A new short proof of the EKR theorem ${ }^{*}$

Peter Frankl ${ }^{\text {a }}$, Zoltán Füredi ${ }^{\text {b }}$
${ }^{\text {a }}$ Shibuya-ku, Shibuya 3-12-25, Tokyo, Japan
${ }^{\text {b }}$ Dept. of Mathematics, University of Illinois, Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 10 August 2011
Available online 30 March 2012

Keywords:

Erdős-Ko-Rado
Intersecting hypergraphs
Shadows
Generalized characteristic vectors
Multilinear polynomials

A B S T R A C T

A family \mathcal{F} is intersecting if $F \cap F^{\prime} \neq \emptyset$ whenever $F, F^{\prime} \in \mathcal{F}$. Erdős, Ko, and Rado (1961) [6] showed that

$$
\begin{equation*}
|\mathcal{F}| \leqslant\binom{ n-1}{k-1} \tag{1}
\end{equation*}
$$

holds for an intersecting family of k-subsets of $[n]:=\{1,2,3, \ldots, n\}$, $n \geqslant 2 k$. For $n>2 k$ the only extremal family consists of all k-subsets containing a fixed element. Here a new proof is presented by using the Katona's shadow theorem for t-intersecting families.

Published by Elsevier Inc.

1. Definitions: shadows, \boldsymbol{b}-intersecting families

$\binom{X}{k}$ denotes the family of k-element subsets of X. For a family of sets \mathcal{A} its s-shadow $\partial_{s} \mathcal{A}$ denotes the family of s-subsets of its members $\partial_{s} \mathcal{A}:=\{S:|S|=s, \exists A \in \mathcal{A}, S \subseteq A\}$. E.g., $\partial_{1} \mathcal{A}=\cup \mathcal{A}$. Suppose that \mathcal{A} is a family of a-sets such that $\left|A \cap A^{\prime}\right| \geqslant b \geqslant 0$ for all $A, A^{\prime} \in \mathcal{A}$. Katona [10] showed that then

$$
\begin{equation*}
|\mathcal{A}| \leqslant\left|\partial_{a-b} \mathcal{A}\right| . \tag{2}
\end{equation*}
$$

We show that this inequality quickly implies the EKR theorem. This way it is even shorter than the classical proof of Katona [11] using cyclic permutations, or the one found by Daykin [2] applying the Kruskal-Katona theorem.

2. The proof

Let $\mathcal{F} \subset\binom{[n]}{k}$ be intersecting. Define a partition $\mathcal{F}_{0}:=\{F \in \mathcal{F}: 1 \notin F\}, \mathcal{F}_{1}:=\{F \in \mathcal{F}: 1 \in F\}$ and define $\mathcal{G}_{1}:=\{F \backslash\{1\}: 1 \in F \in \mathcal{F}\}$. Consider \mathcal{F}_{0} as a family on [2,n]. Its complementary family $\mathcal{G}_{0}:=$

[^0]$\left\{[2, n] \backslash F: F \in \mathcal{F}_{0}\right\}$ is ($n-1-k$)-uniform. The intersection property of \mathcal{F} implies that any member of \mathcal{G}_{1} is not contained in any member of \mathcal{G}_{0}. We obtain
$$
\mathcal{G}_{1} \cap \partial_{k-1} \mathcal{G}_{0}=\emptyset .
$$

Since both \mathcal{G}_{1} and $\partial_{k-1} \mathcal{G}_{0}$ are subfamilies of $\binom{[2, n]}{k-1}$ we obtain that $\left|\mathcal{G}_{1}\right|+\left|\partial_{k-1} \mathcal{G}_{0}\right| \leqslant\binom{ n-1}{k-1}$. The intersection size $\left|G \cap G^{\prime}\right|$ of $G, G^{\prime} \in \mathcal{G}_{0}$ is at least $n-2 k$, since

$$
\left|G \cap G^{\prime}\right|=\left|([2, n] \backslash F) \cap\left([2, n] \backslash F^{\prime}\right)\right|=(n-1)-2 k+\left|F \cap F^{\prime}\right| .
$$

Then (2) gives (with $a=n-k-1, b=n-2 k \geqslant 0$) that $\left|\mathcal{G}_{0}\right| \leqslant\left|\partial_{k-1} \mathcal{G}_{0}\right|$. Summarizing

$$
\begin{equation*}
|\mathcal{F}|=\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{0}\right|=\left|\mathcal{G}_{1}\right|+\left|\mathcal{G}_{0}\right| \leqslant\left|\mathcal{G}_{1}\right|+\left|\partial_{k-1} \mathcal{G}_{0}\right| \leqslant\binom{ n-1}{k-1} . \tag{3}
\end{equation*}
$$

Extremal families. Equality holds in (2) if and only if $a=b$, or $\mathcal{A}=\emptyset$, or $\mathcal{A} \equiv\left({ }_{(2 a-b]}^{a}\right)$. Thus, for $n>2 k$, equality in (3) implies either $\mathcal{G}_{0}=\emptyset$ and $1 \in \bigcap \mathcal{F}$, or $\mathcal{G}_{0} \equiv\binom{[2, n-1]}{n-1-k}$ and $n \in \bigcap \mathcal{F}$.

3. Two algebraic reformulations

Given two families of sets \mathcal{A} and \mathcal{B}, the inclusion matrix $I(\mathcal{A}, \mathcal{B})$ is a 0-1 matrix of dimension $|\mathcal{A}| \times|\mathcal{B}|$, its rows and columns are labeled by the members of \mathcal{A} and \mathcal{B}, respectively, the element $I_{A, B}=1$ if and only if $A \supseteq B$. In the case $\mathcal{F} \subseteq 2^{[n]}$ the matrix $I\left(\mathcal{F},\binom{[n]}{1}\right)$ is the usual incidence matrix of \mathcal{F}, and $I\left(\mathcal{F},\binom{[n]}{s}\right)$ is the generalized incidence matrix of order s.

Suppose that L is a set of non-negative integers, $|L|=s$, and for any two distinct members A, A^{\prime} of the family \mathcal{A} one has $\left|A \cap A^{\prime}\right| \in L$. The Frankl, Ray-Chaudhuri, and Wilson [8,13] theorem states that in the case of $\mathcal{A} \subseteq\binom{[n]}{k}, s \leqslant k$ the row vectors of the generalized incidence matrix $I\left(\mathcal{A},\binom{[n]}{s}\right)$ are linearly independent. Here the rows are taken as real vectors (in [13]) or as vectors over certain finite fields (in [8]). Note that this statement generalizes (2) with $L=\{b, b+1, \ldots, a-1\}, s=a-b$.

Matrices and the EKR theorem. Instead of using (2) one can prove directly that the row vectors of the inclusion matrix $I\left(G_{0} \cup G_{1},\binom{[2, n]}{k-1}\right)$ are linearly independent. For more details see $[8,13]$.

Linearly independent polynomials. One can define homogeneous, multilinear polynomials $p(F, \mathbf{x})$ of rank $k-1$ with variables x_{2}, \ldots, x_{n}

$$
p(F, \mathbf{x})= \begin{cases}\sum\left\{x_{S}: S \subset[2, n] \backslash F,|S|=k-1\right\} & \text { for } 1 \notin F \in \mathcal{F}, \\ x_{F \backslash\{1\}} & \text { for } 1 \in F \in \mathcal{F},\end{cases}
$$

where $x_{S}:=\prod_{i \in S} x_{i}$. To prove (1) one can show that these polynomials are linearly independent. For more details see [9].

4. Remarks

The idea of considering the shadows of the complements (one of the main steps of Daykin's proof [2]) first appeared in Katona [10] (p. 334) in 1964. He applied a more advanced version of his intersecting shadow theorem (2), namely an estimate using $\partial_{a-b+1} \mathcal{A}$.

Linear algebraic proofs are common in combinatorics, see the book [1]. For recent successes of the method concerning intersecting families see Dinur and Friedgut [4,5]. There is a relatively short proof of the EKR theorem in [9] using linearly independent polynomials. In fact, our proof here can be considered as a greatly simplified version of that one.

Since the algebraic methods are frequently insensitive to the structure of the hypergraphs in question it is much easier to give an upper bound $\binom{n}{k-1}$ which holds for all n and k (see [3]). To decrease this formula to $\binom{n-1}{k-1}$ requires further insight. Our methods resemble to those of Parekh [12] and Snevily [14] who succeeded to handle this for various related intersection problems.

Generalized incidence matrices proved to be extremely useful, see, e.g., the ingenious proof of Wilson [15] for another Frankl-Wilson theorem, namely the exact form of the classical Erdős-KoRado theorem concerning the maximum size of a k-uniform, t-intersecting family on n vertices. They proved $[7,15]$ that the maximum size is exactly $\binom{n-t}{k-t}$ if and only if $n \geqslant(t+1)(k-t+1)$.

References

[1] L. Babai, P. Frankl, Linear Algebra Methods in Combinatorics, Dept. of Comp. Sci., The University of Chicago, Chicago, 1992.
[2] D. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Theory Ser. A 17 (1974) 254-255.
[3] M. Deza, P. Frankl, Erdős-Ko-Rado theorem - 22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419-431.
[4] Irit Dinur, Ehud Friedgut, Intersecting families are essentially contained in juntas, Combin. Probab. Comput. 18 (2009) 107-122.
[5] Irit Dinur, Ehud Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica 28 (2008) 503528.
[6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[7] P. Frankl, The Erdős-Ko-Rado theorem is true for $n=c k t$, in: Combinatorics, vol. I, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. J. Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 365-375.
[8] P. Frankl, R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368.
[9] Z. Füredi, Kyung-Won Hwang, P.M. Weichsel, A proof and generalizations of the Erdős-Ko-Rado theorem using the method of linearly independent polynomials, in: Topics in Discrete Mathematics, in: Algorithms Combin., vol. 26, Springer, Berlin, 2006, pp. 215-224.
[10] G. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964) 329-337.
[11] G.O.H. Katona, A simple proof of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. B 13 (1972) 183-184.
[12] Ojash Parekh, Forestation in hypergraphs: linear k-trees, Electron. J. Combin. 10 (2003), N12, 6 pp.
[13] Ray-Chaudhuri, R.M. Wilson, On t-designs, Osaka J. Math. 12 (1975) 737-744.
[14] H. Snevily, A sharp bound for the number of sets that pairwise intersect at k positive values, Combinatorica 23 (2003) 527-533.
[15] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247-257.

[^0]: . 7 Research supported in part by the Hungarian National Science Foundation OTKA, by the National Science Foundation under grant NFS DMS 09-01276, and by the European Research Council Advanced Investigators Grant 267195.

 E-mail addresses: peter.frankl@gmail.com (P. Frankl), z-furedi@illinois.edu (Z. Füredi).

