameters ȳi ∈ dom(gn)
such that

An � ∃!x0ϕ0(x0, ȳ0) ∧ . . . ∧ ∃!xkϕ(xk, ȳk),

hence
An � ∀x0 . . .∀xk

(
ϕ0(x0, ȳ0) ∧ . . . ∧ ϕk(xk, ȳk)→ ρ(x̄)

)
.

But this formula is an element if Φn, therefore it is preserved by gn.

Lemma 4.16. Suppose g = 〈gn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F is a decomposable
elementary mapping with dom(gn) = MAn

` and ran(gn) ⊆MBn

` for a fixed 0 ≤ ` < z−1, where An
and Bn are finite, ∆n–elementary substructures of M. Then g can be extended to a decomposable
elementary mapping h = 〈hn : n ∈ ω〉/F with dom(hn) = MAn

`+1 and ran(hn) ⊆MBn

`+1. Particularly,
|MAn

`+1| ≤M
Bn

`+1.
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Similarly as in Propositions 4.5 and 4.7, we note that if |MAn

`+1| = |M
Bn

`+1| then ran(hn) = MBn

`+1.

Proof. Let us denote by A and B the structures Πn∈ωAn/F and Πn∈ωBn/F , respectively. By a
slight abuse of notation (or rather for the sake of keeping superscripts in a bearable level) we will
have A =M in mind. Since A ≡ M everything which was said about M is true for A. So from
now on every such notion like M`, Gal(A,M`), atom, which are definable, are to be meant in A.
E.g. from now on Gal(A,M`) denotes GalA(AA,MA

` ), etc. Note that here A is an M`-atom and
not the universe of A.

Using Lemma 4.15 there is an elementary extension g+ = 〈g+
n : n ∈ ω〉 of g such that dom(g+) ⊇

dcl(dom(g)). Since Gal(A,M`) ∈ dcl(M`) for all atom A, these groups are also contained in
dom(g+). In order to keep notation simpler, from now on denote g+ by g.

We show first that there is an isomorphism f : A → B which is an extension of g (but f is
not necessarily decomposable). By ℵ0-stability, there are elementary substructures A∗ and B∗ of
A and B, respectively which are constructible over dom(g) and ran(g). Because of MA

` is infinite,
definable and is contained in dom(g), by a standard two cardinals theorem (see e.g. Theorem 3.2.9
of [1]) A∗ = A and similarly, B∗ = B. Since they are constructible, they are atomic over MA

` and
hence there is an isomorphism f : A → B extending g.

By Lemma 4.9, M`-atoms cover M`+1 rM`, so fix an enumeration of M`-atoms 〈Aλ : λ < κ〉.
By Lemma 4.12 for all atom Aλ there is a minimal cut Θλ and by Lemma 4.13 this cut has finitely
many partitions, say n(λ) many. For each λ < κ and i < n(λ) let us adjoin a new relation symbol
Rλ,i to our language and interpret it in A as the corresponding partition of Aλ. So RMλ,i is the ith

partition of the λth atom. We denote this extended language by L+ and let us denote the set of
new relation symbols by R:

R =
{
Rλ,i : λ < κ, i < n(λ)

}
.

Each R ∈ R is a partition of a minimal cut of an atom, hence R is definable by a formula with
parameters. It follows that each R ∈ R is decomposable (by  Loś lemma) and so it is meaningful
to speak about RAn for R ∈ R and n ∈ ω.

Define the interpretation of these relations in B as

RBλ,i = f [RAλ,i],

for all λ and i. Observe that f is an elementary mapping in the extended language L+ because it is
an isomorphism. In addition, a restriction of an elementary mapping is still elementary, therefore
g is also elementary in the language L+.

For a formula ϕ(v, ȳ) let

ϕ′ =
{
∀v

(
R(v)→ ϕ(v, ȳ)

)
: R ∈ R

}
and let

ϕ+ =
{
∀ȳ

(
∃x(R(x) ∧ ϕ(x, ȳ))→ ∀x(R(x)→ ϕ(x, ȳ))

)
: R ∈ R

}
.

We emphasize, that ϕ′ and ϕ+ are possibly infinite sets of formulas. Observe first that A,B � ϕ+

for all formula ϕ and thus by  Loś lemma for any ϑ ∈ ϕ+ we have

{n ∈ ω : An,Bn � ϑ} ∈ F .

What is more, we claim that formulas in ϕ+ are “simultaneously” decomposable, i.e. we claim
that for any formula ϕ the following hold:

{n ∈ ω : An � ϕ+} ∈ F .
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For if not, for almost all n ∈ ω there is some Rn ∈ R and ȳn such that

RAn
n ∩ ‖ϕ(v, ȳn)‖An 6= ∅ and RAn

n r ‖ϕ(v, ȳn)‖An 6= ∅.

According to Lemmas 4.10 and 4.8, there is a finite set S ⊆ S(M) of types such that if a sequence
ē defines an atom (say, with a formula ψ ∈ Γ, where Γ comes from Lemma 4.10), then tp(ē) ∈ S.
Consequently there is a big set of indices such that Rn-s are partitions of a minimal cut of the
same type of atom, and since every minimal cut has finitely many partitions, Rn-s are defined
with the same formula ϑ in a big set of indices (of course with potentially different parameters).
So for some sequences c̄n in a big set of indices we have

‖ϑ(v, c̄n)‖An ∩ ‖ϕ(v, ȳn)‖An 6= ∅ and ‖ϑ(v, c̄n)‖An r ‖ϕ(v, ȳn)‖An 6= ∅.

Considering the ultraproduct we get

‖ϑ(v, c̄)‖A ∩ ‖ϕ(v, ȳ)‖A 6= ∅ and ‖ϑ(v, c̄)‖A r ‖ϕ(v, ȳ)‖A 6= ∅,

which is impossible, because by construction ‖ϑ(v, c̄)‖ defines a partition of a minimal cut.
Recall that by “g preserves ϕ” we mean that for all d̄ ∈ dom(g) the following is true:

if A � ϕ(d̄) then B � ϕ(g(d̄)).

Similarly, by “g preserves ϕ′” we mean that all the formulas in ϕ′ are preserved by g. For
ϕ(v, ȳ) ∈ Form we define I(ϕ) ∈ F follows.

I(ϕ) =
{
n ∈ ω : gn preserves {ϕ} ∪ ϕ′ and An,Bn � ϕ+

}
We claim that I(ϕ) ∈ F . Similarly as we showed that formulas of ϕ+ are simultaneously decom-
posable, it is also true that

(?) {n ∈ ω : gn preserves ϑ for all ϑ ∈ ϕ′} ∈ F .

To see this, suppose, seeking a contradiction, that for almost all n there is ϑn ∈ ϕ′ which is
not preserved by gn. In more detail, this means that gn doesn’t preserve a formula of the form

ϑn = ∀v(Rn(v)→ ϕ(v, ȳn)).

In a similar manner as above, by Lemmas 4.10 and 4.8 there is a big set of indices such that Rn-s
are defined with the same parametric formula ϑ. Then considering the ultraproduct we get that
f , which is an extension of g, doesn’t preserve the formula

∀v(ϑ(v)→ ϕ(v, ȳ)).

But this is impossible because f is an isomorphism. So (?) above has been established.
Next we define sets ∆n of formulas for n ∈ ω as follows:

∆n = {ϕ : n ∈ I(ϕ)}.

Then as we saw I(ϕ) ∈ F and for all formula ϕ we have

{n ∈ ω : ϕ ∈ ∆n} ∈ F .
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We divide the rest of the proof into two steps. In the first step, we extend g so that it will
meet every atom in at least one point, then in the second step we continue the extension to the
remaining parts of the atoms.

Step 1.

We proceed by transfinite recursion. Let g0
n = gn for all n ∈ ω. We construct a sequence of

mappings 〈gλn : n ∈ ω, λ ≤ κ〉 in such a way that the following stipulations hold.

(S1) gλ = 〈gλn : n ∈ ω〉/F is elementary;

(S2) gεn ⊆ gδn for all ε ≤ δ ≤ κ and n ∈ ω;

(S3) Aε ∩ dom(gλ) 6= ∅ for all ε < λ;

(S4) gλn is ∆n-elementary for λ ≤ κ and n ∈ ω.

Note that (S1) is a consequence of (S4). Suppose that gεn has already been defined for n ∈ ω and
ε < δ ≤ κ.

If δ is limit then, similarly as in the proof of Proposition 4.7, we take the coordinatewise union,
i.e. gδn =

⋃
ε<δ g

ε
n for n ∈ ω.

Suppose δ is successor, say δ = ε + 1, and Aδ ∩ dom(gε) = ∅. First, observe that Aδ is
definable by parameters from M` and gε is elementary, hence (Aδ)B ∩ ran(gε) = ∅ as well. Pick
an arbitrary a ∈ Aδ. There is a unique R ∈ R such that a ∈ RA. Since RA is non-empty and f

is an isomorphism, RB is also non-empty. So pick any b ∈ RB. Note that RA ⊆ Aδ and hence
A � ∀v(R(v)→ Aδ(v)) (and similarly with B). If

I/∈ =
{
n ∈ ω : an /∈ dom(gεn) and bn /∈ ran(gεn)

}
,

IR =
{
n ∈ ω : an ∈ RAn , bn ∈ RBn and RAn ⊆ (Aδ)An , RBn ⊆ (Aδ)Bn}

then clearly I/∈ ∩ IR ∈ F . Set gδ = 〈gδn : n ∈ ω〉/F where

gδn =

{
gεn ∪ {〈an, bn〉} if n ∈ I/∈ ∩ IR
gεn otherwise.

We claim that gδ satisfies properties (S1)–(S4). Here (S2) and (S3) are obvious. Moreover, as we
already mentioned, (S1) is a consequence of (S4), therefore it is enough to deal with the latter
one.

Let n ∈ I/∈ ∩ IR be arbitrary but fixed, and suppose ϕ(v, ȳ) ∈ ∆n. We have to prove that gδn
preserves ϕ.

Since ϕ ∈ ∆n we have n ∈ I(ϕ) hence, gn preserves ϕ′, in particular, gn preserves ∀v(R(v)→
ϕ(v, ȳ)). By construction An,Bn � ϕ+. Suppose an ∈ ‖ϕ(v, d̄)‖An for some d̄ ∈ dom(gn). Then
because An � ϕ+ and an ∈ RAn we get

An � ∀v(R(v)→ ϕ(v, d̄)).

This last formula belongs to ϕ′, hence it is preserved by gn, therefore

Bn � ∀v(R(v)→ ϕ(v, gn(d̄))).

Since bn ∈ RBn , we get bn ∈ ‖ϕ(v, gn(d̄))‖Bn , consequently gn preserves ϕ, as desired.
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Step 2.

What we get so far from the transfinite recursion is a function gκ satisfying (S1)–(S4) above.
We claim that every atom Aλ is contained in dcl(dom(gκ)). To prove this let A be an M`-atom
and let a ∈ A ∩ dom(gκ). Such an element a exists by (S3). Notice that Gal(A,M`) ⊆ dom(gκ).
Now, by Lemma 4.11 (sharp transitivity of Gal(A,M`)) for any x ∈ A there is a unique group
element gx ∈ Gal(A,M`) with gx(a) = x. Hence every element of the atom A can be defined from
dom(gκ). Applying Lemma 4.15 to gκ one can finish the proof.

For completeness we note, that dcl(dom(gκ)) = M` which is definable, hence decomposable, cf.
the remark before the proof of Lemma 4.15. The last sentence of the statement of Lemma 4.16
follows, because h is a decomposable elementary mapping.

Theorem 4.17. Suppose An, Bn are finite ∆n-elementary substructures ofM. Let g = 〈gn : n ∈
ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F be a decomposable elementary mapping with dom(gn) = MAn

0 ,
ran(gn) ⊆MBn

0 . Then g can be extended to a decomposable elementary embedding.

We have the usual remark: if we assume |MAn

` | = |M
Bn

` | for all 0 ≤ ` < z − 1 and n ∈ ω, and
ran(gn) = MBn

0 , then the resulting extension is a decomposable isomorphism.

Proof. Straightforward iteration of Lemma 4.16.

4.3 The general case

We put the result of Subsections 4.1 and 4.2 together. Recall, thatM is an ℵ1-categorical structure
with an atom–defining schema for ∅-definable infinite relations, having the extension property.
Also, we assume that there is a ∅-definable strongly minimal subset M0 ⊆M .

Lemma 4.18. For each n ∈ ω let An, Bn be finite, ∆n-elementary substructures of M. Then
for any k,m ∈ ω there exists N ∈ ω such that m ≤ N and whenever n ≥ N then there is a ∆m-
elementary mapping gn : An → Bn such that dom(gn) ⊆MAn

0 , ran(gn) ⊆MBn
0 and |dom(gn)| ≥ k.

Proof. Let k,m ∈ ω be fixed and for each n ∈ ω let ān ∈ MAn
0 and b̄n ∈ MBn

0 be bases in An
and Bn, respectively. We emphasize that acl and algebraic dependence is always computed in the
infinite structure M. We distinguish three cases.
Case 1: Suppose I = {n ∈ ω : |ān| < k} is infinite. Observe that An ∩M0 = MAn

0 for large
enough n, because M0 is definable by an element of ∆n. Since sup{|An ∩M0| : n ∈ ω} is infinite,
it follows, that sup{|acl(ān) ∩M0| : n ∈ ω} is infinite, as well. Hence, for all n ∈ I there exists
γ(n) ∈ ω with

|acl∆γ(n)(ān) ∩M0| ≥ k.

Let N0 ∈ I and let N ≥ max{γ(N0),m} be such that M0 is definable by a formula in ∆N and the
existential closure of the type

p = tp∆m

(
acl∆γ(N0)(āN0) ∩M0

)
is in ∆N . Now, p can be realized in An and Bn for any n ≥ N . A bijection gn between these
realizations is a ∆m-elementary mapping, so gn satisfies the conclusion of the lemma.
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Case 2: Suppose I = {n ∈ ω : |b̄n| < k} is infinite. Swapping An and Bn, one can apply case one
above.
Case 3: Suppose, there is an N0 ∈ ω such that n ≥ N0 implies |ān|, |b̄n| ≥ k. Then choose N so
that N ≥ max{N0,m}. If n ≥ N then let gn be a bijection mapping the first k elements of ān
onto the first k elements of b̄n. Since ān and b̄n are bases, gn : M →M is an elementary mapping,
hence gn : An → Bn is ∆m-elementary, as desired.

Lemma 4.19. Suppose An and Bn are finite, ∆n-elementary substructures of M such that
|MAn

0 | = |M
Bn
0 | for almost all n ∈ ω. Then |An| = |Bn| almost everywhere.

A converse of this statement is presented in Lemma 4.23.

Proof. Suppose, seeking a contradiction, that

(∗) I = {n ∈ ω : |An| < |Bn|} ∈ F .

Let m be arbitrary. Applying Lemma 4.18 with k = ε(∆n) we get a ∆m-elementary function

gm : MAn(m)
0 →M

Bn(m)
0 ,

where m ≤ n(m) ∈ I such that |dom(gm)| ≥ ε(∆m). Applying Proposition 4.7 to An(m) and
Bn(m), we obtain a decomposable elementary mapping

g+ = 〈g+
m : m ∈ ω〉/F : Πm∈ωAn(m)/F → Πm∈ωBn(m)/F

with dom(g+
m) = M

An(m)
0 and ran(g+

m) = M
Bn(m)
0 (here equality holds because we assumed |MA

0 | =
|MB

0 |). By Theorem 4.17, g+ can be extended to a decomposable elementary embedding

g++ : Πm∈ωAn(m)/F → Πm∈ωBn(m)/F .

On the one hand g++[MA
0 ] = MB

0 , on the other hand, g++ is not surjective (this is because g++

is decomposable and by the indirect assumption (∗)). Thus,

g++
[
Πm∈ωAn(m)/F

]
and Πm∈ωBn(m)/F

forms a Vaughtian pair for the ℵ1-categorical theory of M – which is a contradiction.

Remark 4.20. If M0 is strongly minimal, then, by compactness, for all formula ϕ there is a
natural number n(ϕ) (not depending on parameters in ϕ) such that if M0 ∩ ‖ϕ(v, c̄)‖ is infinite
then

∣∣M0 r ‖ϕ(v, c̄)‖
∣∣ ≤ n(ϕ). This we used once in the proof of Lemma 4.3. Next, we utilize

another variant of this idea.

Lemma 4.21. LetM be ℵ1-categorical and let M0 ⊆M be a ∅-definable, strongly minimal subset.
Then for all finite set ε of formulas there exists another finite set δ of formulas such that if A
is a δ-elementary substructure of M and ϕ ∈ ε, c̄ ∈ A and M0 ∩ ‖ϕ(v, c̄)‖M is finite, then
M0 ∩ ‖ϕ(v, c̄)‖M ⊆MA

0 .
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Proof. For all ϕ ∈ ε let ϕn(ȳ) denote the next formula:

ϕn(ȳ) = “ϕ(x, ȳ) has exactly n realizations”.

For all fixed n ∈ ω, ϕn can be made a strict first order formula and it is sometimes denoted as
∃nxϕ(x, ȳ). Put

δ = {ε} ∪ {a formula defining M0} ∪ {ϕn : n ≤ n(¬ϕ), ϕ ∈ ε}.

A simple argument shows that δ fulfills our purposes.

Lemma 4.22. For a formula ϕ, let n(ϕ) be as in Remark 4.20. For all (large enough) finite
set ε of formulas there is another finite set δ ⊃ ε of formulas such that if A is a δ-elementary
substructure of M with

|MA
0 | > max{n(ϕ) : ϕ ∈ δ}

and b̄ ∈M0 is arbitrary then A ∪ {b̄} is a universe of an ε-elementary substructure A′ of M and
A is an ε-elementary substructure of A′.

Proof. For a formula ϕ(v, ȳ) let ϕ̂ be the formula expressing

ϕ̂(ȳ) = ”there are at most n(ϕ) many elements x of M0 such that ¬ϕ(x, ȳ)”.

Since M0 is definable and n(ϕ) is finite, this can be made a first order formula for each ϕ.
For ε let δ be the smallest set of formulas closed under subformulas and containing the union

of ε, {ϕ̂ : ϕ ∈ ε} and the set of formulas δ in Lemma 4.21 (corresponding to ε). We prove this
choice is suitable. We apply the  Loś-Vaught test. Let ϕ ∈ ε, c̄ ∈ A and suppose ϕ(v, c̄) is realized
by a ∈ A′. If a ∈ A then there is nothing to prove, so assume a /∈ A. Then by construction
a ∈M0 rA.

If M0∩‖ϕ(v, c̄)‖M is finite then by Lemma 4.21, a ∈MA
0 ⊆ A would follow, which contradicts

to a ∈M0 rA. So we have M0 ∩ ‖ϕ(v, c̄)‖M is infinite. Then, since M0 is strongly minimal, each
but finitely many elements of M0 realizes ϕ(v, c̄). But |MA

0 | > n(ϕ) is large enough, consequently
there is an a′ ∈ A realizing ϕ(v, c̄). This proves that A is a ϕ-elementary substructure of A′.

Next, we prove that A′ is an ε-elementary substructure of M. Let ϕ ∈ ε, c̄ ∈ A′ and assume
M � ϕ(c̄). We proceed by induction on |c̄rA|.

If |c̄rA| = 0 then c̄ ∈ A and since A is a δ-elementary substructure, it follows that A � ϕ(c̄).
We have already proved that A is an ε-elementary substructure of A′, hence A′ � ϕ(c̄).

If |c̄rA| > 0 then c̄ = dac̄0 for some d ∈ c̄rA, d ∈ b̄ ⊆M0. By Lemma 4.21 we get

M � ϕ̂(c̄0).

Because A is δ-elementary it follows that

A � ϕ̂(c̄0),

and by the inductive hypothesis (|c̄0| < |c̄|) we get

A′ � ϕ̂(c̄0).

By Lemma 4.21, if x ∈M0 is such that M � ¬ϕ(x, c0), then x ∈ A ∩A′. Therefore A′ � ϕ(d, c0),
as desired.
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Lemma 4.23. Suppose for each n ∈ ω the finite An and Bn are equinumerous, ∆n-elementary
substructures of M. Then for all, but finitely many n ∈ ω we have

|MAn
0 | = |M

Bn
0 |.

Proof. Let δn be the finite set of formulas guaranteed by Lemma 4.22 for εn = ∆n. Since the
sequence ∆n is monotone increasing, we may assume, by a possible rescaleing of this sequence,
that An and Bn are also δn-elementary substructures of M.

We may suppose, seeking a contradiction, that |MAn
0 | < |M

Bn
0 | for all n. For each n chose

b̄n ∈M0 such that
|MAn

0 ∪ {b̄n}| = |MBn
0 |.

Let A′n be the substructure in Lemma 4.22 whose underlying set is MAn
0 ∪ {b̄n}. Then An is a

∆n-elementary substructure of A′n, hence A′n is a ∆n-elementary substructure of M. Further,
|MA′

n
0 | = |M

Bn
0 | and |A′n| > |Bn|. But this contradicts to Lemma 4.19.

Theorem 4.24. Let M be an ℵ1-categorical structure with an atom–defining schema, having
the extension property. Suppose that there is a ∅-definable strongly minimal subset M0 of M
and suppose for each n ∈ ω the finite structures An and Bn are equinumerous, ∆n–elementary
substructures of M. Then there is a decomposable isomorphism

f = 〈fn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F .

Proof. By Lemma 4.23 we have |MAn
0 | = |M

Bn
0 |. Since ∆n ⊆ ∆n+1 is an increasing sequence, by

Lemma 4.18 there is a decomposable elementary mapping

g = 〈gn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F ,

such that (after a suitable rescaling) the following stipulations hold for almost all n ∈ ω:

• dom(gn) ⊆MAn
0 and ran(gn) ⊆MBn

0 ,

• gn is ∆n-elementary,

• |dom(gn)| ≥ ε(∆n).

This function may be constructed similarly as in the proof of Lemma 4.19. Then Proposition 4.7
applies: g can be extended to a decomposable elementary mapping g+ = 〈g+

n : n ∈ ω〉/F such
that dom(g+

n ) = MAn
0 and ran(g+

n ) = MBn
0 .

Finally, applying Theorem 4.17, one can obtain the desired decomposable isomorphism.

We close this subsection with the following observation. The extension property is only needed
in order to be able to take the first step of the extension, namely to extend ∅ to the trace of M0

in the Ai-s. Without the extension property one can prove the following theorem.

Theorem 4.25. Let M be an ℵ1-categorical structure with an atom–defining schema. Suppose
that there is a ∅-definable strongly minimal subset M0 of M and suppose for each n ∈ ω the finite
structures An and Bn are equinumerous, ∆n–elementary substructures of M such that

tpM(M0 ∩An/∅) = tpM(M0 ∩Bn/∅)
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hold for almost all n ∈ ω. Then there is a decomposable isomorphism

f = 〈fn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F .

Proof. Observe first, that by assumption there is an elementary bijection fn : MAn
0 → MBn

0 .
Combining Lemma 4.19 and Theorem 4.17 one can complete the proof.

5 Categoricity in finite cardinals

In this section we show that finite fragments of certain ℵ1-categorical theories T are also categorical
in the following sense: for all finite subsets Σ of T there exists a finite extension Σ′ of Σ, such that
up to isomorphism, Σ′ can have at most one n-element model Σ′-elementarily embeddable into
models of T , for all n ∈ ω. For details, see Theorem 5.2, which is the main theorem of the paper.

We start by two theorems stating that (under some additional technical conditions) an ℵ1-
categorical structure can be uniquely decomposed to ultraproducts of its finite substructures.

Theorem 5.1 (Second Unique Factorization Theorem). Let M be an ℵ1-categorical struc-
ture satisfying the extension–property and having an atom-defining schema. Suppose An, Bn are
equinumerous finite, ∆n-elementary substructures of M. Then

{n ∈ ω : An ∼= Bn} ∈ F

for any non-principal ultrafilter F .

Proof. We would like to apply Theorem 4.24. Recall that by Lemma 6.1.13 of [6] there is a
strongly minimal subset M0 ⊆ M which is definable in M with parameters c̄ ∈ M . Consider the
structureM′ = 〈M, c̄〉. Then there is a ∅-definable strongly minimal subset ofM′. Furthermore,
M′ inherits the extension property and the atom-defining schema from M. Particularly, in M′

every ∅-definable infinite relation has an atom-defining schema. Also, the appropriate extensions
of An and Bn are ∆n-elementary substructures of M′, as well (possibly, after a rescaleing of the
sequence ∆n).

It follows that all the conditions of Theorem 4.24 are satisfied in M′, whence there is a de-
composable isomorphism

f = 〈fn : n ∈ ω〉/F : Πn∈ωAn/F → Πn∈ωBn/F .

Then the statement follows from  Loś lemma applied to the structure 〈A∗,B∗, f〉.

Theorem 5.2 (Finite Morley Theorem). Let M be an ℵ1-categorical structure satisfying the
extension property and having an atom-defining schema. Then there exists N ∈ ω such that for any
n ≥ N and k ∈ ω (counting up to isomorphisms) M has at most one ∆n-elementary substructure
of size k.

Proof. By way of contradiction, suppose for all N ∈ ω there exist l ≥ N , k ∈ ω and (at least)
two non-isomorphic finite models AN ,BN of cardinality k which are ∆l-elementary substructures
of M. Then Theorem 5.1 implies that {n ∈ ω : An ∼= Bn} is infinite, which contradicts to the
choices of AN ,BN .
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Finally, we present a theorem, in which we do not assume the extension–property and still
obtain uniqueness of ∆-elementary substructures having a fixed finite cardinality. This result may
be a basis for further investigations, when instead of proving their uniqueness, one would like to
estimate the number of pairwise non-isomorphic ∆-elementary substructures ofM having a given
finite cardinality. In this respect, we refer to Problem 5.8 below.

Theorem 5.3. Let M be an ℵ1-categorical structure with an atom-defining schema. Let M0 be
a strongly minimal subset of M definable by parameters. Then there exists N ∈ ω such that for
any n ≥ N and k ∈ ω, if A and B are ∆n-elementary substructures of M of cardinality k, and
tp(M0 ∩A/∅) = tp(M0 ∩B/∅) then A and B are isomorphic.

Proof. Similarly to Theorem 5.1, assume M0 is definable by parameters c̄. Adjoining c̄ to the
language, it still has an atom defining schema. Then the proof can be completed similarly to the
proof of Theorem 5.2: assume, seeking a contradiction, that for all N ∈ ω there exists n > N and
non-isomorphic, equinumerous ∆n-elementary substructures An and Bn of M with

tp(M0 ∩An/∅) = tp(M0 ∩Bn/∅)

and apply Theorem 4.25.

We finish the paper by posing some problems which remained open.

Open Problems

Conjecture 5.4. If the language L contains only at most binary relation symbols, T is an L-theory
and S2(T ) is finite, then T has the extension property.

We have an idea to prove this conjecture but it seems that providing a proof needs a certain
amount of further work. Hence we postpone to examine the details.

Open problem 5.5. Provide equivalent conditions for a theory to have the Finite Morley Prop-
erty.

Open problem 5.6. Does the conditions of Lemma 2.10 imply the extension property?

Open problem 5.7. We assumed that the Cantor-Bendixson rank of each ∂ϕ in an atom-defining
schema is zero. Can Theorem 5.2 be proved without this assumption, or from the weaker assump-
tion that this rank is finite?

Let k be a natural number. As we mentioned before Theorem 5.3, instead of proving uniqueness
of k-sized ∆-elementary substructures of an ℵ1-categorical structure, one can try to estimate the
number of pairwise non isomorphic such structures, or one can try to describe all of them. To be
more specific, in this direction we offer the following problem.

Open problem 5.8. Let M be an ℵ1-categorical structure with an atom-defining schema. Con-
tinuing investigations initiated in Theorem 5.3, characterize (or give upper estimations for the
number of) equinumerous ∆n-elementary, pairwise non-isomorphic finite substructures of M, by
using their trace on a strongly minimal subset. Perhaps, such a characterization or estimation
may be obtained in terms of pre-geometries induced by the algebraic closure operation.
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