Combinatorics, Probability and Computing

http://journals.cambridge.org/CPC
Additional services for Combinatorics, Probability and
Computing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

On r-Cross Intersecting Families of Sets

PETER FRANKL and NORIHIDE TOKUSHIGE

Combinatorics, Probability and Computing / Volume 20 / Issue 05 / September 2011, pp 749-752
DOI: 10.1017/S0963548311000289, Published online: 18 August 2011
Link to this article: http://journals.cambridge.org/abstract S0963548311000289
How to cite this article:
PETER FRANKL and NORIHIDE TOKUSHIGE (2011). On r-Cross Intersecting Families of Sets. Combinatorics, Probability and Computing, 20, pp 749-752 doi:10.1017/S0963548311000289

Request Permissions : Click here

On r-Cross Intersecting Families of Sets

PETER FRANKL ${ }^{1}$ and NORIHIDE TOKUSHIGE ${ }^{2 \dagger}$
${ }^{1}$ 3-12-25 Shibuya, Shibuya-ku, Tokyo 150-0002, Japan
(e-mail: peter.frankl@gmail.com)
${ }^{2}$ College of Education, Ryukyu University, Nishihara, Okinawa 903-0213, Japan
(e-mail: hide@edu.u-ryukyu.ac.jp)

Received 7 September 2010; revised 22 June 2011

Let $(r-1) n \geqslant r k$ and let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r} \subset\binom{[n]}{k}$. Suppose that $F_{1} \cap \cdots \cap F_{r} \neq \emptyset$ holds for all $F_{i} \in \mathcal{F}_{i}$, $1 \leqslant i \leqslant r$. Then we show that $\prod_{i=1}^{r}\left|\mathcal{F}_{i}\right| \leqslant\binom{ n-1}{k-1}^{r}$.

1. Introduction

Let n, k, r be positive integers. We say that a family $\mathcal{F} \subset\binom{[n]}{k}$ is r-wise intersecting if $F_{1} \cap \cdots \cap$ $F_{r} \neq \emptyset$ holds for all $F_{i} \in \mathcal{F}, 1 \leqslant i \leqslant r$. Frankl [5] extended the Erdős-Ko-Rado theorem [4] as follows; see also [7, 9].

Theorem 1.1. Let $(r-1) n \geqslant r k$ and let $\mathcal{F} \subset\binom{[n]}{k}$ be an r-cross intersecting family. Then we have $|\mathcal{F}| \leqslant\binom{ n-1}{k-1}$.

We say that families $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r} \subset\binom{[n]}{k}$ are r-cross intersecting if $F_{1} \cap \cdots \cap F_{r} \neq \emptyset$ holds for all $F_{i} \in \mathcal{F}_{i}, 1 \leqslant i \leqslant r$. We show the following extension of Theorem 1.1.

Theorem 1.2. Let $(r-1) n \geqslant r k$ and let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r} \subset\binom{[n]}{k}$ be r-cross intersecting families. Then, we have $\prod_{i=1}^{r}\left|\mathcal{F}_{i}\right| \leqslant\binom{ n-1}{k-1}^{r}$.

We say that families $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r} \subset\binom{[n]}{\ell}$ are r-cross union if $G_{1} \cup \cdots \cup G_{r} \neq[n]$ holds for all $G_{i} \in$ $\mathcal{G}_{i}, 1 \leqslant i \leqslant r$. For $\mathcal{F} \subset\binom{[n]}{k}$ we define its complement family by $\mathcal{F}^{c}=\{[n] \backslash F: F \in \mathcal{F}\} \subset\binom{[n]}{\ell}$, where $\ell=n-k$. Note that $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r}$ are r-cross intersecting if and only if $\mathcal{F}_{1}^{c}, \ldots, \mathcal{F}_{r}^{c}$ are r-cross

[^0]union. To state our main result, we need one more definition. For $\mathcal{G} \subset\binom{[n]}{\ell}$ choose a unique real $x \geqslant \ell$ so that $|\mathcal{G}|=\binom{x}{\ell}$, and let $\|\mathcal{G}\|_{\ell}:=x$.

Theorem 1.3. Let $n \leqslant r \ell$ and let $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r} \subset\binom{[n]}{\ell}$ be r-cross union families. Then we have the following:
(i) $\sum_{i=1}^{r}\left\|\mathcal{G}_{i}\right\|_{\ell} \leqslant r(n-1)$,
(ii) $\prod_{i=1}^{r}\left|\mathcal{G}_{i}\right| \leqslant\binom{ n-1}{\ell}^{r}$.

By considering the complement k-uniform families, where $k=n-\ell$, we get Theorem 1.2 from Theorem 1.3(ii). We will see that (i) implies (ii) easily. If $n>r \ell$, then r copies of $\binom{[n]}{\ell}$ are r-cross union families, which do not satisfy the conclusions of Theorem 1.3.

Our proof of Theorem 1.3 is very simple. In fact we only use well-known tools such as Katona's cycle method, the AM-GM inequality, and the Kruskal-Katona theorem on shadows. The novelty of the proof is to focus on inequality (i) of Theorem 1.3. There are several ways to prove Theorem 1.1, but the authors do not know any proof for Theorem 1.2 without using (i). Moreover, inequality (i) seems to be applicable for some other cases. It might be interesting to obtain the corresponding vector space version of Theorem 1.2 via (i). (See [3] for the vector space version of Theorem 1.1.)

The study of cross-intersecting families has a long history, starting with Bollobás [2]. We mention some results related to Theorem 1.2: the case $r=2$ with different uniformity was considered by Pyber [10], Matsumoto and Tokushige [8] and Bey [1], and the non-uniform t-intersecting case was solved by Frankl [6].

2. Proof of Theorem 1.3

Let $x_{i}=\left\|\mathcal{G}_{i}\right\|_{\ell}$, that is, $\left|\mathcal{G}_{i}\right|=\binom{x_{i}}{\ell}$, for $1 \leqslant i \leqslant r$. First we show that (i) implies (ii).

Claim 2.1.

$$
\prod_{i=1}^{r}\left|\mathcal{G}_{i}\right|=\binom{x_{1}}{\ell} \cdots\binom{x_{r}}{\ell} \leqslant\binom{\frac{x_{1}+\cdots+x_{r}}{r}}{\ell}^{r} \leqslant\binom{ n-1}{\ell}^{r}
$$

Proof. The first inequality follows from the inequality of arithmetic and geometric means:

$$
\text { 2nd term }=\frac{1}{(\ell!)^{r}} \prod_{i=0}^{\ell-1}\left(x_{1}-i\right) \cdots\left(x_{r}-i\right) \leqslant \frac{1}{(\ell!)^{r}} \prod_{i=0}^{\ell-1}\left(\frac{x_{1}+\cdots+x_{r}}{r}-i\right)^{r}=3 \text { rd term. }
$$

The second inequality follows from (i).
So all we need is to show (i). Let $s=r \ell-n$. We prove (i) by induction on s.
First we consider the initial step $s=0$, that is, $n=r \ell$. We fix a cyclic permutation $\sigma=$ $a_{1} a_{2} \cdots a_{n} \in S_{n}$, and let $\mathcal{A}^{\sigma}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be the set of arcs of length ℓ in σ, where $A_{i}=$ $\left\{a_{i}, a_{i+1}, \ldots, a_{i+\ell-1}\right\}$ (the indices are read $\bmod n$). For $1 \leqslant i \leqslant r$, let $\mathcal{G}_{i}^{\sigma}=\mathcal{G}_{i} \cap \mathcal{A}^{\sigma}$.

Claim 2.2. Let σ be an arbitrary cyclic permutation. Then $\sum_{i=1}^{r}\left|\mathcal{G}_{i}^{\sigma}\right| \leqslant r(n-\ell)$.

Proof. Let $\sigma=a_{1} a_{2} \cdots a_{n} \in S_{n}$ be given. For $1 \leqslant i \leqslant r$ and $j \in \mathbb{Z}_{n}$, let

$$
\varepsilon_{j}^{i}= \begin{cases}1 & \text { if } A_{j+(i-1) \ell} \in \mathcal{G}_{i}^{\sigma}, \\ 0 & \text { if } A_{j+(i-1) \ell} \notin \mathcal{G}_{i}^{\sigma} .\end{cases}
$$

Then $\left|\mathcal{G}_{i}^{\sigma}\right|=\sum_{j=1}^{n} \varepsilon_{j}^{i}$. Note that $[n]=A_{j} \cup A_{j+\ell} \cup A_{j+2 \ell} \cup \cdots \cup A_{j+(r-1) \ell}$ is a partition. Since $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r}$ are r-cross union, we have $\#\left\{i: A_{j+(i-1) \ell} \in \mathcal{G}_{i}\right\} \leqslant r-1$. This gives $\varepsilon_{j}^{1}+\varepsilon_{j}^{2}+\varepsilon_{j}^{3}+$ $\cdots+\varepsilon_{j}^{r} \leqslant r-1$ for all $j \in \mathbb{Z}_{n}$. Thus we have

$$
\sum_{i=1}^{r}\left|\mathcal{G}_{i}^{\sigma}\right|=\sum_{j=1}^{n}\left(\varepsilon_{j}^{1}+\varepsilon_{j}^{2}+\varepsilon_{j}^{3}+\cdots+\varepsilon_{j}^{r}\right) \leqslant(r-1) n=r(n-\ell),
$$

where we used $n=r \ell$ in the last equality.
Claim 2.3. If $n=r \ell$, then we have $\sum_{i=1}^{r}\left|\mathcal{G}_{i}\right| \leqslant r\binom{n-1}{\ell}$.
Proof. Each $G \in \mathcal{G}_{i}$ is counted $\ell!(n-\ell)$! times in $\sum_{\sigma \in \mathcal{C}_{n}}\left|\mathcal{G}_{i}^{\sigma}\right|$, where \mathcal{C}_{n} is the set of all cyclic permutations. This gives

$$
\sum_{\sigma \in \mathcal{C}_{n}} \sum_{i=1}^{r}\left|\mathcal{G}_{i}^{\sigma}\right|=\ell!(n-\ell)!\sum_{i=1}^{r}\left|\mathcal{G}_{i}\right|
$$

On the other hand, since $\left|\mathcal{C}_{n}\right|=(n-1)$!, it follows from Claim 2.2 that

$$
\sum_{\sigma \in \mathcal{C}_{n}} \sum_{i=1}^{r}\left|\mathcal{G}_{i}^{\sigma}\right| \leqslant(n-1)!r(n-\ell)
$$

Thus we have

$$
\sum_{i=1}^{r}\left|\mathcal{G}_{i}\right| \leqslant \frac{(n-1)!r(n-\ell)}{\ell!(n-\ell)!}=r\binom{n-1}{\ell}
$$

as desired.
We note that $f(x)=\binom{x}{\ell}$ is convex for $x \geqslant \ell$. In fact, one can show $f^{\prime \prime}(x)>0$ for $x \geqslant \ell$ by a direct computation. So, we have

$$
\binom{\frac{x_{1}+\cdots+x_{r}}{r}}{\ell} \leqslant \frac{1}{r} \sum_{i=1}^{r}\binom{x_{i}}{\ell}=\frac{1}{r} \sum_{i=1}^{r}\left|\mathcal{G}_{i}\right| \leqslant\binom{ n-1}{\ell},
$$

where we used Claim 2.3 for the last inequality. Thus we get $\frac{x_{1}+\cdots+x_{r}}{r} \leqslant n-1$, that is, part (i) of the theorem for the initial step $s=0$.

Next we deal with the induction step. Let $s>0$. Suppose that (i) is true for the case $r \ell-n=s$, and we will consider the case $r \ell-n=s+1$.

So, let $\mathcal{G}_{1}, \ldots, \mathcal{G}_{r} \subset\binom{[n]}{\ell}$ be r-cross union families with $r \ell-n=s+1$. Recall that $x_{i}=\left\|\mathcal{G}_{i}\right\|_{\ell}$ for $1 \leqslant i \leqslant r$, and we will show that

$$
\begin{equation*}
\sum_{i=1}^{r} x_{i} \leqslant r(n-1) \tag{2.1}
\end{equation*}
$$

Define $\mathcal{H}_{i}=\mathcal{G}_{i} \cup \mathcal{D}_{i} \subset\binom{[n+1]}{\ell}$ by

$$
\mathcal{D}_{i}=\left\{D \cup\{n+1\}: D \in \Delta_{\ell-1}\left(\mathcal{G}_{i}\right)\right\},
$$

where $\Delta_{j}\left(\mathcal{G}_{i}\right)=\left\{J \in\binom{[n]}{j}: J \subset \exists G \in \mathcal{G}_{i}\right\}$ is the j th shadow of \mathcal{G}_{i}. Then, by the Kruskal-Katona theorem, we have $\left|\mathcal{D}_{i}\right|=\left|\Delta_{\ell-1}\left(\mathcal{G}_{i}\right)\right| \geqslant\binom{ x_{i}}{\ell-1}$, and

$$
\left|\mathcal{H}_{i}\right|=\left|\mathcal{G}_{i}\right|+\left|\mathcal{D}_{i}\right| \geqslant\binom{ x_{i}}{\ell}+\binom{x_{i}}{\ell-1}=\binom{x_{i}+1}{\ell}
$$

namely,

$$
\begin{equation*}
z_{i}:=\left\|\mathcal{H}_{i}\right\|_{\ell} \geqslant x_{i}+1 \tag{2.2}
\end{equation*}
$$

Now we note that $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r} \subset\left(\begin{array}{c}{\left[\begin{array}{c}n+1] \\ \ell\end{array}\right)}\end{array}\right)$ are r-cross union families. Moreover, since $r \ell-(n+$ $1)=s$, we can apply the induction hypothesis to $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$, and we get

$$
\begin{equation*}
\sum_{i=1}^{r} z_{i} \leqslant r((n+1)-1)=r n \tag{2.3}
\end{equation*}
$$

Finally, (2.1) follows from (2.2) and (2.3). This completes the proof of the theorem.

References

[1] Bey, C. (2005) On cross-intersecting families of sets. Graphs Combin. 21 161-168.
[2] Bollobás, B. (1965) On generalized graphs. Acta Math. Acad. Sci. Hungar 16 447-452.
[3] Chowdhury, A. and Patkós, B. (2010) Shadows and intersections in vector spaces. J. Combin. Theory Ser. A 117 1095-1106.
[4] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12 313-320.
[5] Frankl, P. (1976) On Sperner families satisfying an additional condition. J. Combin. Theory Ser. A 20 1-11.
[6] Frankl, P. (1991) Multiply-intersecting families. J. Combin. Theory Ser. B 53 195-234.
[7] Gronau, H.-D. O. F. (1982) On Sperner families in which no k sets have an empty intersection III. Combinatorica 2 25-36.
[8] Matsumoto, M. and Tokushige, N. (1989) The exact bound in the Erdős-Ko-Rado theorem for crossintersecting families. J. Combin. Theory Ser. A 52 90-97.
[9] Mubayi, D. and Verstraëte, J. (2005) Proof of a conjecture of Erdốs on triangles in set-systems. Combinatorica 25 599-614.
[10] Pyber, L. (1986) A new generalization of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. A 43 85-90.

[^0]: \dagger Supported by JSPS KAKENHI 20340022.

