ON APPROXIMATING LEBESGUE INTEGRALS BY RIEMANN SUMS

by SZILÁRD GY. RÉVÉSZ AND IMRE Z. RUZSA†

(Received 11 November, 1989)

1. If f is a real function, periodic with period 1, we define

$$(M_n f)(x) = \frac{1}{n} \sum_{i=1}^n f\left(x + \frac{i}{n}\right) \quad (n \in \mathbb{N}).$$
 (1)

In the whole paper we write \int for \int_0^1 , mE for the Lebesgue measure of $E \cap [0, 1]$, where $E \subset \mathbb{R}$ is any measurable set of period 1, and we also use χ_E for the characteristic function of the set E. Consistent with this, the meaning of \mathcal{L}^p is $\mathcal{L}^p[0, 1]$. For all real x we have

$$\lim_{n\to\infty} (M_n f)(x) = \int f,$$
 (2)

if f is Riemann-integrable on [0, 1]. However, $\int f$ exists for all $f \in \mathcal{L}^1$ and one would wish to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for $f \in \mathcal{L}^p$ in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for the characteristic function of an open set, and so, to get a reasonable extension, it is natural to weaken (2) to

$$\lim_{\substack{n \to \infty \\ n \in S}} (M_n f)(x) = \int f \quad \text{for a.a. } x,$$
 (3)

where $S \subset \mathbb{N}$ is some "good" increasing subsequence of \mathbb{N} . Naturally, for different function classes $\mathscr{F} \subset \mathscr{L}^1$ we get different meanings of being good. That is, we introduce the class of \mathscr{F} -good sequences as

$$\mathscr{G}(\mathscr{F}) = \{ S \subset \mathbb{N} : (3) \text{ holds for all } f \in \mathscr{F} \}. \tag{4}$$

In 1934 Jessen [1], [2] proved that if S has the arithmetic property

$$n_k \mid n_{k+1} \text{ for } k \in \mathbb{N}, \text{ where } S = \{n_1, n_2, \ldots\},$$
 (5)

then S is \mathcal{L}^1 -good, i.e. $S \in \mathcal{G}(\mathcal{L}^1)$. In 1948 Salem [5] proved (3) under certain assumptions on the integral modulus of continuity of f and the lacunarity of the sequences S.

On the other hand Rudin [4] introduced the arithmetic condition

$$\exists S_N \subset S, \qquad S_N = \{a_1, \dots, a_N\} \quad (|S_N| = N), a_i \nmid [a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_N] \quad (j = 1, \dots, N), \quad (6)$$

where [. , .] denotes the least common multiple. With this concept Rudin's result runs as follows.

$$S \notin \mathcal{G}(\mathcal{L}^{\infty})$$
 if S satisfies (6) for every $N \in \mathbb{N}$. (7)

† Research partially supported by Hungarian National Foundation for Scientific Research, Grant No. 1811 and 27-3-232.

Glasgow Math. J. 33 (1991) 129-134.

Rudin emphasises that Jessen's results and his imply the importance of the arithmetic properties of S; an immediate corollary is that there exists $S \subset \mathbb{N}$ such that $S \in \mathcal{G}(\mathcal{L}^1)$ and $S+1=\{n+1: n \in S\} \notin \mathcal{G}(\mathcal{L}^\infty)$; cf. [4, Remark A].

2. Clearly if $S' \subset S$ and $S \in \mathcal{G}(\mathcal{F})$ then $S' \in \mathcal{G}(\mathcal{F})$, and the inclusion or omission of finitely many elements can not affect the property $S \in \mathcal{G}(\mathcal{F})$; that is, it is an asymptotic property of S. We are going to construct good sequences in a less trivial manner below. To this end we introduce the least common multiple of two sequences S and T as a new sequence U defined by

$$U = [S, T] = \{ [s, t] : s \in S, t \in T \}.$$
 (8)

Observe that for sequences built up from two disjoint sets of primes we get the usual multiplication of subsets of \mathbb{N} . The reason for considering (8) is that for any f and $n, m \in \mathbb{N}$ we have the relation

$$(M_n(M_m f))(x) = \frac{1}{n \cdot m} \sum_{i=1}^n \sum_{j=1}^m f\left(x + \frac{i}{n} + \frac{j}{m}\right) = (M_{[n,m]} f)(x). \tag{9}$$

THEOREM 1. If $S, T \in \mathcal{G}(\mathcal{L}^{\infty})$ then U = [S, T] is also in $\mathcal{G}(\mathcal{L}^{\infty})$.

Proof. Let $f \in \mathcal{L}^{\infty}$, $S = (s_k)$ and $T = (t_j)$ be sequences in $\mathcal{G}(\mathcal{L}^{\infty})$ and denote $I = \int f$, $Q = ||f||_{\infty}$. Using Egorov's theorem, for any fixed $\varepsilon > 0$ we can find a set C, periodic mod 1 and having measure $mC > 1 - \varepsilon$ such that for any $x \in C$

$$|M_{s_k}f(x) - I| < \varepsilon \quad (k > K) \tag{10}$$

and

$$|M_{t_i}f(x) - I| < \varepsilon \quad (j > J) \tag{11}$$

hold with appropriately chosen K and J depending only on ε, f and C. Consider the following finite subset of \mathcal{L}^{∞} :

$$\mathscr{E} = \{ M_{s_k} f : k \leq K \} \cup \{ M_{t_j} f : j \leq J \} \cup \{ \chi_{\mathbb{R} \setminus C} \}. \tag{12}$$

Since $S, T \in \mathcal{G}(\mathcal{L}^{\infty})$, there exists a set B with mB = 0 such that if $g \in \mathcal{E}$ and $x \notin B$ then

$$M_{s_k}g(x) \to \int g$$
 as $k \to \infty$, $M_{t_j}g(x) \to \int g$ as $j \to \infty$.

Hence, for $g \in \mathcal{E}$ and $x \notin B$ there exist $K(x) \ge K$ and $J(x) \ge J$ such that

$$\left| M_{s_k} g(x) - \int g \right| < \varepsilon \quad (k > K(x)),$$

$$\left| M_{t_j} g(x) - \int g \right| < \varepsilon \quad (j > J(x)),$$
(13)

where of course everything depends on ε . Taking (9) into account, for the remainder we can write

$$R_n(x) = |M_{[s_k,t_i]}f(x) - I| = |M_{s_k}(M_{t_i}f)(x) - I|, \tag{14}$$

where $n = [s_k, t_j]$. From (12)–(14) we get

$$R_n(x) < \varepsilon \text{ if } j \le J \text{ and } k > K(x) \text{ or } k \le K \text{ and } j > J(x).$$
 (15)

Clearly, when we form $U = [S, T] = (u_n)$, there exists an index L(x) with the property that if $u_n = [s_k, t_j]$ for some n > L(x) then either k > K(x) or j > J(x). Hence, for n > L(x) we have either the condition of (15) or j > J and k > K simultaneously. Now for n > L(x) and j > J(x), k > K we write

$$R_{n}(x) \leq \frac{1}{t_{j}} \sum_{i=1}^{t_{j}} \left| M_{s_{k}} f\left(x + \frac{i}{t_{j}}\right) - I \right| \leq \frac{1}{t_{j}} \sum_{i=1}^{t_{j}} \left\{ \varepsilon \cdot \chi_{C}\left(x + \frac{i}{t_{j}}\right) + 2Q\chi_{\mathbb{R}\setminus C}\left(x + \frac{i}{t_{j}}\right) \right\}$$

$$\leq \varepsilon + 2Q \cdot M_{t_{j}} \chi_{\mathbb{R}\setminus C}(x) < (2Q + 1)\varepsilon, \quad (x \notin B), \tag{16}$$

since $\chi_{\mathbb{R}\setminus C} \in \mathcal{E}$, $x \notin B$ and, for $x + (i/t_j) \in C$, (10) applies. Similarly, for k > K(x) and j > J we obtain

$$R_n(x) < (2Q+1)\varepsilon \quad (x \notin B). \tag{17}$$

Now (15), (16) and (17) prove

$$R_n(x) < (2Q+1)\varepsilon$$
 $(x \notin B, n > L(x)),$

and consequently

$$\limsup_{n\to\infty} R_n(x) \le (2Q+1)\varepsilon \quad (x \notin B).$$
(18)

Take $\varepsilon = 1/N$ and denote the resulting set B by B_N . For $x \notin \bigcup_{N=1}^{\infty} B_N = B^*$, (18) holds for every ε ; that is, $R_n(x) \to 0$. As $mB^* = 0$, the theorem is proved.

COROLLARY 1. If there are only finitely many primes that divide the members of the sequence S, then $S \in \mathcal{G}(\mathcal{L}^{\infty})$.

Proof. Let the set of primes dividing elements of S be $\{p_1, \ldots, p_d\}$. Then $S_j = \{p_j^k : k \in \mathbb{N}\}$ $(j = 1, \ldots, d)$ are d sequences in $\mathscr{G}(\mathscr{L}^{\infty})$ according to Jessen's Theorem [5]. By Theorem 1, $S_0 = \{p_1^{k_1} p_2^{k_2} \ldots p_d^{k_d} : k_1, \ldots, k_d \in \mathbb{N}\} \in \mathscr{G}(\mathscr{L}^{\infty})$; since $S \subset S_0$, this proves the corollary.

3. We say that a sequence S has finite Rudin dimension d if (6) is valid for $N \le d$ but not for N > d. If S does not have a finite dimension, then it has dimension ∞ . The smallest possible Rudin dimension, 1, occurs for the sequences of Jessen in (5) which are \mathcal{L}^1 -good sequences. The other extremity is dimension ∞ , occurring for the sequences of Rudin used in (7). According to this theorem of Rudin any $\mathcal{G}(\mathcal{L}^\infty)$ sequence must have a finite Rudin dimension, and the least common multiple of two $\mathcal{G}(\mathcal{L}^\infty)$ sequences cannot be of dimension ∞ in view of Theorem 1. This also follows from the following.

PROPOSITION 1. If A and B are sequences having Rudin dimension α and β respectively then C = [A, B] has dimension $\gamma \leq \alpha + \beta$.

Proof. If $c_j = [a_j, b_j]$ for $j = 1, \ldots, \alpha + \beta + 1$ are $\alpha + \beta + 1$ elements of C, then we have at least $\beta + 1$ indices $j_1, \ldots, j_{\beta+1}$ such that the corresponding a_{j_m} divides the least common multiple of the other $\alpha + \beta$ a_j 's for each $m = 1, \ldots, \beta + 1$. Among the corresponding $b_{j_1}, \ldots, b_{j_{\beta+1}}$ we again find at least one b_k with the property that the least common multiple of the other β b_{j_m} 's is a multiple of b_k . Now consider $c_k = [a_k, b_k]$. As both a_k and b_k divide the least common multiples of the other a_j and b_j respectively, we obtain $c_k \mid [c_1, \ldots, c_{k-1}, c_{k+1}, \ldots, c_{\alpha+\beta+1}]$. This completes the proof.

Easy examples show that equality can occur in this proposition, but γ can also be any number not exceeding $\alpha + \beta$. As a particular example, the sequence of all integers built up from a given d-element set of primes has Rudin dimension d. This example is similar to Corollary 1 and suggests that all sequences of larger dimension can be built up from sequences of smaller dimension. However, this is not the case.

THEOREM 2. There exists a sequence S of dimension 3 which is not a subsequence of the least common multiple of a finite number of sequences of dimension 1.

Proof. We say that a set A has the property Z_l if from any l+1 of its elements one can select three, say a, b, c, such that $a \mid [b, c]$.

First we show that if A is contained in the least common multiple of the sets B_1, \ldots, B_k of dimension 1, then A has property Z_l for some l = l(k). Indeed, take l elements a_1, \ldots, a_l of A. Each a_i has a representation in the form

$$a_i = [b_i^{(1)}, \ldots, b_i^{(k)}], \quad b_i^{(t)} \in B_t.$$

Consider the complete graph on the vertices a_1, \ldots, a_l . Take an edge $(a_i, a_{i'}), i < i'$. For certain values of $t = 1, \ldots, k$ the divisibility $b_i^{(t)} \mid b_i^{(t)}$ holds and for other values it may not hold (but then the reverse $b_i^{(t)} \mid b_i^{(t)}$ must hold); there are altogether 2^k possibilities. We color the graph with 2^k colors accordingly. We recall Ramsey's theorem: for every pair of integers u, v there is a number R(u, v) such that for every coloring of any graph of more than R(u, v) points with u colors there must be a complete monochromatic subgraph of v points. In particular, for a suitable l = l(k) there must be a monochromatic triangle in our graph, say with vertices $a_i, a_{i'}, a_{i''}, i < i' < i''$. For every t either $b_i^{(t)} \mid b_i^{(t)} \mid b_i^{$

$$b_{i'}^{(t)} \, | [b_i^{(t)}, b_{i''}^{(t)}] | \, [a_i, a_{i''}],$$

which yields $a_{i'} | [a_i, a_{i''}]$ as wanted.

Next, for a fixed l, we find a set A_l of l+1 elements that has dimension 3 but does not have property Z_l .

Let p_{ij} , $i \neq j$, $1 \leq i$, $j \leq l+1$ be a collection of primes such that $p_{ij} = p_{ji}$ but the p_{ij} are otherwise all distinct. Define

$$n = \prod_{i,j} p_{ij}, \qquad m_i = \prod_{j \neq i} p_{ij}, \qquad n_i = n/m_i.$$

For different subscripts i, j, k we clearly have

$$n_k \nmid [n_i, n_j] = \frac{n}{p_{ij}};$$

consequently the set $A_l = \{n_1, \ldots, n_{l+1}\}$ does not have the Z_l property. We show that its dimension is at most 3. Take three elements n_i, n_j, n_k . Since a prime p_{uv} is missing only from two of the numbers n_t , namely from n_u and n_v , we have $p_{uv} \mid [n_i, n_j, n_k]$; consequently $[n_i, n_j, n_k] = n$ is divisible by any fourth number n_z , a property actually somewhat stronger than necessary.

Finally, we combine these sets into one by putting $A = \bigcup q_i A_i$, where the integers q_i are taken so that q_i is a multiple of all the numbers in $q_1 A_1 \cup \ldots \cup q_{i-1} A_{i-1}$. This union clearly will not have property Z_i for any l. We must show that it still has dimension 3.

Take any four elements of A. If they are from the same q_jA_j , then any one divides the least common multiple of the other three by the corresponding property of A_j . If they come from different sets, then the one which comes from q_jA_j with the smallest j divides the least common multiple of the others (in fact it divides any of the others) by the choice of the numbers q_i .

4. Our results do not determine whether it is possible to characterize $\mathscr{G}(\mathscr{L}^{\infty})$ in terms of the Rudin dimension. For a concrete sequence it may be quite difficult to decide whether it belongs to $\mathscr{G}(\mathscr{L}^{\infty})$ or to determine its Rudin dimension. The following result asserts that any sequence having sufficiently many elements has an infinite Rudin dimension, and hence is not in $\mathscr{G}(\mathscr{L}^{\infty})$.

THEOREM 3. Every sequence S of Rudin dimension d satisfies

$$S(x) < c_d (\log x)^d,$$

where c_d is a constant depending on d and S(x) denotes the number of elements of S in the interval [1, x].

Proof. Let $f_d(n)$ denote the maximal number of sets that can be selected from the subsets of a set of cardinality n with the property that if X_1, \ldots, X_{d+1} are selected then we always have

$$X_i \subset \bigcup_{\substack{j=1\\j\neq i}}^{d+1} X_j \tag{19}$$

for some i. We have $f_d(n) \leq C_d n^d$; see [6].

For an integer N, let $F_d(N)$ be the maximal number of integers that can be selected from the divisors of N with the property that from any d+1 selected numbers some one divides the least common multiple of the rest (Rudin dimension $\leq d$). We claim

$$F_d(N) \le f_d(\Omega(N)) \le C_d(\Omega(N))^d,$$
 (20)

where $\Omega(N)$ denotes the number of prime divisors of N, counted with multiplicity. Indeed, to every $M \mid N$ let us assign the set of *prime-powers* that divide M. This maps the divisors of N onto the subsets of a set of cardinality $\Omega(N)$ and the divisor property corresponds to condition (19). Substituting the estimate $\Omega(N) \leq (\log N)/(\log 2)$ into (20) we obtain

$$F_d(N) \le C'_d(\log N)^d$$
, $C'_d = (\log 2)^{-d}C_d$.

Now consider our set S of Rudin dimension d. Fix x, and let N denote the least common multiple of all the numbers $s \in S$, $s \le N$. We have obviously $S(x) \le F_d(N)$; we have to estimate N.

N was defined as the least common multiple of some elements of S. Observe that not all elements are necessary to form this least common multiple; among any d+1 elements there is one that divides the least common multiple of the rest, and can hence be omitted. Repeating this argument, we find that N is the least common multiple of a collection of at most d elements of S; thus $N \le x^d$. Substituting this estimate into our previous equations we find

$$S(x) \le c_d (\log x)^d$$
, $c_d = d^d C'_d$.

REFERENCES

- 1. B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. 35 (1934), 248-251.
- 2. B. Jessen, The theory of integration in a space of an infinite number of dimensions, *Acta Math.* 63 (1934), 249-323.
- 3. J. Marczinkiewicz and A. Zygmund, Mean values of trigonometrical polynomials, *Fund. Math.* 28 (1937), 131–166.
- 4. W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964), 321-324
- 5. R. Salem, Sur les sommes Riemanniennes des fonctions sommables, *Mat. Tidsskr. B* 1948 (1948), 60-62.
 - 6. N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A. 13 (1972), 145-147.
- 7. H. D. Ursell, On the behaviour of a certain sequence of functions derived from a given one, J. London Math. Soc. 12 (1937), 229-232.

MATHEMATICAL RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REÁLTANODA U. 13–15, POB 127 H-1364 HUNGARY