Citations to P. P. Pálfy’s papers
August 29, 2014

(∗ refers to a citation to a preliminary preprint version of the paper)

(16) Feit, W., An interval in the subgroup lattice of a finite group which is isomorphic to M_7, *Algebra Universalis* 17 (1983) 220–221.

(45) Perepelitsky, P., Intervals in the subgroup lattice of the alternating and symmetric groups of prime degree, J. Group Theory 12 (2009), 119–137.

(64) Vandenberg, J. E. and J. G. Raftery, Every algebraic chain is the congruence lattice of a ring, J. Algebra 162 (1993), 97–106.

(41) Maróti A., Bounding the number of conjugacy classes of a permutation group, *J. Group Theory* 8 (2005), 273–289.

(15) Kantor, W. M., Notes on polynomial-time group theory, CWI Quart. 5 (1992), 93–105.
(34) Miller, G. L., Isomorphism of graphs which are pairwise k-separable, Inf. and Control 56 (1983), 21–33.

(49) Pyber L. and A. Shalev, Asymptotic results for primitive permutation groups, *J. Algebra* 188 (1997), 103–124.

(2) Bereczky Á. and Maróti A., On groups with every normal subgroup transitive or semiregular, *J. Algebra* 319 (2008), 1733–1751.
(15) Feit, W., An interval in the subgroup lattice of a finite group which is isomorphic to M_r, *Algebra Universalis* 17 (1983) 220–221.
(49) Szabó L., Algebras that are simple with weak automorphisms, *Algebra Universalis* 42 (1999), 205–233.

(10) Chen, Z., On polynomial functions from \mathbb{Z}_n to \mathbb{Z}_m, Discrete Math. 137 (1995), 137–145.

(11) Chen, Z., On polynomial functions from $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ to \mathbb{Z}_m, Discrete Math. 162 (1996), 67–76.

(14) Dimit, J. H. and D. R. Stinson, Room squares and related designs, in Contemporary design theory, Wiley, 1992, 137–204.

(22) Dobson, E., On transitive ternary relational structures of order prime-squared, Ars Combin. 97A (2010), 15–32.

Citations: P. P. Pálfy

Citations: P. P. Pálfy

(8) Sangroniz, J., Conjugacy classes and characters in some quotients of the Nottingham group, *J. Algebra* 211 (1999), 26–41.

(1) Birszki B., Primitive sharp permutation groups with large solvable subgroups, *J. Group Theory* 10 (2007), 287–298.

(7) Lewis, M. L. and D. L. White, Connectedness of degree graphs of nonsolvable groups, J. Algebra 266 (2003), 51–76.

(9) Lewis, M. L., An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math. 38 (2008), 175–211.

(15) Parker, C. W. and R. A. Wilson, Recognising simplicity of black-box groups by constructing involutions and their centralisers, J. Algebra 324 (2010), 885–915.

61. Z. Halasi, P. P. Pálfy, The number of conjugacy classes in pattern groups is not a polynomial function, *J. Group Theory* 14 (2011), 841–854.