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Abstract

Let r > 2 be an integer. The real number « € [0, 1] is a jump for r if there exists ¢ > 0 such that for
every positive € and every integer m > r, every r-uniform graph with n > ng(e, m) vertices and at least
(o + €)(}') edges contains a subgraph with m vertices and at least ( 4 ¢)(’}') edges. A result of Erdés,
Stone and Simonovits implies that every « € [0, 1) is a jump for » = 2. For r > 3, Erd8s asked whether

the same is true and showed that every « € [0, :—,!) is a jump. Frankl and R&dl gave a negative answer by

1
=1

showing that 1 — is not a jump for r if r > 3 and [/ > 2r. Another well-known question of Erdds is

whether r’—; is a jump for r > 3 and what is the smallest non-jumping number. In this paper we prove that

3 r—,' is not a jump for r > 3. We also describe an infinite sequence of non-jumping numbers for r = 3.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Extremal hypergraph problems

1. Introduction

For a finite set V and a positive integer » we denote by (‘r/) the family of all r-subsets of V.

We call G = (V, E) an r-uniform graph if E C (V). The density of G is defined by d(G) = %
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Let S ={G,}°°, G, = (Vy, Ey), be a sequence of r-uniform graphs with the property that

n=1"
|V,| = 00 as n — oo. For k > r we define

E,n(Y
0% (S) = max max M
mveld ()
An averaging argument yields (cf. [5]): 0k (S) = 0x+1(S). Hence limg—, o0 0% (S) exists. We
denote this limit by d(S) = limy_, o 0% (S) and call d(S) the upper density of S.

(1

Definition 1.1. For 0 < @ < 1 define A, () = sup{8: d(S) > o implies d(S) > o + § for all
sequences of r-uniform graphs S = {G,};° ;, G, = (V,,, E,), with the property that |V,| — oo
asn — oo}. We call « a jump for r if A, (o) > 0.

Erdds, Stone, Simonovits [2] proved that the only possible values of d (S),forr=2,are 1 — %
(l=1,2,3,...) and 1, therefore every « € [0, 1) is a jump for r = 2. This result follows easily
from the following theorem.

Theorem 1.1. [3] For every € > 0 and positive integers |, m, there exists no(l,m, €) such that
every graph G on n > no(l, m, €) vertices with density d(G) > 1 — % + € contains a copy of the
complete (I + 1)-partite subgraph with partition class of size m (i.e., there exist |l + 1 pairwise
disjoint subsets Vi, ..., Vi11 such that {x;,x;} is an edge of G whenever x; € V;, x; € V; and
i # j hold).

For r > 3, Erdés proved that every 0 < o < r!/r" is a jump. This result directly follows from
the following theorem.

Theorem 1.2. [1] For every ¢ > 0 and positive integer m, there exists no(c, m) such that every
r-uniform graph G on n > ny(c, m) vertices with density d(G) = c contains a copy of the com-
plete r-partite r-uniform graph with partition class of size m (i.e., there exist r pairwise disjoint
subsets Vi, ...,V such that {x1,x2, ..., x,} is an edge whenever x; € V;, 1 <i <r).

Furthermore, Erd6s proposed the following jumping constant conjecture.
Conjecture 1.3. Every a € [0, 1) is a jump for every r > 2.
In [4], Frankl and R6dl disproved this conjecture by showing the following result.

Theorem 1.4. [4] Suppose r > 3 and | > 2r, then 1 — l’%' is not a jump for r.

It follows from Theorem 1.2 that every number in [O, r’—,’) is a jump for r > 3. To decide
whether o = :—,' is a jump for r > 3 is a well-known problem of Erdés. It seems that the analogous
problem for o € (:—,!, 1) gets harder if « is small (that is close to r’—,!). Therefore finding o ‘as small
as possible’ which is not a jump seems to be a problem of interest. The smallest known value of
a non-jumping number for r > 3, given by Theorem 1.4 [4], is 1 — In this paper we
‘improve’ on this by showing that %r’—l is not a jump for r > 3.

The paper is organized as follows: in Section 2, we introduce the Lagrange function and some
other tools used in the proof. In Section 3, we focus on the case r = 3 and prove the following
result.

_ 1
Qry—T°
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Theorem 1.5. The number g is not a jump for r = 3.

In Section 4 we extend Theorem 1.5 to arbitrary » > 3 and show that %rr—,' is not a jump for
r>=3.

In Section 5 we restrict our attention to r = 3 again and describe an infinite sequence of
non-jumping numbers.

We should emphasize that our method of proof is similar to that of [4]. In order to determine
whether or not :—,' is a jump for r > 3 we are likely to require an essentially new approach.

2. The Lagrange function of an r-uniform hypergraph

In this section we give a definition of the Lagrange function, A(G), which has proved to be a
helpful tool in calculating the upper density of certain sequences of 7-uniform graphs (cf. [4]).

Definition 2.1. For an r-uniform graph G with vertex set V = {1, 2, ..., n}, edge set E(G) and
a vector X = (xq,...,x,) € R", define

AMG,X) = Z Xiy Xiy *** Xj,.

{i1,....ir}€E(G)

Definition 2.2. Let S = {X = (x1,x2,..., X,): Z?:lxi =1, x; 20fori =1,2,...,n}. The
Lagrange function of G, denoted by A(G), is defined as

AM(G) =max{A(G, ¥): X € §}.

Fact 2.1. Let G1, G be r-uniform graphs and G| C G,. Then
M(G1) < A(Go).

We call two vertices i, j of G equivalent if for all f € (V(Gr):l{i’j}), fU{j} e E(G) if and
only if f U{i} € E(G). We denote this by i ~ j and note that it is an equivalence relation. For
an r-uniform graph G and i € V(G) we define G; to be the (r — 1)-uniform graph on V — {i}
with edge set E(G;) given by e € E(G;) ifand only if e U {i} € E(G). Similarly for i, j € V(G)
we define G;; to be the (r — 2)-uniform graph on V — {i, j} with edge set given by e € E(G;;)
ifandonly if e U {i, j} € E(G).

An r-uniform graph G is said to be covering if forevery i, j € V(G) there is anedge e € E(G)
such that i, j € e (that is every pair of vertices is covered by an edge).

The following simple lemma will be useful when calculating the Lagrange function of certain

graphs.
Lemma 2.2. (Cf. [4].) Let G be an r-uniform graph of order n.

(a) There exists a covering subgraph H of G such that .(G) = A(H).

(b) Suppose y € S satisfies \(G) = MG, y) and vy, ..., v; € V(G) are all pairwise equivalent.
If7 € S is obtained from y by setting the weights of the vertices vy, ..., v; to be equal while
leaving the other weights unchanged then L(G) = A(G, 7).

(©) If y € S satisfies M(G) = M(G, ¥) and y; > 0 then rA(G) = A(G;, ¥).
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Proof. Let y satisfy A(G) = A(G, ¥). Let K be the induced subgraph consisting of those vertices
v such that y, > 0. By Fact 2.1, A(K) = A(K, y) = A(G). If i, j € V(K) and A(K;j, ) =0 then
w.lo.g. AM(K;,y) > AM(Kj, ). Defining Z € S by z; = y; + yj, zj =0 and z; = y; otherwise we
have

MK, Z) — (K, ¥) =y (AM(Ki. ¥) — MK, §)) =>0.

Hence if H is the induced subgraph with vertex set V(K) — {j} then A(G) = A(K) = A(H).
Repeating this process yields a covering subgraph satisfying (a).

For (b) let y € S be as above and suppose that vy, ..., v; € V(G) are all pairwise equivalent.
If vertex v; receives weight y; then we may suppose that there are 1 < i, j < ¢ such that y; >
u>yj, where u = 2;21 yi/t (otherwise y already has the desired properties). If 1(Gij,y) >0
then taking 0 < 8 < y; — y; and defining Z € S by z; = y; — 8, zj = y;j + & and z; = y; otherwise
we have

MG, 2) = MG, Y) =8MGij, )i —yj —8) >0,

but this is impossible, hence A(G;;, y) = 0. Now defining Z € S by z; = i, z; = yi +y; — v and
z; = y; otherwise we have A(G,Z) = A(G, ¥) = A(G). Repeating this process we obtain 7 € S
with the desired properties after at most ¢ — 1 iterations.

For (c) let y be as above with y; >0 for 1 <i<kandy;=0fork+1<j<n.Ify, y, >0
and A(G4, y) > A(Gp, ¥) then taking 0 < § < yj, sufficiently small and defining Z € S by z, =
Ya + 68, zb = yp — 8 and z; = y; otherwise we have

MG, 72) — MG, 5) =8(MGa, ¥) — M(Gp, ) — 0(8%) > 0

which is impossible. Hence A(G;, ¥) is constant for 1 <i < k. Soif y; > 0 then

n k
MG =Y yMGLY) =MG, )Y y=MGiF). O
=1 =1

The blow-up of an r-uniform graph will play an important role in the proof of Theorem 1.5.

Definition 2.3. Let G be an r-uniform graph with n vertices and (my,...,m,) be a non-
negative integer vector. Define the (my, ..., m,) blow-up of G, (my,...,m,) ® G to be the
n-partite r-uniform graph with vertex set Vi U--- U V,, |V;| =m;, 1 <i < n, and edge set
E((my,...,my) @ G) ={{vi,, Viy, ..., Vi, }: vi € Vi, {i1,i2,...,ir} € E(G)}.

For an integer m > 1 and an r-uniform graph G, we simply write (m,m,...,m) ® G as
meG.

The Lagrange function of an r-uniform graph G is closely related to the upper density of a
certain sequence of r-uniform graphs, as described in the following claim.

Claim 2.3. Let m > 1 be an integer and G be an r-uniform graph. Then d({m ® Gl )=
r'M(G) holds.

Proof. Suppose G has n vertices and ¥y = (y1, ..., yy) € S satisfies L(G) = A(G, ¥). For a posi-
tive integer m, take the subgraph H,, = (|my1], lmy2], ..., lmy,]) ® G of m ® G. It is easy to
verify that for every € > 0, there exists mg(€) such that d(H,,) = r!A(G) — € if m > mq. Hence
d({m ® G}°°_) = rIA(G).
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On the other hand, by the definition of d ({m® G}f;lo: 1) for every € > 0, there exists ko such
that for every k > ko, there exist an integer m and a subgraph H of m ® G with |V(H)| =k
satisfying d(H) > J({nﬁ ® G}f;f’:l) — €/2. Suppose V(H) = U;’=1 Vi, where V;, 1 <i <n, are
the corresponding color classes of the n-partite r-uniform graph H. If y = (y1, ..., y»), where
yi =|Vil/ X7_; |Vil, then it is easy to verify that r!A(G, y) > d(H) — €/2. Consequently, for

any € > 0, we are able to find y such that
FIMG,F) > d({m®Gl,) —e.

Therefore d({m ® G}°°_ ) <r!A(G). O

Lemma 2.2(a) implies that the following holds.
Fact 2.4. For every r-uniform graph G and every integer m, A(m ® G) = A(G).
3. The proof of Theorem 1.5

We require the following definition.
Definition 3.1. If F is a family of r-uniform graphs and « € [0, 1] then we say that « is a
threshold for F if for every € > 0 there exists ng = no(€, o, r, F) such that every r-uniform
graph G with d(G) > @ + € and |V (G)| > ng contains some member of F as a subgraph. We
denote this fact by o — F.

Our proof of Theorem 1.5 relies on the following result.

Lemma 3.1. (Cf. [4].) The following two properties are equivalent:

(1) o is ajump forr,
(2) a — F for some finite family F of r-uniform graphs satisfying minpex A(F) > =.

The proof of this lemma was given in [4] and we omit it here.

For an integer t > 2 let G(t) = (V, E) be the 3-uniform graph defined as follows. The vertex
set V. =V UV,UV3, where | V| = V2| = | V3| =t and V|, V2, V3 are pairwise disjoint. The edge
set E consists of all triples of the form {{a, b, c}: a € V1, b € V;, and c € V3} and all triples of
the form {{a, b, c}: a € V; and b,c € V;, where j —i =1 mod 3}.

By taking the vector y = (y1, ..., y3;), where y; = 1/3¢ foreach i, 1 <i < 3¢, itis easy to see
that
A(G(t)) > i(é — i) )
31\9 3t

Consider the sequence S = {m ® G()}>>_ ;. Inequality (2) and Claim 2.3 imply that
d(S) > % — 3_1: Our plan is to add 3ct? edges to G(r) and hence obtain a new graph G*(r)
satisfying

d({m® G*)},_,) =3(G*(1)) > g

while A(F) < %% for any small subgraph F C m ® G*(¢t). Lemma 3.1 then implies that 5/9
cannot be a jump for r = 3.
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The next lemma allows us to construct G* ().

Lemma 3.2. [4] Let k be any fixed integer and ¢ > 0 be any fixed real number. Then there exists
to(k, ¢) such that for every t > ty(k, ¢), there exists a 3-uniform graph A satisfying:

@) VA=t
(i) |1E(A)| = ct?;
@iii) forall Vo C V(A),3 < |Vo| < k we have |[E(A) N (‘g")l < | Vol — 2.

The proof of Lemma 3.2, based on a simple random construction, was given in [4]. We omit
the proof here.

For k,c fixed and t > fo(k,c) let A be a 3-uniform graph satisfying the conditions of
Lemma 3.2. We construct the graph G*(¢, k, ¢) from G (¢) by adding a copy of E(A) into each
vertex class of G(¢). (Sonow E(V;)=E(A),fori =1,2,3.)

The proof of Theorem 1.5 is based on the following lemma.

Lemma 3.3. For any integer k > 1, real number ¢ > 0 and t > ty(k, ¢) given in Lemma 3.2 if M
is a subgraph of G*(t, k, c) and |V (M)| < k, then

1 5
)»(M)<§'§- 3)

Assuming this result for the moment we may complete the proof of Theorem 1.5 as follows.

Proof of Theorem 1.5. Suppose that % is a jump. In view of Lemma 3.1, there exists a finite
collection F of 3-uniform graphs satisfying the following two conditions:

(i) A(F)> 43 forall F e F;
(i) 3 is a threshold for .

Set k = maxpcr |V (F)| and ¢ = 1. Take t > ty(k, ¢) as given by Lemma 3.2 and let G*(¢) =

G*(t,k,c). If y=(y1,..., y3), where y; = 1/3¢t for each i, 1 <i < 3¢, then
6|E(G*(1))| 2 (4 t 2 5 1
3AMGH 1)) > ——— > — [ +3 t43t7 ) > = 4+ —.
(G*®) (3t)3 9¢3 + 2 + 9 + 3t
Hence, by Claim 2.3, we have
- 5 1
d(im®G*O)u=1) 2 5 + 3 )

Now condition (ii) above, the definition of ‘threshold’ and inequality (4) imply that some
member F of F is a subgraph of m ® G*(t) for m > my(k, t). For such F € F, there exists a
subgraph M of G*(t) with |V (M)| < k satisfying F Cm @ M C m ® G*(¢).

By Facts 2.1, 2.4 and Lemma 3.3, we have

. 1 5
ME)SA(m®M)=1(M) < 319
which contradicts condition (i) above that A(F) >

of Theorem 1.5. O

L5

375 for all F € F. This completes the proof
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It remains to prove Lemma 3.3.

Proof of Lemma 3.3. By Fact 2.1, we may assume that M is an induced subgraph of G*(¢). Let
Ui =V(M)NV; = {v].vh. ... 0}
Sok=ki + ko + k3.

Claim 3.4. (Cf. [4].) If N is the 3-uniform graph formed from M by removing the edges contained
in each U; and inserting the edges {{v], v}, v’j}: 1<i <3, 3<j<ki}then \(M)<A(N).

Proof. Let M; = (Ui, EM) N (%)), Ny = (Ui, EN)YN (§)) and x1 > x0 > -+~ > xp > 0. Tt is
sufficient to prove that A(M;, X) < A(N;, X).

Let the edges of M; in decreasing order be ey, e, ..., €5, i.€. ]_[vee Xy = ]_[vee x, for p <gq.
By the construction of G*(¢) (Lemma 3.2(iii)) we have s < k; —2. We W111 prove that 1L cep Xy <
x1x2x24p for all 1 < p <s. By Lemma 3.2(iii) we have ey Uep U--- U ep| 2+ p for p=
1,2,...,s, so at least one of the edges from ey, e, ..., ¢, contains some v] with j > 2+ p and
thus, by monotonicity, ]_[vee xy < x1x2x24 . Thus A(M;, X) < A(N;, X). O

By Claim 3.4 the proof of Lemma 3.3 will be complete if we show that A(N) < 5/54. Since
”1 ~ v2 and v3, v4, .. vk are all pairwise equivalent we can use Lemma 2.2(b) to obtain zZ € S
satisfying A(N,Z) = k(N) such that

i i 1 l i
1] =2 = ai, By=24=" =7, =bi,

i

where a;, b; (i = 1,2, 3) are constants.

Let w; =2a; + (ki — 2)b; (so w1 + w2 + w3 =1). If P ={i: w; > 0} and p = |P| then we
may suppose that p > 2 (since otherwise Lemma 2.2(a) allows us to reduce M to a single edge
with A(M) =1/27). So suppose that 2 < p < 3.

For each i € P take a vertex u; € U; as follows: if b; > 0 then u; = vé otherwise u; = v’i. The
vertex u; receives non-zero weight so by Lemma 2.2(c) we have 3A(N) = A(N,,, 7). Moreover,
by considering the edges containing vertex u; we have

ANy, ) <@ +wiwia +wipwisa+ Y ZeZds o)
fe.dye(Vir)

where all subscripts are modulo 3.
Now, since Z{c,d}e(Ui;") 2024 18 zero if w1 =0, so (5) implies that

3pAN) =D ANy, 3) < Z(a? fwip(l—wi)+ Y zcu) ©)

ieP ieP {c,d}e(l;i)
We claim that the following holds fori =1, 2, 3:
2
w;
a? + Z Zezd < 7 (7
{c,d}e( ) )
We have w; =2a; + (k; — 2)b;.
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Hence

2
w;

2

N

ki —2
a+ Y zczaz=2a?+z(ki—2>a,-bl~+< ’2 )b?
{e.dye(%)

Combining (6) and (7) we obtain

2
we
3pA(N) < Z(T’ +wiya(1— wi+2))-
ieP
Now, using w1 + wy + w3 = 1, if p =3 we have
2 2 2
wi + w5 +w 5
IMN)<1— L —2 3 <=,
2 6
While if p =2 (so w.l.o.g. w3 =0) then we have
(wi+wp)? 1
OAMN) L ———— = —.
(N) 5 3

Hence A(N) < 5/54 asrequired. O
4. An extension of Theorem 1.5
In this section we extend Theorem 1.5 to arbitrary » > 3 and prove the following result.

Theorem 4.1. Let r > 3 be an integer. Then % - :—,' is not a jump forr.
Proof. We assume that » > 4 and % . rr—,' is a jump for r. In view of Lemma 3.1, there exists a
finite collection F of r-uniform graphs satisfying the following:

(1) A(F) > % - ri, forall F € F, and
(i) % . r’—,' is a threshold for F.

Set k =maxper |V(F)| and ¢ = 1. Let 79 (k, ¢) be as in Lemma 3.2. For ¢ > 1y(k, c), take the
3-uniform graph GO = G*(t, k, c) on vertex set V; U V, U V3 constructed as in Section 3. Note
that

503 3¢2
E(GY)| 2 =+ =
@)=L+ 2

Based on the 3-uniform graph G®, we construct an r-uniform graph G on r pairwise
disjoint sets Vi, Vo, V3, V4, ..., V,, each of order 7. An r-element set {u1, uz, u3, usq,...,u,} is
an edge of G if and only if {uy, us, u3} is an edge in G® and for each J,4<j<r,ujeV;.
Notice that

507 3]

E(G)| = E6®)] > 2L+ 2

We can now give a lower bound for A(G). Corresponding to the rt vertices of this 7-uniform
graph, let us take vector y = (y1, ..., yr), Where y; = % foreachi, 1 <i <rt.
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Then
o IEG™) (5 3\1
MG 2AGD, ) =——L2(z+=)=.
(G") =1(G".5) vy 5t5 )

Similarly as Theorem 1.5 follows from Lemma 3.3, in order to prove Theorem 4.1, it will be
sufficient to prove the following lemma.

Lemma 4.2. Let M") be a subgraph of G with |V (M"))| < k. Then
51
A(MO) < S — 8
M7) <32 ®)

holds.
We are going to use Lemma 3.3 to prove it.

Proof. Again, by Fact 2.1, we may assume that M ") is a non-empty induced subgraph of G.
Define U; = V(M(’)) NV; for 1 <i <r.Let M® be the 3-uniform graph defined on U?=1 U;.
The edge set of M® consists of all 3-sets of the form of ¢ N (Ul 1 Ui), where e is an edge
in M. Let E be an optimal vector for A(M®), i.e., A(MD), &) = A(M(’)) Let £® be the
restriction of E to U1 U Uy U Us. Let w; be the sum of all components of S corresponding to
vertices in U;, 1 <i < r, respectively. In view of the relationship between M ) and M®, we
have

)»(M(r))Z)» M3 5(3) l—[w

Note that M® is a subgraph of G®) = G*(t, k, c) satisfying |V (M )| < |V (M) < k. Also
note that the summation of all components of £ is 1 —>""_, w; and every term in A(M®, £))
has degree 3. Consequently by Lemma 3.3, we infer that

3
oy 5 Su)]

Therefore,

H(1) < 54(1—Zw1) Mo=3(5 “’)Hw

Since the geometric mean is no more than the arithmetic mean, we obtain
( M(V )) 5 i
2

This completes the proof of Lemma 4.2. O
5. More non-jumping numbers

In this section, we return to the case r = 3. The construction used in the proof of Theorem 1.5
can be easily generalized to give the following result.
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Theorem 5.1. For any integers s > 1 and | > 9s + 6 the number 1 — % + 3“;2 is not a jump for
r=3.

For /, s as in the statement of Theorem 5.1 and 7 > 2 consider the 3-uniform hypergraph
G(l,s,t) with vertex set V = Ui:l Vi, where |V;| =t and V;,1 < i </, are pairwise dis-
joint. The edge set consists of all triples of the form {{a,b,c}: a € V;, b€ V;, andc € V,
{i, j, k} e ([é])}, if I > 3, and all triples of the form {{a,b,c}: a € V;and b,c € V;, with
1<(j—i)modl <s}. When!=3,s=1,G(,s,t)is G().

Now let k > 1 be an integer, c = s and ¢ > ty(k, c¢) be as given by Lemma 3.2. We construct
G*(l,s,t) from G(l, s, t) by inserting into each V; a copy of a graph A as given by Lemma 3.2.
Note that

1,3 t 2
|EG*(,s,0)| _ (30 +Is(3)r +1st* 1 3 3542 3s
MG, s,0) > > = (1-+=—=4 =)
(G*.5.0) (11)3 ()} s\ 1T Tl

As with Theorem 1.5, the proof of Theorem 5.1 may be reduced to proving the following

lemma.

Lemma 5.2.

1 3 3542
A(M)<8(1—7+ B ) ©)

holds for any subgraph M of G*(l, s, t) with |V (M)| < k.

Proof. An obvious analogue of Claim 3.4 holds so if N is the 3-uniform graph formed from
M by replacing the edges contained in each U; = V; N V(M) with the following edges:
{{v], v5, v;-}: 1 <i <, 3<j<k;}thenitis sufficient to prove that

AN) < 1(1 3y —3s+2>.
6 [ 2
As before (using Lemma 2.2(b)) we may take Z € S such that A(G, 7) = A(G) and z’i = zé =a;
and z‘3=z§1=-~-=z}q =b;. Let w; =2a; + (ki —2)b;, P ={1 <i <!Il: w; >0} and p =
|P| <I.Fori e PdeﬁnePl.Jr:Pﬂ{i+l,i+2,...,i+s}andPi_:Pﬁ{i—l,i—2,...,i—s}.
For i € P let u; be a vertex in U; receiving weight b;, if b; > 0, and otherwise receiving weight
a; > 0. Considering the edges containing u#; we have

)L(N,,,,,,Z)gaiz—i— Z Z 2¢Zd T+ Wi Z w;j + Z wjwg.
jeP" eaye() jep” {ikre(P51h
Using Lemma 2.2(c) we obtain

3pAN) =) ANy, 3)
ieP

<Z<ai2+ Z Z ZeZd + w; Z wj + Z ijk>- (10)

icP jeP’,Jr {c,d}E(Uzj) JjeP” {j‘k}e(sz{i))
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Now (7) holds fori € P so

Y@+ X X au)< Yy Y Y

ieP jEP,-+ {C,d}e(Uzj) iePy ieP €p+

where P, ={i € P: P, =0} (so P, contains precisely those i € P for which there is no term
Z{c,d}e(g") ZcZq in (10)). Using this together with w; w; < (wl-2 + w?)/2 we obtain

2 2 2
3pk(N)<Zai2+Z<Z%+Z(wi2lj)+ Z ijk>.

ichy ieP jepi+ jep” {j,k}E(P;m)

Now a? < 2/2 and [P, |, |P+| < 5, so we have

l

1 _
3pA<N><5<Zw?+2(|P,~+\+2|P,~ |)w?>+ D wiw

iePy ieP {j,k}e(P_z(”)
1
< §<Z(1+s>wg+ ) 3sw,.2) Y wm
iePy iEP\Pb {j,k}E(P;{i))
3s 5
g?Zwi—}-(p—Z) Z W W.
iep tikre(?)

Note that since ) ;. p w; = 1 we have
1 wi2
Wi = = — —. 11
D wwmk=3-35 (1
{j,k}E(g) ieP
Hence if p > 3s 4 2 then

2 3542 3 3542
3pa(N) < 2 _( (H )>Z 2 < £<1——+ s“; )
2 ieP 2 p p

where the last inequality follows from Zf: 1 wl.2 > 1/p. The desired bound now follows easily.

To complete the proof we need to consider the case p < 3s+ 1. Inthiscase/ > 9s+6 > 3p+3
and so 3/1 < 1/(p + 1). Hence it is sufficient to prove that 3A(N) < %(1 - ﬁ).

If p=1,2then A(N) < 1/12 (see the proof of Lemma 3.3) so we may suppose that 3 < p <
3s 4+ 1.

Choose i € P such that w; > 1/p (since ) ;. p w; = 1 such an i must exist) then

IMN) =N DS+ ) Y zematwi Y wi+ Yy wjwk

JePT eaye(y) jeP (okre("51)
Since (7) holds for any j € P we have

YO usy Y

iopt Ui i p+
]ePi {c,d}e( 21) ]eP[
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Also a? < w?/4 and (11) imply that
2

w; w}z_
X S wi )W)
Jj€Ci

JE€D;

3M(N) <

| =

where C; = P — (PY U {i}) and D; = P — (P, U {i}). Now [ > 25 + | implies that

PtN P~ =@andso C; UD; U {i} = P. Hence if Djec,Wj =0, Y jcp,wj=pBand w; =y

then o + B + y > 1. Moreover, y = w; > 1/p. Note that since |C;j| < p — 1 so Zjec,- w? >
a?/(p — 1) so we have

1 y? o?
31(N) < 5(1 - (7 i +2ﬂy)).

Defining

)/2 a2

f(Ol,,B,)/):7+

1 + 28y,

the proof will be complete if we show that fora +8+y > 1,0< o, <1 —1/pand 1/p <
<1, f(a, B,y) is always at least 1/(p + 1). Now f is clearly minimized (subject to the

constraints) when « + 8 + y = 1 so substituting for § we need to minimize

2 3 2

o
gla,y) = +2y —2ay — ——,
p—1 2

subject to 0 < o <1 — y, 1/p < y < 1. This function is decreasing in « so for fixed y has
minimum
(1-y)*
g =y, Y)=hly)=——F +—
p—1 2
Finally we minimize k(y) subject to 1/p < y < 1. This function has a stationary point at
2/(p + 1) and so the constrained minimum occurs at either y =1/p,y =lory =2/(p + 1).
In each case we can check that h(y) > 1/(p + 1) (for p > 3). This completes the proof of
Lemma 5.2 and of Theorem 5.1. O

6. Concluding remarks

We remark that if s = 1, then the condition / > 15 in Theorem 5.1 can be relaxed to [ > 2. We
also think that in general the condition / > 9s + 6 in Theorem 5.1 can be relaxed to / > s + 1
although we are not able to prove this. Since no jump in the interval [rr—,!, 1) has been found, we
ask the following question.

Question 6.1. For r > 3, does there exist o € [ L+
jump?

r,, 1) such that the interval [, 1] contains no

A recent result of Mubayi and Zhao [6] answers the analogous question for the related problem
of co-degree density. They showed that in this case one can take cg = O for all r > 3 (see [6,
Theorem 1.6]).
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