[1] Sz. Gy. Révész, Turán's extremal problem on locally compact abelian groups, to appear in Anal. Math. 37 no. 1 (2011); preprint, 26 pages, see on ArXive as arXiv:0904.1824. [link to the paper]
[2] D. Burns, N. Levenberg, S. Ma'u and Sz. Gy. Révész, Monge-Ampere Measures for Convex Bodies and Bernstein-Markov Type Inequalities, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6325--6340. [link to the paper]
[3] A. Bonami and Sz. Gy. Révész, Concentration of idempotent trigonometric polynomials in L1 norm, In: Recent developments in fractals and related fields, Proceedings of the Conference in Honor of Jacques Peyriere, (held in Tunis, Tunisia, 2007), Barral, Julien; Seuret, Stéphane (Eds.), 2010, in the series Applied and Numerical Harmonic Analysis. See on arXive as arXiv:0811.4576. [link to the paper]
[4] Ph. Jamming, M. Matolcsi, Sz. Gy. Révész, On the extremal rays of the cone of positive, positive definite functions, J. Fourier Anal. Appl. 15 (2009), no. 4, 561--582. [link to the paper]
[5] Sz. Révész and A. Bonami, Integral concentration of idempotent trigonometric polynomials with gaps, Amer. J. Math., 131:1065-1108, 2009. [link to the paper]
[6] G. A. Munoz, Sz. Révész and J. B. Seoane, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand, 104(2009), 1-14. [link to the paper]
[7] Sz. Gy. Révész and A. San Antolín, Equilvalence of A-approximate continuity for self-adjoint expansive linear maps, Linear Algebra Appl., 429(7):1504-1521, 2008. [link to the paper]
[8] A. Bonami and Sz. Gy. Révész, Failure of Wiener's property for positive definite periodic functions, C. R. Math. Acad. Sci. Paris, 346(1-2):39-44, 2008. [link to the paper]
[9] B. Farkas, V. Harangi, T. Keleti, and Sz. Gy. Révész, Invariant decomposition of functions with respect to commuting invertible transformations, Proc. Amer. Math. Soc., 136(4):1325-1336, 2008. [link to the paper]
[10] B. Farkas and Sz. Gy. Révész, Positive bases in spaces of polynomials, Positivity, 12(4):691-709, 2008. [link to the paper]
[11] B. Farkas and Sz. Gy. Révész, Decomposition as the sum of invariant functions with respect to commuting transformations, Aequationes Math., 73(3):233-248, 2007. [link to the paper]
[12] Sz. Révész, On some extremal problems of Landau, Serdica Math. J., 33(1):125-162, 2007. [link to the paper]
[13] Sz. Gy. Révész, N. N. Reyes, and G. A. M. Velasco, Oscillation of Fourier transforms and Markov-Bernstein inequalities, J. Approx. Theory, 145(1):100-110, 2007. [link to the paper]
[14] Sz. Gy. Révész, Schur-type inequalities for complex polynomials with no zeros in the unit disk, J. Inequal. Appl., vol. 2007, Art. ID 90526, 10 pages (electronic), 2007. doi:10.1155/2007/90526. [link to the paper]
[15] Sz. Gy. Révész, A comparative analysis of Bernstein type estimates for the derivative of multivariate polynomials, Ann. Polon. Math., 88(3):229-245, 2006. [link to the paper]
[16] Sz. Révész, Inequalities for multivariate polynomials, Annals of the Marie Curie Fellowships, 4, 2006, (electronic); 6 pages; http://www.mariecurie.org/annals/. [link to the paper]
[17] Sz. Gy. Révész, On a paper of Erőd and Turán-Markov inequalities for non-flat convex domains, East J. Approx., 12(4):451-467, 2006. [link to the paper]
[18] M. N. Kolountzakis and Sz. Gy. Révész, On pointwise estimates of positive definite functions with given support, Canad. J. Math., 58(2):401-418, 2006. [link to the paper]
[19] V. A. Anagnostopoulos and Sz. Gy. Révész, Polarization constants for products of linear functionals over R2 and C2 and Chebyshev constants of the unit sphere, Publ. Math. Debrecen, 68(1-2):63-75, 2006. [link to the paper]
[20] B. Farkas and Sz. Gy. Révész, Potential theoretic approach to rendezvous numbers, Monatsh. Math., 148(4):309-331, 2006. [link to the paper]
[21] B. Farkas and Sz. Gy. Révész, Rendezvous numbers of metric spaces -- a potential theoretic approach, Arch. Math. (Basel), 86(3):268-281, 2006. [link to the paper]
[22] B. Farkas and Sz. Gy. Révész, Tiles with no spectra in dimension 4, Math. Scand., 98(1):44-52, 2006. [link to the paper]
[23] Sz. Gy. Révész, Turán type reverse Markov inequalities for compact convex sets, J. Approx. Theory, 141(2):162-173, 2006. [link to the paper]
[24] M. N. Kolountzakis and Sz. Gy. Révész, Turán's extremal problem for positive definite functions on groups, J. London Math. Soc. (2), 74(2):475-496, 2006. [link to the paper]
[25] L. B. Milev and Sz. Gy. Révész, Bernstein's inequality for multivariate polynomials on the standard simplex, J. Inequal. Appl., (2):145-163, 2005. [link to the paper]
[26] B. Farkas and Sz. Gy. Révész, Rendezvous numbers in normed spaces, Bull. Austral. Math. Soc., 72(3):423-440, 2005. [link to the paper]
[27] Sz. Gy. Révész and Y. Sarantopoulos, The generalized Minkowski functional with applications in approximation theory, J. Convex Anal., 11(2):303-334, 2004. [link to the paper]
[!28] Sz. Gy. Révész, On generalized strong A-summability, Sci. Math. Japan., 60(3):595-611, 2004. [link to the paper]
[29] Sz. Révész, Some polynomial inequalities on real normed spaces, Publicaciones del Dpto. de Analisis del Matemático Sección 1, 63:111-135, 2004. [link to the paper]
[30] A. Pappas and Sz. Gy. Révész, Linear polarization constants of Hilbert spaces, J. Math. Anal. Appl., 300(1):129-146, 2004. [link to the paper]
[31] Sz. Gy. Révész and Y. Sarantopoulos, Plank problems, polarization and Chebyshev constants, J. Korean Math. Soc., 41(1):157-174, 2004, Satellite Conference on Infinite Dimensional Function Theory. [link to the paper]
[32] M. N. Kolountzakis and Sz. Gy. Révész, On a problem of Turán about positive definite functions, Proc. Amer. Math. Soc., 131(11):3423-3430, 2003. [link to the paper]
[33] Sz. Gy. Révész and Y. Sarantopoulos, On Markov constants of homogeneous polynomials over real normed spaces, East J. Approx., 9(3):277-304, 2003. [link to the paper]
[34] Sz. Gy. Révész and Y. Sarantopoulos, Chebyshev's extremal problems of polynomial growth in real normed spaces, Izv. Nats. Akad. Nauk Armenii Mat., 36(5):62-81 (2002), 2001. [link to the paper]
[35] Sz. Révész, Uniqueness of Markov-extremal polynomials on symmetric convex bodies, Constr. Approx., 17(3):465-478, 2001. [link to the paper]
[36] Sz. Révész, Uniqueness of multivariate Chebyshev-type extremal polynomials for convex bodies, East J. Approx., 7(2):205-240, 2001. [link to the paper]
[37] A. Kroó, Sz. Révész, On Bernstein and Markov-Type Inequalities for Multivariate Polynomials on Convex Bodies, J. Approx. Theory, 99: 134-152 (1999). [link to the paper]
[38] Sz. Révész, Rearrangements of Fourier series, J. Approx. Theory, 60:101-121, 1990. [link to the paper]