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Let (r− 1)n � rk and let F1, . . . ,Fr ⊂
([n]

k

)
. Suppose that F1 ∩ ·· · ∩Fr �= /0 holds for all Fi ∈ Fi,

1 � i � r. Then we show that ∏r
i=1 |Fi| �

(n−1
k−1

)r
.

1. Introduction

Let n,k,r be positive integers. We say that a family F ⊂
([n]

k

)
is r-wise intersecting if F1 ∩ ·· ·∩

Fr �= /0 holds for all Fi ∈ F , 1 � i � r. Frankl [5] extended the Erdős–Ko–Rado theorem [4] as
follows; see also [7, 9].

Theorem 1.1. Let (r− 1)n � rk and let F ⊂
([n]

k

)
be an r-cross intersecting family. Then we

have |F| �
(n−1

k−1

)
.

We say that families F1, . . . ,Fr ⊂
([n]

k

)
are r-cross intersecting if F1 ∩·· ·∩Fr �= /0 holds for all

Fi ∈ Fi, 1 � i � r. We show the following extension of Theorem 1.1.

Theorem 1.2. Let (r−1)n � rk and let F1, . . . ,Fr ⊂
([n]

k

)
be r-cross intersecting families. Then,

we have ∏r
i=1 |Fi| �

(n−1
k−1

)r
.

We say that families G1, . . . ,Gr ⊂
([n]

�

)
are r-cross union if G1 ∪·· ·∪Gr �= [n] holds for all Gi ∈

Gi, 1 � i � r. For F ⊂
([n]

k

)
we define its complement family by F c = {[n]\F : F ∈ F} ⊂

([n]
�

)
,

where � = n−k. Note that F1, . . . ,Fr are r-cross intersecting if and only if F c
1 , . . . ,F c

r are r-cross
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union. To state our main result, we need one more definition. For G ⊂
([n]

�

)
choose a unique real

x � � so that |G| =
(x

�

)
, and let ‖G‖� := x.

Theorem 1.3. Let n � r� and let G1, . . . ,Gr ⊂
([n]

�

)
be r-cross union families. Then we have the

following:

(i) ∑r
i=1 ‖Gi‖� � r(n−1),

(ii) ∏r
i=1 |Gi| �

(n−1
�

)r
.

By considering the complement k-uniform families, where k = n−�, we get Theorem 1.2 from
Theorem 1.3(ii). We will see that (i) implies (ii) easily. If n > r�, then r copies of

([n]
�

)
are r-cross

union families, which do not satisfy the conclusions of Theorem 1.3.
Our proof of Theorem 1.3 is very simple. In fact we only use well-known tools such as

Katona’s cycle method, the AM–GM inequality, and the Kruskal–Katona theorem on shadows.
The novelty of the proof is to focus on inequality (i) of Theorem 1.3. There are several ways
to prove Theorem 1.1, but the authors do not know any proof for Theorem 1.2 without using
(i). Moreover, inequality (i) seems to be applicable for some other cases. It might be interesting
to obtain the corresponding vector space version of Theorem 1.2 via (i). (See [3] for the vector
space version of Theorem 1.1.)

The study of cross-intersecting families has a long history, starting with Bollobás [2]. We
mention some results related to Theorem 1.2: the case r = 2 with different uniformity was
considered by Pyber [10], Matsumoto and Tokushige [8] and Bey [1], and the non-uniform
t-intersecting case was solved by Frankl [6].

2. Proof of Theorem 1.3

Let xi = ‖Gi‖�, that is, |Gi| =
(xi

�

)
, for 1 � i � r. First we show that (i) implies (ii).

Claim 2.1.
r

∏
i=1

|Gi| =
(

x1

�

)
· · ·

(
xr

�

)
�

( x1+···+xr

r

�

)r

�
(

n−1
�

)r

.

Proof. The first inequality follows from the inequality of arithmetic and geometric means:

2nd term =
1

(�!)r

�−1

∏
i=0

(x1 − i) · · ·(xr − i) � 1
(�!)r

�−1

∏
i=0

(
x1 + · · ·+ xr

r
− i

)r

= 3rd term.

The second inequality follows from (i).

So all we need is to show (i). Let s = r�−n. We prove (i) by induction on s.
First we consider the initial step s = 0, that is, n = r�. We fix a cyclic permutation σ =

a1a2 · · ·an ∈ Sn, and let Aσ = {A1,A2, . . . ,An} be the set of arcs of length � in σ , where Ai =
{ai,ai+1, . . . ,ai+�−1} (the indices are read mod n). For 1 � i � r, let Gσ

i = Gi ∩Aσ .

Claim 2.2. Let σ be an arbitrary cyclic permutation. Then ∑r
i=1 |Gσ

i | � r(n− �).
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Proof. Let σ = a1a2 · · ·an ∈ Sn be given. For 1 � i � r and j ∈ Zn, let

ε i
j =

{
1 if Aj+(i−1)� ∈ Gσ

i ,

0 if Aj+(i−1)� �∈ Gσ
i .

Then |Gσ
i | = ∑n

j=1 ε i
j. Note that [n] = Aj ∪ Aj+� ∪ Aj+2� ∪ ·· · ∪ Aj+(r−1)� is a partition. Since

G1, . . . ,Gr are r-cross union, we have #{i : Aj+(i−1)� ∈ Gi} � r − 1. This gives ε1
j + ε2

j + ε3
j +

· · ·+ ε r
j � r−1 for all j ∈ Zn. Thus we have

r

∑
i=1

|Gσ
i | =

n

∑
j=1

(ε1
j + ε2

j + ε3
j + · · ·+ ε r

j ) � (r−1)n = r(n− �),

where we used n = r� in the last equality.

Claim 2.3. If n = r�, then we have ∑r
i=1 |Gi| � r

(n−1
�

)
.

Proof. Each G ∈ Gi is counted �!(n− �)! times in ∑σ∈Cn
|Gσ

i |, where Cn is the set of all cyclic
permutations. This gives

∑
σ∈Cn

r

∑
i=1

|Gσ
i | = �!(n− �)!

r

∑
i=1

|Gi|.

On the other hand, since |Cn| = (n−1)!, it follows from Claim 2.2 that

∑
σ∈Cn

r

∑
i=1

|Gσ
i | � (n−1)!r(n− �).

Thus we have
r

∑
i=1

|Gi| �
(n−1)!r(n− �)

�!(n− �)!
= r

(
n−1

�

)
,

as desired.

We note that f (x) =
(x

�

)
is convex for x � �. In fact, one can show f ′′(x) > 0 for x � � by a

direct computation. So, we have

( x1+···+xr

r

�

)
� 1

r

r

∑
i=1

(
xi

�

)
=

1
r

r

∑
i=1

|Gi| �
(

n−1
�

)
,

where we used Claim 2.3 for the last inequality. Thus we get x1+···+xr

r � n−1, that is, part (i) of
the theorem for the initial step s = 0.

Next we deal with the induction step. Let s > 0. Suppose that (i) is true for the case r�−n = s,
and we will consider the case r�−n = s+1.

So, let G1, . . . ,Gr ⊂
([n]

�

)
be r-cross union families with r�− n = s + 1. Recall that xi = ‖Gi‖�

for 1 � i � r, and we will show that
r

∑
i=1

xi � r(n−1). (2.1)
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Define Hi = Gi ∪Di ⊂
([n+1]

�

)
by

Di = {D∪{n+1} : D ∈ Δ�−1(Gi)},

where Δ j(Gi) = {J ∈
([n]

j

)
: J ⊂ ∃G ∈ Gi} is the jth shadow of Gi. Then, by the Kruskal–Katona

theorem, we have |Di| = |Δ�−1(Gi)| �
( xi
�−1

)
, and

|Hi| = |Gi|+ |Di| �
(

xi

�

)
+

(
xi

�−1

)
=

(
xi +1

�

)
,

namely,

zi := ‖Hi‖� � xi +1. (2.2)

Now we note that H1, . . . ,Hr ⊂
([n+1]

�

)
are r-cross union families. Moreover, since r�− (n +

1) = s, we can apply the induction hypothesis to H1, . . . ,Hr, and we get

r

∑
i=1

zi � r((n+1)−1) = rn. (2.3)

Finally, (2.1) follows from (2.2) and (2.3). This completes the proof of the theorem.
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