
ERDŐS THEOREMS ON THE CHARACTERIZATION OF THE LOGARITHM

Notes for NUT classes November 26 & 27

An arithmetical function f is called additive, if the functional equation

(1) f(nm) = f(n) + f(m) (∀n,m ∈ N, (n,m) = 1) )

holds true. Moreover, if this is valid for all m and n, then f is called com-
pletely or totally additive.

Theorem 1 (Erdős) . Suppose that the arithmetical function f is additive
and monotone. Then f(n) = c log n with some constant c.

Proof. Since f is additive, f(1) = 0. Now either f , or −f is non-
decreasing, hence without loss of generality we may assume that f is non-
decreasing and hence also f ≥ 0. Consider the case when there exists any
integer n ≥ 2 with f(n) = 0. Monotonicity implies f(1) = f(2) = · · · =
f(n) = 0, hence at least f(2) = 0. Moreover, let f(3) = a. Then by additivity
f(6) = f(3) + f(2) = a + 0 = a, hence f(3) = f(4) = f(5) = f(6) = a by
monotonicity; and the same way we can prove that f is constant a from
k1 := 5 to 2k1 = 10, ... , from 2km+1 = 2km − 1 to 2km+1, etc. So by
induction we obtain f(n) = a for all n ≥ 3. But then the additive equation
a = f(15) = f(3) + f(5) = a + a = 2a proves a = 0, that is, f ≡ 0 and the
assertion holds with c := 0.

Now assume that f 6= 0. First we prove the assertion for the special case
when f is completely additive, too. Denote c := f(2)/ log 2, and choose any
k > 2. For any (large) n there is a unique m so that km ≤ 2n < km+1. In
view of monotonicity and total additivity, mf(k) ≤ nf(2) ≤ (m + 1)f(k),
that is, since f > 0,

m

n
≤ f(2)

f(k)
<

m + 1

n
.

However, also the logarithm function is completely additive and increas-
ing, hence the same is valid for log n, too. Comparing these two estimates
we are led to
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∣∣∣∣f(2)

f(k)
− log 2

logk

∣∣∣∣ ≤ 1

n
,

and, since n can be arbitrarily large, we conclude that f(2)/f(k) = log 2/ log k,
that is,

f(k) =
f(2)

log 2
log k = c log k,

as needed.

Turning to the general case, first we deduce f(n) = o(n). Consider now
the sequence a0 = 2, a1 = 5, a2 = 14, ..., ak = 3k+1− 3k− ...− 1 = (3k + 1)/2.
Using again both monotonicity and additivity we get

f(ak) ≤ f(ak+1 = f(3(3k + 1)/2) = f(3) + f(ak−1),

and repeating this estimation procedure k times yields

(2) f(ak) ≤ kf(3) + f(2) ≤ (k + 1)f(3).

Since ak →∞ strictly increasingly, every integer n lies in a unique interval
[ak, ak+1). In fact, this occurs exactly when 3k+1/2 < n < 3k+2/2. Thus
monotonicity and (2) entail

f(n)

n
<

f(ak+1)

3k+1/2
≤ 2(k + 2)

3k+1
f(3) ,

and, as the right hand side tends to 0, we obtain f(n) = o(n).

Next we show

(3) a := lim inf
n→∞

f(n + 1)− f(n) = 0,

and, moreover, that for any given m ∈ N and ε > 0 there exists n ∈ N so
that (n,m) = 1 and

(4) f(n + m)− f(n) < ε
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This can be obtained by simple averaging. For let

µ := µm(N) := min{ f(n + m)− f(n) : 1 ≤ n ≤ N, (n, m) = 1}.

Then we obviously have

µϕ(m)

[
N

m

]
≤

N∑
n=1

(n,m)=1

µ ≤
N∑

n=1
(n,m)=1

f(n + m)− f(n) ≤
N∑

n=1

f(n + m)− f(n)

= f(N + m) + · · ·+ f(N + 1)− f(m) · · · − f(1) < mf(N + m),

and thus

µ ≤ m

ϕ(m)

N + m

[N/m]

f(N + m)

N + m
.

Let now N ≥ 3m be a large integer. We obtain

µ(N) ≤ m2

ϕ(m)

N + m

N −m

f(N + m)

N + m
≤ 2m2

ϕ(m)

f(N + m)

N + m
.

In view of f(n) = o(n), the right hand side will be < ε for N sufficiently large.
Hence also µm(N) is less than ε for N sufficiently large, and (4) follows.

Finally we show that f is necessarily totally additive. Choose now any
integer m ≥ 2 and let k ≥ 1 be arbitrary. We want to prove

(5) f(mk+1) = f(mk) + f(m).

Let now n be any natural number coprime to m. In view of (1)

(6) f(nmk+1) = f(mk+1) + f(n).

Now since (n, m) = 1, we also have (n±m, m) = (n,m) = 1 and (mn±
1, m) = 1 and so by (1) and monotonicity we infer

(7) f(nmk+1) ≤ f(mk(nm + 1)) = f(mk) + f(mn + 1)

≤ f(mk) + f(nm + m2) = f(mk) + f(m) + f(n + m),

and similarly

(8) f(nmk+1) ≥ f(mk(nm− 11)) = f(mk) + f(mn− 1)

≥ f(mk) + f(nm−m2) = f(mk) + f(m) + f(n−m).
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On combining (6), (7) and (8) we obtain

(9)
∣∣f(mk+1)− f(mk)− f(m)

∣∣ ≤ f(n + m)− f(n−m).

Here we can apply the above (4) (with 2m in place of m and n − m in
place of n) to get further from (9)

(10)
∣∣f(mk+1)− f(mk)− f(m)

∣∣ ≤ ε.

Since (10) is valid for arbitrary ε, we obtain (5), which, in turn, leads to

f(mk) = kf(m) (k, m ∈ N)

by simple induction. Application of this for prime powers will imply complete
additivity under the condition (1) of (”simple”) additivity. Thus the proof
is complete.

Comment. There are many proofs of Erdős’ Theorem, some of them
being even shorter than the above. The nice feature of the topic is that
each approach shed light to some new aspects of the question, while ignoring
others. That also explains why we know so many extensions and relatives of
this simple and fundamental result. One of the most well-known, also due
to Erdős, is the following.

Theorem 2 (Erdős) . Suppose that the arithmetical function f is additive
and satisfies f(n + 1)− f(n) → 0 (n →∞). Then f(n) = c log n with some
constant c.

The above Theorems 1 and 2 can be proved through a common general-
ization.

Theorem 3 (Erdős) . Let the additive arithmetical function f satisfy

lim inf
n→∞

f(n + 1)− f(n) ≥ 0.

Then with some appropriate constant c we have f(n) = c log n .

4



A GLIMPSE AT PROBABILISTIC NUMBER THEORY

Notes for NUT classes November 26 & 27

The Hardy–Ramanujan theorem can be generalized for many additive
functions. A general form of this is the following.

Theorem 4 (Turán – Kubilius) . Let f be an additive arithmetical func-
tion, and let

A := A(f, x) :=
∑
pk≤x

f(pk)

pk
(1− 1

p
)

be the ”average”, and

D := D(f, x) :=
∑
pk≤x

f(pk)2

pk

be the ”dispersion”. Then we have

S := S(f, x) :=
∑
n≤x

(f(n)− A)2 ≤ CxD.

This theorem expresses an arithmetical interpretation of Chebyshev’s in-
equality. It can be used to prove upper estimates on the number of integers
below x which have f -values deviating at least a certain extent from the
average. Eg. the Hardy-Ramanujan Theorem follows immediately.

However, for the particular function ω(n) (and, in fact, for a large class
of additive arithmetical functions) we even have so-called limit distribution
theorems. This is a more refined formulation, directly analogous to limit
distributions in probability theory. The underlying idea is that independent
random variables sum up to a normally distributed random variable, hence
the value distribution must have a Gauss density.

Namely, let us choose a large integer x, and consider the interval [1, x] with
a uniform probability distribution as our probability space. If we interpret
f(n) ∼

∑
p|n f(p) as the sum of the ”random variables” Xp(n), where Xp(n)

is f(p) or 0 according to whether p|n or not, then these random variables
are approximately totally independent. That is, any given set of primes
have joint probability P (pj|n, j = 1, . . . , n) almost precisely equal to the
product of the individual probabilities. Thus the underlying idea is that
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closely following the standard proof of the central limit theorem, we are
to obtain a proof of an analogous value distribution result for our additive
arithmetical function.

In the case of ω(n) that is expressed by the following by now classical
result.

Theorem 5 (Erdős – Kac) .

N

(
n ≤ x :

ω(n)− log log x√
log log x

≤ y

)
→ Φ(y) :=

1√
2π

∫ y

−∞
e−u2/2du.

Here the left hand side stands for the number of integers up to x satisfying the
inside inequality, and Φ(y) is the standard normal (or Gauss-) distribution.

That means, that below x the values of ω are situated around the average
value log log x and the density of integers with values deviating only a (large)
constant times

√
log log x must have a comparatively small density. Hence eg.

it follows that for almost all integers n the value ω(n) is between 0.99 log log x
and 1.01 log log x. You can try various deviation values like (log log x)α etc. to
compare what the Erdős-Kac Theorem and the Hardy-Ramanujan Theorem
gives.

One important area of number theory is the use of probabilistic methods
and ideas in the analysis of additive and multiplicative functions. From
creation to present day research, Hungarian researchers like Paul Erdős, Paul
Turán and Gábor Halász have made significant contributions to this area.
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