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Entropy is a notion often used in physics, probability theory and information
theory. Its heuristical meaning is something like the evennes or uniformity of distribu-
tions, whether of physical states or probability random variables. In the exact theory,
a precise mathematical meaning is achieved by assigning an entropy value to each pos-
sible states, that is, defining the entropy function over the phase states of the system.
Naturally, this function posses some basic properties to accommodate to our physical
expectations. There are several possibilities to formulate such requirements, but the
following three conditions are always assumed. So consider the following fundamental
properties of entropy:

(1) Maximality at uniform distribution. For given n and for
∑n

i−1 pi = 1 the
entropy function H(p1, p2, ..., pn) takes its largest value for the uniform distribution
pi = 1

n (i = 1, 2, ..., n).

(2) Invariance under zero probability events. Inserting zero probability out-
comes, the entropy does not change, i.e. H(p1, ..., pk, 0, pk+1, ..., pn) = H(p1, p2, ..., pn).

(3) Superposition of entropies. The entropy of the joint probability of two
random variables satisfy the superposition rule H(X,Y) = H(X) + H(Y | X).

Recall that for two random variables, X ∈ {a1, a2, ..., an} and Y ∈ {b1, b2, ..., bm},
their joint (or product) entropy H(X,Y) is defined as H(r1,1, r1,2, ..., rn,m), where ri,k

is the joint probability p(X = ai,Y = bk) for i = 1, 2, ..., n; k = 1, 2, ...,m. Here
we have obviously

∑m
k=1 ri,k = p(X = ai) = pi for i = 1, 2, ..., n; and

∑n
i=1 ri,k =

p(Y = bk) = qk for k = 1, 2, ...,m. On the other hand, the conditional entropy is
defined by H(Y | X) =

∑n
i=1 piH(Y | X = ai), where naturally H(Y | X = ai) =

H( ri,1
pi

,
ri,2
pi

, ...,
ri,m

pi
).

Observe that if X and Y are independent random variables then ri,k = piqk, and
thus, H(Y | X) =

∑n
i=1 piH(q1, q2, ..., qm) = H(q1, q2, ..., qm) = H(Y). In other words,

we have for independent random variables X and Y the formula

(4) H(XY) = H(X) + H(Y).

It was a basic result of R. Shannon, founder of information theory, that under
the most natural requirements the entropy function must have a certain very special
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form. Since then, the result was considerably polished; below we show one of the nicest
formulations due to Khinchin.

Uniqueness Theorem: For any integer n let the function H(p1, p2, ..., pn) be defined
for all values p1, p2, ..., pn such that pi ≥ 0 for (i = 1, 2, ..., n), and

∑n
i=1 p1 = 1. If

this function has the properties (1), (2), and (3), and for any n it is continuous with
respect to all of its arguments, then with an appropriate constant λ we have

H(p1, p2, ..., pn) = −λ
n∑

i=1

pilogpi.

Proof: First we show that for any integer n

H(
1
n

,
1
n

, ...,
1
n

) = −λ log n (i.e. λ
n∑

i=1

1
n

log
1
n

).

Let us use the notation H( 1
n , 1

n , ..., 1
n ) =: L(n). For any integer n the inequality

L(n) ≤ L(n + 1) follows immediately from property (1) and (2). Namely,

L(n) = H(
1
n

,
1
n

, ...,
1
n

, 0) ≤ H(
1

n + 1
,

1
n + 1

, ...,
1

n + 1
) = L(n + 1).

That is, L is non-decreasing.
Now, consider two independent, uniformly distributed random variables X,Y attaining
n and m different outcomes, respectively. The joint probability distribution then will
be a uniform distribution on nm outcomes, and thus an application of (4) yields

(5) L(mn) = L(n) + L(m).

Conditions (4) and (5) make it possible to invoke the Theorem of Erdős on the
characterization of the log function. This yields that for all n L(n) = λ log n, where λ
is some constant. Besides, λ ≥ 0 because L(n) is non-decreasing as shown before. This
completes the proof for the special case when pi = 1

n for i = 1, 2, ..., n.
Next consider the case when pi is rational for i = 1, 2, ..., n. Let the random

variable Y∈ {b1, b2, ..., bm} be defined as follows:
The set {b1, b2, ..., bm} is divided into disjoint groups, B1, B2, ..., Bn, where Bi has

exactly qi members. The value of Y will be determined by first randomly selecting a
group Bi with probability p(X = ai) = pi = qi

m . Thereafter, a value bk is randomly
selected from among the members of Bi with equal probability for each. In other words,
p(Y = bk | X = ai) = 1

qi
, iff bk ∈ Bi; otherwise it is zero. This means that

H(Y | X = ai) = H(
1
qi

, ...,
1
qi

) = λ log qi.
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Hence,

H(Y | X) =
n∑

i=1

piH(Y | X = ai) =
n∑

i=1

piλ log qi.

But, since pi = qi

m (i = 1, 2, ..., n),

n∑
i=1

piλ log qi = λ
n∑

i=1

pi log mpi = λ log m + λ
n∑

i=1

pi log pi.

On the other hand, we know that

H(X,Y) = H(
1
m

, ...,
1
m

) = λ log m.

because for every k there is exactly one i such that p(X = ai,Y = bk) 6= 0. Namely,

p(X = ai,Y = bk) = p(X = ai)p(Y = bk | X = ai) = pi
1
qi

=
1
m

iff bk ∈ Bi.

Thus, from property (3) we get

H(X,Y) = λ log m = H(X) + λ log m + λ
n∑

i=1

pi log pi.

Therefore

H(X) = −λ
n∑

i=1

pi log pi

and this completes the proof for rational pi’s. For real values the result follows from
the continuity of H(p1, p2, ..., pn).

3


