PROGRAM


Monday
Tuesday Wednesday Thursday Friday Saturday
9
-
10




N. Levenberg
An extremal function
in potential &
pluripotential theory (Introduction to pluripotential
theory in
approximation)
( 2 h )

M. Baran
Cauchy - Poisson
transform and
polynomial inequalities
( 2 h )

L. Bos
Metrics associated with polynomial inequalities and interpolation
( 2 h )

S. Kolodziej
The complex
Monge - Ampere operator and the Dirichlet problem
( 2 h )

K. Kazarian
Weighted Hp spaces and applications
( 2 h )

10
-
11
11
-
12

W. Plesniak
Polynomial inequalities
(2 h)

A. Tyliba
Zaremba Criterion
( 45' )

 

F. Toókos
Hölder continuity of Green functions
( 45' )


D. Benko
Weighted energy problem on the unit circle and on the real line
( 50' )

S. Ma'u
Calculations with
the complex
Monge - Ampere operator on the maximum of
finitely many plurisubharmonic functions
( 1 h )

Z. Blocki
Bergman kernel and pluricomplex Green function
( 2 h )

12
-
13

J. Réffy
Orthogonal polynomials and random matrices
( 1 h )

A. Edigarian

(80')

13
-
14














14
-
15

G. Francsics
Spectral analysis on complex hyperbolic spaces
( 1h 30' )

15
-
16

P. Major
Solving the Dirichlet problem by use of Wiener processes
( 1 h 30' )

S. Szabó
Positive harmonic functions
( 1 h  30' )

 


B. Farkas
How potential theory explains "magical" rendezvous numbers
( 1 h 30' )

N. Zorii
Gauss variational problem
for signed measures I
( 1 h 30' )

 


Sz. Révész
A comparision of two methods for the multivariate Bernstein's inequality
( 1 h 30' )

N. Zorii
Gauss variational problem for signed measures II
( 1 h 30' )


P. Varjú
On homogeneous polynomials
( 45' )

16
-
17

Á. Horváth
Regularity with respect to the Dirichlet problem
( 1 h 30' )

B. Nagy
Chebyshev constant, transfinite diameter and energy
(45' )



17
-
18