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A sequence X = {xi}ni=1 over an alphabet containing t symbols is t-universal if every

permutation of those symbols is contained as a subsequence. Kleitman and Kwiatkowski

showed that the minimum length of a t-universal sequence is (1 − o(1))t2. In this note we

address a related Ramsey-type problem. We say that an r-colouring χ of the sequence X is

canonical if χ(xi) = χ(xj ) whenever xi = xj . We prove that for any fixed t the length of the

shortest sequence over an alphabet of size t, which has the property that every r-colouring

of its entries contains a t-universal and canonically coloured subsequence, is at most cr� t
2 �.

This is best possible up to a multiplicative constant c independent of r.

1. Introduction

A sequence X = {xi}ni=1 over thealphabet A = {a1, a2, . . . , at} is t-universal if X has as

subsequences all permutations of the set A. For instance, if A = {1, 2, 3}, then 1231231 is

3-universal. In general, the minimum length of t-universal sequences over an alphabet of

size t, denoted by f(t), is still unknown. The best-known upper bound is f(t) � t2 − 2t + 4

for every t � 3, which was provided by several people (see, e.g., [2, 3, 4]). Moreover,

Kleitman and Kwiatkowski [1] showed that f(t) = (1 − o(1))t2.

In this note we consider the following Ramsey-type problem. We say that an r-

colouring χ of the sequence X = {xi}ni=1 is canonical if χ(xi) = χ(xj) whenever xi = xj ,

i.e., all entries with the same value share the same colour. Let R(r, t) be the family of

canonical Ramsey sequences X over an alphabet of size t, i.e., sequences such that for

† Research partially supported by NSF grant DMS 0800070.
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every r-colouring of the entries of X there exists a t-universal and canonically coloured

subsequence. Moreover, let

f(r, t) = min{|X| : X ∈ R(r, t)}.

Note that the number f(r, t) is well-defined, i.e., f(r, t) < ∞. Indeed, let X be a sequence

over the alphabet {a1, a2, . . . , at} which consists of (t − 1)rt + 1 consecutive blocks of

the form a1a2 · · · at. Since there are exactly rt different ways to colour all entries of

one particular block, at least t blocks must have the same colour pattern. Clearly, the

subsequence consisting of those t blocks is t-universal and its colouring is canonical.

We have just shown that f(r, t) �
(
(t − 1)rt + 1

)
t = Ot(r

t). The main result of this note

determines the order of magnitude of f(r, t) for a fixed integer t.

Theorem 1.1. For every positive integer t there is a constant c = c(t) such that for any r

the following inequalities hold:

r� t
2 � � f(r, t) � cr� t

2 �.

Remark 1. We note that our proof of the lower bound yields a slightly stronger result.

Namely, there exist two permutations σ1 and σ2 of the set A of size t such that any

sequence over the alphabet A and of length at most r� t
2 � can be r-coloured in such a way

that there is no canonically coloured subsequence containing σ1 and σ2.

2. Proof of Theorem 1.1

We will show that for a fixed � there exists a constant c = (2� + 1)(4� + 3)� such that

r� < f(r, 2�)︸ ︷︷ ︸
(LB)

� f(r, 2� + 1) � cr�︸ ︷︷ ︸
(UB)

, (2.1)

for any number of colours r. Clearly, this will imply Theorem 1.1. Note that since the

second inequality holds trivially, we need to show (LB) and (UB) only.

2.1. The lower bound

In order to prove the lower bound (LB) we need to show that there is no sequence

X ∈ R(r, 2�) which has length r�. To this end, we define an auxiliary sequence Ur,� over

an alphabet of size 2�, which contains all sequences of length r�, and find an r-colouring

of Ur,� containing no 2�-universal and canonically coloured subsequence. Let Ur,� be a

sequence over the alphabet A = {a1, a2, . . . , a2�} consisting of r� consecutive blocks of the

form a1a2 · · · a2�, i.e., Ur,� = B(0)B(1) · · ·B(r�−1), where B(i) = xi1x
i
2 · · · xi2�, xij = aj for any

0 � i � r� − 1 and 1 � j � 2�. Observe that any sequence X over the alphabet A and of

length r� is a subsequence of Ur,�. Hence, in order to show that X /∈ R(r, 2�) it is sufficient

to show that Ur,� /∈ R(r, 2�). We are going to define an r-colouring χr,� of Ur,� which has

the property that there is no 2�-universal and canonically coloured subsequence in Ur,�.

Let χr,� : Ur,� → {0, 1, . . . , r − 1} be defined as follows. For a given integer i, 0 � i �
r� − 1, let d�−1d�−2 · · · d0 be the r-nary expansion of i. Then, the ith block of Ur,� is



A Note on Universal and Canonically Coloured Sequences 685

coloured as

χr,�(x
i
1) = χr,�(x

i
2) = d�−1

χr,�(x
i
3) = χr,�(x

i
4) = d�−2

... (2.2)

χr,�(x
i
2�−1) = χr,�(x

i
2�) = d0.

For instance, if � = 1, then Ur,1 = a1a2a1a2 · · · a1a2 is of length 2r. Set q = r − 1. Then,

χr,1 : Ur,1 → {0, . . . , q} gives on Ur,1 the colour pattern 001122 · · · qq. Clearly, there is no

canonically coloured subsequence which contains a1a2 and a2a1 as subsequences.

The next case � = 2 illustrates the main idea of the general case. Let � = 2. Then,

Ur,2 = B(0)B(1) · · ·B(r2−1), where B(i) = xi1x
i
2x

i
3x

i
4 = a1a2a3a4 for every 0 � i � r2 − 1. Set

q = r − 1. Below is the colour pattern induced by χr,2:

0000 0011 0022 · · · 00qq

1100 1111 1122 · · · 11qq

2200 2211 2222 · · · 22qq (2.3)

...

qq00 qq11 qq22 · · · qqqq.

Observe that in this colouring any subsequence of the form a1a2, more precisely, xi1x
j
2,

i � j, has the property that

χr,2(x
i
1) � χr,2(x

j
2). (2.4)

Also, for any subsequence xi2x
j
1, i � j, we have

χr,2(x
i
2) � χr,2(x

j
1). (2.5)

Now we show that there is no canonically coloured subsequence that contains σ1 =

a1a3a4a2 and σ2 = a2a4a3a1 as their subsequences. For a contradiction assume that this

fails to be true. Since xij = aj for all 0 � i � r2 − 1 and 1 � j � 4, such σ1 and σ2 must

be in Ur,2 and be of the form

xi11 x
i3
3 x

i4
4 x

i2
2 = σ1

and

x
j2
2 x

j4
4 x

j3
3 x

j1
1 = σ2,

where

0 � i1 � i3 � i4 � i2 � r2 − 1 (2.6)

and

0 � j2 � j4 � j3 � j1 � r2 − 1. (2.7)
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Moreover, due to our assumption, χr,2(x
i1
1 ) = χr,2(x

j1
1 ), χr,2(x

i2
2 ) = χr,2(x

j2
2 ), χr,2(x

i3
3 ) = χr,2(x

j3
3 )

and χr,2(x
i4
4 ) = χr,2(x

j4
4 ). This assumption together with (2.4) and (2.5) implies

χr,2(x
i1
1 ) � χr,2(x

i2
2 ) = χr,2(x

j2
2 ) � χr,2(x

j1
1 ) = χr,2(x

i1
1 ).

Consequently, χr,2(x
i1
1 ) = χr,2(x

i2
2 ) = χr,2(x

j1
1 ) = χr,2(x

j2
2 ). That means that all indices i1, i2,

j1 and j2 are in one row of (2.3), and so there exists an m, 0 � m � r − 1, such that

mr � i1, i2, j1, j2 � (m + 1)r − 1. Consequently, by (2.6) and (2.7), mr � i3, i4, j3, j4 � (m +

1)r − 1 also holds. But then χr,2(x
i
3) � χr,2(x

i+
4 ) and χr,2(x

j
4) < χr,2(x

j+
3 ) for every i � i+

and j � j+ such that mr � i, i+, j, j+ � (m + 1)r − 1. In particular, χr,2(x
i3
3 ) � χr,2(x

i4
4 ) =

χr,2(x
j4
4 ) < χr,2(x

j3
3 ) = χr,2(x

i3
3 ), a contradiction.

Similarly, one can prove that for any � > 2 there is no canonically coloured subsequence

in Ur,� with respect to χr,� (cf. (2.2)) that contains both

σ1
� = a1a3a5 · · · a2�−1a2� · · · a6a4a2 (2.8)

and

σ2
� = a2a4a6 · · · a2�a2�−1 · · · a5a3a1 (2.9)

as their subsequences. The proof goes by induction. Let us assume that Ur,�−1 has no

canonically coloured subsequence in χr,�−1 that contains both

σ1
�−1 = a1a3a5 · · · a2(�−1)−1a2(�−1) · · · a6a4a2

and

σ2
�−1 = a2a4a6 · · · a2(�−1)a2(�−1)−1 · · · a5a3a1,

i.e., Ur,�−1 /∈ R(r, 2(� − 1)). Suppose for a contradiction that Ur,� ∈ R(r, 2�). In particular,

there are indices

0 � i1 � i3 � i5 � · · · � i2�−1 � i2� � · · · � i6 � i4 � i2 � 2� (2.10)

and

0 � j2 � j4 � j6 � · · · � j2� � j2�−1 � · · · � j5 � j3 � j1 � 2� (2.11)

such that

xi11 x
i3
3 x

i5
5 · · · xi2�−1

2�−1x
i2�
2� · · · xi66 x

i4
4 x

i2
2 = σ1

� ,

x
j2
2 x

j4
4 x

j6
6 · · · xj2�2� x

j2�−1

2�−1 · · · xj55 x
j3
3 x

j1
1 = σ2

� ,

and χr,�(x
ik
k ) = χr,�(x

jk
k ) for all 1 � k � 2�. As in the previous paragraph, one can prove that

χr,�(x
i1
1 ) = χr,�(x

i2
2 ) = χr,�(x

j1
1 ) = χr,�(x

j2
2 ). Then there exists an m, 0 � m � r − 1, such that

mr�−1 � i1, i2, j1, j2 � (m + 1)r�−1 − 1, and consequently, by (2.10) and (2.11), also mr�−1 �
ik, jk � (m + 1)r�−1 − 1 for all 3 � k � 2�. Note that the subsequence Ũ of Ur,� defined by

elements xik , mr
�−1 � i � (m + 1)r�−1 − 1, 3 � k � 2�, is isomorphic to Ur,�−1. Moreover,

the colouring χr,� restricted to Ũ corresponds to χr,�−1. Hence, by induction, Ũ contains

no canonically coloured subsequence containing both σ1
�−1 and σ2

�−1. Consequently, there

is no canonically coloured subsequence in Ur,� with σ1
� and σ2

� , that is, Ur,� /∈ R(r, 2�).



A Note on Universal and Canonically Coloured Sequences 687

2.2. The upper bound

In order to prove the upper bound (UB) we need to extend the concept of the universal

sequences as follows. Let t and k, t � k, be given integers. A variation of length k on a

set of size t is a k-subset with a specific order. We say that a sequence over an alphabet

of size t is (t, k)-universal if every variation of length k of those symbols is contained as a

subsequence. For instance, the sequence 4123412314 is (4, 3)-universal over the alphabet

{1, 2, 3, 4}. Let R(r, t, k) be the family of sequences X over the alphabet of size t with the

property that, for every r-colouring of the entries of X, there exists a (t, k)-universal and

canonically coloured subsequence. Moreover, let

f(r, t, k) = min{|X| : X ∈ R(r, t, k)}.

Note that f(r, t) = f(r, t, t) and f(r, t, 1) = t.

First we show that

f(r, t, k + 2) � (2tr + 1)f(r, t, k), (2.12)

for any r � 1, t � 1, k � 1 and t � k + 2. Indeed, let X ∈ R(r, t, k) such that |X| = f(r, t, k).

Define a sequence Y to be 2tr + 1 consecutive copies of X, i.e., Y = X(1)X(2) · · ·X(2tr+1),

where X(i) = X for every 1 � i � 2tr + 1. We show that Y ∈ R(r, t, k + 2).

Fix a colouring χ : Y → {1, 2, . . . , r}. For a given symbol ai, 1 � i � t, and colour j,

1 � j � r, let Yai,j be the longest subsequence of Y for which all entries are equal to ai and

have the same colour j. Clearly Y is a disjoint union over all Yai,j . For every i ∈ {1, . . . , t}
and j ∈ {1, . . . , r}, remove from Y the first and last element of Yai,j . Clearly, the total

number of deleted entries is at most 2tr. Since Y = X(1)X(2) · · ·X(2tr+1), there exists at

least one copy of X(i) which is left untouched. But X(i) ∈ R(r, t, k). Hence, there exists a

(t, k)-universal and canonically coloured subsequence X̃ of X(i). Since we have already

removed the endpoints of Yai,j , the sequence X̃ can be extended in Y to a canonically

coloured sequence Ỹ in which all symbols {a1, . . . , at} appear before and also after X̃.

This, together with (t, k)-universality of X̃, implies that every variation of length k + 2 can

be found in Ỹ . In other words, Y ∈ R(r, t, k + 2). Moreover, |Y | � (2tr + 1)f(r, t, k), and

hence (2.12) holds.

Applying (2.12) iteratively together with f(r, t, 1) = t yields

f(r, t, 2� + 1) � (2tr + 1)f
(
r, t, 2(� − 1) + 1

)

� (2tr + 1)�f(r, t, 1) = (2tr + 1)�t � t(2t + 1)�r�.

Hence, in particular, f(r, 2� + 1) = f(r, 2� + 1, 2� + 1) � (2� + 1)(4� + 3)�r�, which com-

pletes the proof of inequality (UB).

3. Concluding remarks

In the previous section we proved inequalities (2.1). It may be of interest to examine

the behaviour of functions f(r, 2�) and f(r, 2� + 1) in more detail. Below we propose the

following problems.
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Problem 3.1. Is it true that for a fixed � we have

lim
r→∞

f(r, 2�)

f(r, 2� + 1)
= 1?

Extending Problem 3.1, one can ask the following.

Problem 3.2. For a fixed � determine the limits

lim
r→∞

f(r, 2�)

r�
and lim

r→∞

f(r, 2� + 1)

r�
.

In Remark 1 we noted that the proof of the lower bound of f(r, t) yields a stronger

result. Following this remark, for a pair of permutations σ1 and σ2 of [t], let us define

fσ1 ,σ2
(r, t) to be the length of shortest sequence over an alphabet of size t which, for

any r-colouring of its entries, contains a canonically coloured subsequence with both σ1

and σ2 as subsequences. For instance, we showed that for σ1
� and σ2

� (cf. (2.8) and (2.9)),

r� � fσ1
� ,σ

2
�
(r, 2�) � f(r, 2�).

Problem 3.3. Is it true that, for any permutations σ1 and σ2,

lim
r→∞

fσ1 ,σ2
(r, t)

f(r, t)
= 0?

In Problems 3.1–3.3 we assumed the size of the alphabet fixed and r large. Swapping

these assumptions, one might ask about the growth of f(r, t) for fixed r and t large. For

instance, for r = 1, by [1], f(1, t) = (1 − o(1))t2 holds. But even for r = 2 we only know,

by (2.1), that 2� t
2 � � f(2, t) � t(2t + 1)� t

2 �2� t
2 �.

Finally, we consider the following related question. We say that two sequences {xi}ni=1

and {yi}ni=1 over integers are similar if their entries preserve the same order, i.e., xi < xj
if and only if yi < yj for all 1 � i, j � n. For a given sequence X and an integer r, a

sequence Y is Ramsey if for every r-colouring of Y there is a subsequence of Y which

is monochromatic and similar to X. Denote by f(r, X) the length of the shortest Ramsey

sequence Y . For instance, for two colours it is easy to see that f(2, X) � |X|2. Indeed, let

X = {xi}ni=1 be a sequence over the alphabet {0, . . . , n − 1}. Then, note that the sequence

Y = Y (1)Y (2) · · ·Y (n), where Y (i) =
(
nxi + x1, nxi + x2, . . . , nxi + xn,

)
for any 1 � i � n, is

Ramsey. Hence, f(2, X) � |Y | = n2. On the other hand, one can also show that for

X =
(
1, 2, 3, . . . , � n

2
�, n, n − 1, n − 2, . . . , � n

2
� + 1

)
every Ramsey sequence Y has length at

least n2

4
. Therefore, the bound O

(
|X|2

)
on f(2, X) is best possible. Extending the above

construction one can prove that f(r, X) � |X|r .

Problem 3.4. For a fixed t, estimate the order of magnitude of

max{f(r, X) : X is a sequence over an alphabet of size t}

as the function of r.
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