

Contents lists available at SciVerse ScienceDirect Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

A new short proof of the EKR theorem $\stackrel{\text{tr}}{\sim}$

Peter Frankl^a, Zoltán Füredi^b

^a Shibuya-ku, Shibuya 3–12–25, Tokyo, Japan ^b Dept. of Mathematics, University of Illinois, Urbana, IL 61801, USA

ARTICLE INFO

Article history: Received 10 August 2011 Available online 30 March 2012

Keywords: Erdős–Ko–Rado Intersecting hypergraphs Shadows Generalized characteristic vectors Multilinear polynomials

ABSTRACT

A family \mathcal{F} is *intersecting* if $F \cap F' \neq \emptyset$ whenever $F, F' \in \mathcal{F}$. Erdős, Ko, and Rado (1961) [6] showed that

$$|\mathcal{F}| \leqslant \binom{n-1}{k-1} \tag{1}$$

holds for an intersecting family of *k*-subsets of $[n] := \{1, 2, 3, ..., n\}$, $n \ge 2k$. For n > 2k the only extremal family consists of all *k*-subsets containing a fixed element. Here a new proof is presented by using the Katona's shadow theorem for *t*-intersecting families.

Published by Elsevier Inc.

(2)

1. Definitions: shadows, b-intersecting families

 $\binom{X}{k}$ denotes the family of *k*-element subsets of *X*. For a family of sets \mathcal{A} its *s*-shadow $\partial_s \mathcal{A}$ denotes the family of *s*-subsets of its members $\partial_s \mathcal{A} := \{S: |S| = s, \exists A \in \mathcal{A}, S \subseteq A\}$. E.g., $\partial_1 \mathcal{A} = \bigcup \mathcal{A}$. Suppose that \mathcal{A} is a family of *a*-sets such that $|A \cap A'| \ge b \ge 0$ for all $A, A' \in \mathcal{A}$. Katona [10] showed that then

$$\mathcal{A}|\leqslant |\partial_{a-b}\mathcal{A}|.$$

We show that this inequality quickly implies the EKR theorem. This way it is even shorter than the classical proof of Katona [11] using cyclic permutations, or the one found by Daykin [2] applying the Kruskal–Katona theorem.

2. The proof

Let $\mathcal{F} \subset {\binom{[n]}{k}}$ be intersecting. Define a partition $\mathcal{F}_0 := \{F \in \mathcal{F}: \ 1 \notin F\}, \ \mathcal{F}_1 := \{F \in \mathcal{F}: \ 1 \in F\}$ and define $\mathcal{G}_1 := \{F \setminus \{1\}: \ 1 \in F \in \mathcal{F}\}$. Consider \mathcal{F}_0 as a family on [2, n]. Its complementary family $\mathcal{G}_0 :=$

E-mail addresses: peter.frankl@gmail.com (P. Frankl), z-furedi@illinois.edu (Z. Füredi).

0097-3165/\$ – see front matter Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jcta.2012.03.012

^{*} Research supported in part by the Hungarian National Science Foundation OTKA, by the National Science Foundation under grant NFS DMS 09-01276, and by the European Research Council Advanced Investigators Grant 267195.

 $\{[2,n] \setminus F: F \in \mathcal{F}_0\}$ is (n-1-k)-uniform. The intersection property of \mathcal{F} implies that any member of \mathcal{G}_1 is not contained in any member of \mathcal{G}_0 . We obtain

$$\mathcal{G}_1 \cap \partial_{k-1} \mathcal{G}_0 = \emptyset.$$

Since both \mathcal{G}_1 and $\partial_{k-1}\mathcal{G}_0$ are subfamilies of $\binom{[2,n]}{k-1}$ we obtain that $|\mathcal{G}_1| + |\partial_{k-1}\mathcal{G}_0| \leq \binom{n-1}{k-1}$. The intersection size $|\mathcal{G} \cap \mathcal{G}'|$ of $\mathcal{G}, \mathcal{G}' \in \mathcal{G}_0$ is at least n - 2k, since

$$\left|G \cap G'\right| = \left|\left([2,n] \setminus F\right) \cap \left([2,n] \setminus F'\right)\right| = (n-1) - 2k + \left|F \cap F'\right|$$

Then (2) gives (with a = n - k - 1, $b = n - 2k \ge 0$) that $|\mathcal{G}_0| \le |\partial_{k-1}\mathcal{G}_0|$. Summarizing

$$|\mathcal{F}| = |\mathcal{F}_1| + |\mathcal{F}_0| = |\mathcal{G}_1| + |\mathcal{G}_0| \leqslant |\mathcal{G}_1| + |\partial_{k-1}\mathcal{G}_0| \leqslant \binom{n-1}{k-1}.$$
(3)

Extremal families. Equality holds in (2) if and only if a = b, or $\mathcal{A} = \emptyset$, or $\mathcal{A} \equiv {\binom{\lfloor 2a-b \rfloor}{a}}$. Thus, for n > 2k, equality in (3) implies either $\mathcal{G}_0 = \emptyset$ and $1 \in \bigcap \mathcal{F}$, or $\mathcal{G}_0 \equiv {\binom{\lfloor 2,n-1 \rfloor}{n-1-k}}$ and $n \in \bigcap \mathcal{F}$.

3. Two algebraic reformulations

Given two families of sets \mathcal{A} and \mathcal{B} , the *inclusion matrix* $I(\mathcal{A}, \mathcal{B})$ is a 0-1 matrix of dimension $|\mathcal{A}| \times |\mathcal{B}|$, its rows and columns are labeled by the members of \mathcal{A} and \mathcal{B} , respectively, the element $I_{A,B} = 1$ if and only if $A \supseteq B$. In the case $\mathcal{F} \subseteq 2^{[n]}$ the matrix $I(\mathcal{F}, \binom{[n]}{1})$ is the usual *incidence matrix* of \mathcal{F} , and $I(\mathcal{F}, \binom{[n]}{s})$ is the *generalized* incidence matrix of order *s*.

Suppose that L is a set of non-negative integers, |L| = s, and for any two distinct members A, A' of the family A one has $|A \cap A'| \in L$. The Frankl, Ray-Chaudhuri, and Wilson [8,13] theorem states that in the case of $A \subseteq {\binom{[n]}{k}}$, $s \leq k$ the row vectors of the generalized incidence matrix $I(A, {\binom{[n]}{s}})$ are linearly independent. Here the rows are taken as real vectors (in [13]) or as vectors over certain finite fields (in [8]). Note that this statement generalizes (2) with $L = \{b, b + 1, ..., a - 1\}$, s = a - b.

Matrices and the EKR theorem. Instead of using (2) one can prove directly that the row vectors of the inclusion matrix $I(G_0 \cup G_1, \binom{[2,n]}{k+1})$ are linearly independent. For more details see [8,13].

Linearly independent polynomials. One can define homogeneous, multilinear polynomials $p(F, \mathbf{x})$ of rank k - 1 with variables x_2, \ldots, x_n

$$p(F, \mathbf{x}) = \begin{cases} \sum \{x_S \colon S \subset [2, n] \setminus F, \ |S| = k - 1\} & \text{for } 1 \notin F \in \mathcal{F}, \\ x_{F \setminus \{1\}} & \text{for } 1 \in F \in \mathcal{F}, \end{cases}$$

where $x_{5} := \prod_{i \in S} x_{i}$. To prove (1) one can show that these polynomials are linearly independent. For more details see [9].

4. Remarks

The idea of considering the shadows of the complements (one of the main steps of Daykin's proof [2]) first appeared in Katona [10] (p. 334) in 1964. He applied a more advanced version of his intersecting shadow theorem (2), namely an estimate using $\partial_{a-b+1}A$.

Linear algebraic proofs are common in combinatorics, see the book [1]. For recent successes of the method concerning intersecting families see Dinur and Friedgut [4,5]. There is a relatively short proof of the EKR theorem in [9] using linearly independent polynomials. In fact, our proof here can be considered as a greatly simplified version of that one.

Since the algebraic methods are frequently insensitive to the structure of the hypergraphs in question it is much easier to give an upper bound $\binom{n}{k-1}$ which holds for *all* n and k (see [3]). To decrease this formula to $\binom{n-1}{k-1}$ requires further insight. Our methods resemble to those of Parekh [12] and Snevily [14] who succeeded to handle this for various related intersection problems.

Generalized incidence matrices proved to be extremely useful, see, e.g., the ingenious proof of Wilson [15] for another Frankl–Wilson theorem, namely the exact form of the classical Erdős–Ko–Rado theorem concerning the maximum size of a *k*-uniform, *t*-intersecting family on *n* vertices. They proved [7,15] that the maximum size is exactly $\binom{n-t}{k-t}$ if and only if $n \ge (t+1)(k-t+1)$.

References

- [1] L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics, Dept. of Comp. Sci., The University of Chicago, Chicago, 1992.
- [2] D. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974) 254-255.
- [3] M. Deza, P. Frankl, Erdős-Ko-Rado theorem 22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419-431.
- [4] Irit Dinur, Ehud Friedgut, Intersecting families are essentially contained in juntas, Combin. Probab. Comput. 18 (2009) 107-122.
- [5] Irit Dinur, Ehud Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica 28 (2008) 503– 528.
- [6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
- [7] P. Frankl, The Erdős–Ko–Rado theorem is true for n = ckt, in: Combinatorics, vol. I, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. J. Bolyai, vol. 18, North-Holland, Amsterdam–New York, 1978, pp. 365–375.
- [8] P. Frankl, R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368.
- [9] Z. Füredi, Kyung-Won Hwang, P.M. Weichsel, A proof and generalizations of the Erdős-Ko-Rado theorem using the method of linearly independent polynomials, in: Topics in Discrete Mathematics, in: Algorithms Combin., vol. 26, Springer, Berlin, 2006, pp. 215–224.
- [10] G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329-337.
- [11] G.O.H. Katona, A simple proof of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972) 183-184.
- [12] Ojash Parekh, Forestation in hypergraphs: linear k-trees, Electron. J. Combin. 10 (2003), N12, 6 pp.
- [13] Ray-Chaudhuri, R.M. Wilson, On t-designs, Osaka J. Math. 12 (1975) 737-744.
- [14] H. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, Combinatorica 23 (2003) 527–533.
- [15] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247-257.