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12.6.3 Snooks, snowflakes, Kepler, and Palfy

By varying the defining identities for snooks, we can get an infinite
multitude of algebraic structures, each different from the others
and each having the same right to exist. This is a classical exam-
ple of a “bad”, unstructured, uncontrolled infinity. When encounter-
ing such situations, mathematicians professionally try to introduce
some structure into the disorder and to find general principles gov-
erning the universe of snooks.

The paradigm for such an approach is set in Kepler’s classical
work on snowflakes [55]. Of the myriads of snowflakes, there are
no two of the same shape; however, almost all of them exhibit the
strikingly precise sixfold symmetry. Kepler’s explanation is breath-
takingly bold: the symmetry of snowflakes reflects the sixfold sym-
metry of the packing of tiny particles of ice (what we would now
call atoms or molecules) from which the snowflake is composed.

In 1611, when the book was written, it was more than a scientific

conjecture—it was a prophecy.

Of the infinitely many possible algebraic laws defining general-
ized snooks, some may allow for the existence of a finite structure.
1 will now outline a “snowflake” theory of arbitrary finite algebras,’
which will of course cover the case of finite snooks. The theory be-
longs to David Hobby and Ralph McKenzie [365]; to avoid excessive

detail, I will concentrate on its key ingredient, a theorem by Péter
Pal Palfy [394] on the structure of “minimal” algebras ([365, Theo-
rem 4.7]).

The key idea is that we study finite algebras up to poly-
nomial equivalence: we associate with every algebra A with
ground set A the set of all polynomial functions on A, that is,
all functions from A to A expressible by combination of ba-
sic algebraic operations of A, with arbitrary elements from
A being allowed to be used as constant “coefficients”. For ex-
ample, if S is a finite snook with the set S of elements and s
is a fixed element of S, then

A(s, )

is a polynomial function of a single variable z, while

isa polynomial function of two variables z and y. Two algebras are

said to be polynomially equivalent if they have the same ground
set and the same sets of polynomial functions. In particular, this
means that every basic algebraic operation of the first algebra is
expressed in terms of the operations of the second algebra, and
vice versa. If we ignore the computational complexity of these ex-
pressions (which is not always possible in problems of a practical
nature; see Section 12.5), the two algebras are in a sense mutually
interchangeable.

Given a finite algebra A, a polynomial function f(z) in a single
variable induces a map from A to A. Since A is finite, either f(z) is
a permutation of A, or it maps A to a strictly smaller subset B C A.
In the second case, some iteration

g(@) = F(f(--f(2)---))

is an idempotent map:

9(9(z)) = 9(z)

for all z. The idempotency of g allows us to “deform” and squeeze
the basic operations of A to the set C = g[A4]. If, for example, T'(, -, -)
were an operation of A, TV = g(T'(-, -, -)) becomes an operation on C.
Adding all polynomial operations of A which preserve C, we get a
new algebra C (we shall call it a retract of A) which carries in itself
a considerable amount of information about A. For example, every
homomorphic image of C is a retract of a homomorphic image of A
[395].

But what happens if a finite algebra A has no proper retracts
(that is, with C being a proper subset of A) and is therefore unsim-
plifiable? Palfy calls such algebras permutational. Assuming that
the algebra has at least three elements'®, we have a further divi-
sion:

1. Every polynomial function defined in terms of A effectively de-
pends on just one variable. Then all polynomial functions on A
are permutations, and A is polynomially equivalent to a set A
with an action of a finite group G, where the action of each ele-
ment g € G is treated as a unary operation. This case is not at
all surprising.

2. In the remaining case, when A is sufficiently rich for the pres-
ence of polynomial functions which really depend on at least two
variables, the result is astonishing: A is polynomially equivalent
to a vector space over a finite field!

So finite fields appear to be more important, or more basic, than
finite snooks. P4lfy’s theorem is a partial explanation of the mys-
tery which we have already discussed in this chapter: why are finite

fields so special? Mathematics needs more results of this nature,
which help to clarify and explain the hierarchy of mathematical ob-
jects. Without a rigorous metamathematical study of the relations
between various classes of mathematical objects and without the
understanding of the reasons why some mathematical structures
have richer theories than other structures, it is too easy to exagger-
ate the role of history and fashion in shaping mathematics as we
know it now. I do not believe that the ideas of social constructivism
can be really fruitful in the philosophy of mathematics. However, 1
have no space in this book to get into a detailed discussion.

Péter P4l Pélfy,
aged 13
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