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Abstract

Let r � 2 be an integer. The real number α ∈ [0,1] is a jump for r if there exists c > 0 such that for
every positive ε and every integer m � r , every r-uniform graph with n > n0(ε,m) vertices and at least
(α + ε)

(n
r

)
edges contains a subgraph with m vertices and at least (α + c)

(m
r

)
edges. A result of Erdős,

Stone and Simonovits implies that every α ∈ [0,1) is a jump for r = 2. For r � 3, Erdős asked whether
the same is true and showed that every α ∈ [0, r!

rr ) is a jump. Frankl and Rödl gave a negative answer by

showing that 1 − 1
lr−1 is not a jump for r if r � 3 and l > 2r . Another well-known question of Erdős is

whether r!
rr is a jump for r � 3 and what is the smallest non-jumping number. In this paper we prove that

5
2

r!
rr is not a jump for r � 3. We also describe an infinite sequence of non-jumping numbers for r = 3.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For a finite set V and a positive integer r we denote by
(
V
r

)
the family of all r-subsets of V .

We call G = (V ,E) an r-uniform graph if E ⊆ (
V
r

)
. The density of G is defined by d(G) = |E|

|(V
r )|

.
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Let S = {Gn}∞n=1, Gn = (Vn,En), be a sequence of r-uniform graphs with the property that
|Vn| → ∞ as n → ∞. For k � r we define

σk(S) = max
n

max
V ∈(Vn

k )

|En ∩ (
V
r

)|(
k
r

) . (1)

An averaging argument yields (cf. [5]): σk(S) � σk+1(S). Hence limk→∞ σk(S) exists. We
denote this limit by d̄(S) = limk→∞ σk(S) and call d̄(S) the upper density of S .

Definition 1.1. For 0 � α < 1 define Δr(α) = sup{δ: d̄(S) > α implies d̄(S) � α + δ for all
sequences of r-uniform graphs S = {Gn}∞n=1, Gn = (Vn,En), with the property that |Vn| → ∞
as n → ∞}. We call α a jump for r if Δr(α) > 0.

Erdős, Stone, Simonovits [2] proved that the only possible values of d̄(S), for r = 2, are 1− 1
l

(l = 1,2,3, . . .) and 1, therefore every α ∈ [0,1) is a jump for r = 2. This result follows easily
from the following theorem.

Theorem 1.1. [3] For every ε > 0 and positive integers l,m, there exists n0(l,m, ε) such that
every graph G on n > n0(l,m, ε) vertices with density d(G) � 1 − 1

l
+ ε contains a copy of the

complete (l + 1)-partite subgraph with partition class of size m (i.e., there exist l + 1 pairwise
disjoint subsets V1, . . . , Vl+1 such that {xi, xj } is an edge of G whenever xi ∈ Vi , xj ∈ Vj and
i �= j hold).

For r � 3, Erdős proved that every 0 � α < r!/rr is a jump. This result directly follows from
the following theorem.

Theorem 1.2. [1] For every c > 0 and positive integer m, there exists n0(c,m) such that every
r-uniform graph G on n > n0(c,m) vertices with density d(G) � c contains a copy of the com-
plete r-partite r-uniform graph with partition class of size m (i.e., there exist r pairwise disjoint
subsets V1, . . . , Vr such that {x1, x2, . . . , xr} is an edge whenever xi ∈ Vi , 1 � i � r).

Furthermore, Erdős proposed the following jumping constant conjecture.

Conjecture 1.3. Every α ∈ [0,1) is a jump for every r � 2.

In [4], Frankl and Rödl disproved this conjecture by showing the following result.

Theorem 1.4. [4] Suppose r � 3 and l > 2r , then 1 − 1
lr−1 is not a jump for r .

It follows from Theorem 1.2 that every number in [0, r!
rr ) is a jump for r � 3. To decide

whether α = r!
rr is a jump for r � 3 is a well-known problem of Erdős. It seems that the analogous

problem for α ∈ ( r!
rr ,1) gets harder if α is small (that is close to r!

rr ). Therefore finding α ‘as small
as possible’ which is not a jump seems to be a problem of interest. The smallest known value of
a non-jumping number for r � 3, given by Theorem 1.4 [4], is 1 − 1

(2r+1)r−1 . In this paper we
‘improve’ on this by showing that 5

2
r!
rr is not a jump for r � 3.

The paper is organized as follows: in Section 2, we introduce the Lagrange function and some
other tools used in the proof. In Section 3, we focus on the case r = 3 and prove the following
result.
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Theorem 1.5. The number 5
9 is not a jump for r = 3.

In Section 4 we extend Theorem 1.5 to arbitrary r � 3 and show that 5
2

r!
rr is not a jump for

r � 3.
In Section 5 we restrict our attention to r = 3 again and describe an infinite sequence of

non-jumping numbers.
We should emphasize that our method of proof is similar to that of [4]. In order to determine

whether or not r!
rr is a jump for r � 3 we are likely to require an essentially new approach.

2. The Lagrange function of an r-uniform hypergraph

In this section we give a definition of the Lagrange function, λ(G), which has proved to be a
helpful tool in calculating the upper density of certain sequences of r-uniform graphs (cf. [4]).

Definition 2.1. For an r-uniform graph G with vertex set V = {1,2, . . . , n}, edge set E(G) and
a vector �x = (x1, . . . , xn) ∈ R

n, define

λ(G, �x) =
∑

{i1,...,ir }∈E(G)

xi1xi2 · · ·xir .

Definition 2.2. Let S = {�x = (x1, x2, . . . , xn):
∑n

i=1 xi = 1, xi � 0 for i = 1,2, . . . , n}. The
Lagrange function of G, denoted by λ(G), is defined as

λ(G) = max
{
λ(G, �x): �x ∈ S

}
.

Fact 2.1. Let G1, G2 be r-uniform graphs and G1 ⊂ G2. Then

λ(G1) � λ(G2).

We call two vertices i, j of G equivalent if for all f ∈ (
V (G)−{i,j}

r−1

)
, f ∪ {j} ∈ E(G) if and

only if f ∪ {i} ∈ E(G). We denote this by i ∼ j and note that it is an equivalence relation. For
an r-uniform graph G and i ∈ V (G) we define Gi to be the (r − 1)-uniform graph on V − {i}
with edge set E(Gi) given by e ∈ E(Gi) if and only if e ∪ {i} ∈ E(G). Similarly for i, j ∈ V (G)

we define Gij to be the (r − 2)-uniform graph on V − {i, j} with edge set given by e ∈ E(Gij )

if and only if e ∪ {i, j} ∈ E(G).
An r-uniform graph G is said to be covering if for every i, j ∈ V (G) there is an edge e ∈ E(G)

such that i, j ∈ e (that is every pair of vertices is covered by an edge).
The following simple lemma will be useful when calculating the Lagrange function of certain

graphs.

Lemma 2.2. (Cf. [4].) Let G be an r-uniform graph of order n.

(a) There exists a covering subgraph H of G such that λ(G) = λ(H).
(b) Suppose �y ∈ S satisfies λ(G) = λ(G, �y) and v1, . . . , vt ∈ V (G) are all pairwise equivalent.

If �z ∈ S is obtained from �y by setting the weights of the vertices v1, . . . , vt to be equal while
leaving the other weights unchanged then λ(G) = λ(G, �z).

(c) If �y ∈ S satisfies λ(G) = λ(G, �y) and yi > 0 then rλ(G) = λ(Gi, �y).
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Proof. Let �y satisfy λ(G) = λ(G, �y). Let K be the induced subgraph consisting of those vertices
v such that yv > 0. By Fact 2.1, λ(K) = λ(K, �y) = λ(G). If i, j ∈ V (K) and λ(Kij , �y) = 0 then
w.l.o.g. λ(Ki, �y) � λ(Kj , �y). Defining �z ∈ S by zi = yi + yj , zj = 0 and zl = yl otherwise we
have

λ(K, �z) − λ(K, �y) = yj

(
λ(Ki, �y) − λ(Kj , �y)

)
� 0.

Hence if H is the induced subgraph with vertex set V (K) − {j} then λ(G) = λ(K) = λ(H).
Repeating this process yields a covering subgraph satisfying (a).

For (b) let �y ∈ S be as above and suppose that v1, . . . , vt ∈ V (G) are all pairwise equivalent.
If vertex vi receives weight yi then we may suppose that there are 1 � i, j � t such that yi >

μ > yj , where μ = ∑t
i=1 yi/t (otherwise �y already has the desired properties). If λ(Gij , �y) > 0

then taking 0 < δ < yi − yj and defining �z ∈ S by zi = yi − δ, zj = yj + δ and zl = yl otherwise
we have

λ(G, �z) − λ(G, �y) = δλ(Gij , �y)(yi − yj − δ) > 0,

but this is impossible, hence λ(Gij , �y) = 0. Now defining �z ∈ S by zi = μ, zj = yi + yj − μ and
zl = yl otherwise we have λ(G, �z) = λ(G, �y) = λ(G). Repeating this process we obtain �z ∈ S

with the desired properties after at most t − 1 iterations.
For (c) let �y be as above with yi > 0 for 1 � i � k and yj = 0 for k + 1 � j � n. If ya, yb > 0

and λ(Ga, �y) > λ(Gb, �y) then taking 0 < δ < yb sufficiently small and defining �z ∈ S by za =
ya + δ, zb = yb − δ and zl = yl otherwise we have

λ(G, �z) − λ(G, �y) = δ
(
λ(Ga, �y) − λ(Gb, �y)

) − O
(
δ2) > 0

which is impossible. Hence λ(Gi, �y) is constant for 1 � i � k. So if yi > 0 then

rλ(G) =
n∑

l=1

ylλ(Gl, �y) = λ(Gi, �y)

k∑
l=1

yl = λ(Gi, �y). �

The blow-up of an r-uniform graph will play an important role in the proof of Theorem 1.5.

Definition 2.3. Let G be an r-uniform graph with n vertices and (m1, . . . ,mn) be a non-
negative integer vector. Define the (m1, . . . ,mn) blow-up of G, (m1, . . . ,mn) ⊗ G to be the
n-partite r-uniform graph with vertex set V1 ∪ · · · ∪ Vn, |Vi | = mi , 1 � i � n, and edge set
E((m1, . . . ,mn) ⊗ G) = {{vi1, vi2, . . . , vin}: vi ∈ Vi, {i1, i2, . . . , ir } ∈ E(G)}.

For an integer m � 1 and an r-uniform graph G, we simply write (m,m, . . . ,m) ⊗ G as
�m ⊗ G.

The Lagrange function of an r-uniform graph G is closely related to the upper density of a
certain sequence of r-uniform graphs, as described in the following claim.

Claim 2.3. Let m � 1 be an integer and G be an r-uniform graph. Then d̄({ �m ⊗ G}∞m=1) =
r!λ(G) holds.

Proof. Suppose G has n vertices and �y = (y1, . . . , yn) ∈ S satisfies λ(G) = λ(G, �y). For a posi-
tive integer m, take the subgraph Hm = (
my1�, 
my2�, . . . , 
myn�) ⊗ G of �m ⊗ G. It is easy to
verify that for every ε > 0, there exists m0(ε) such that d(Hm) � r!λ(G) − ε if m � m0. Hence
d̄({ �m ⊗ G}∞ ) � r!λ(G).
m=1
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On the other hand, by the definition of d̄({ �m ⊗ G}∞m=1), for every ε > 0, there exists k0 such
that for every k � k0, there exist an integer m and a subgraph H of �m ⊗ G with |V (H)| = k

satisfying d(H) > d̄({ �m ⊗ G}∞m=1) − ε/2. Suppose V (H) = ⋃n
i=1 Vi , where Vi,1 � i � n, are

the corresponding color classes of the n-partite r-uniform graph H . If �y = (y1, . . . , yn), where
yi = |Vi |/∑n

i=1 |Vi |, then it is easy to verify that r!λ(G, �y) � d(H) − ε/2. Consequently, for
any ε > 0, we are able to find �y such that

r!λ(G, �y) � d̄
({ �m ⊗ G}∞m=1

) − ε.

Therefore d̄({ �m ⊗ G}∞m=1) � r!λ(G). �
Lemma 2.2(a) implies that the following holds.

Fact 2.4. For every r-uniform graph G and every integer m, λ( �m ⊗ G) = λ(G).

3. The proof of Theorem 1.5

We require the following definition.

Definition 3.1. If F is a family of r-uniform graphs and α ∈ [0,1] then we say that α is a
threshold for F if for every ε > 0 there exists n0 = n0(ε,α, r,F) such that every r-uniform
graph G with d(G) � α + ε and |V (G)| > n0 contains some member of F as a subgraph. We
denote this fact by α → F .

Our proof of Theorem 1.5 relies on the following result.

Lemma 3.1. (Cf. [4].) The following two properties are equivalent:

(1) α is a jump for r ;
(2) α →F for some finite family F of r-uniform graphs satisfying minF∈F λ(F ) > α

r! .

The proof of this lemma was given in [4] and we omit it here.
For an integer t � 2 let G(t) = (V ,E) be the 3-uniform graph defined as follows. The vertex

set V = V1 ∪V2 ∪V3, where |V1| = |V2| = |V3| = t and V1,V2,V3 are pairwise disjoint. The edge
set E consists of all triples of the form {{a, b, c}: a ∈ V1, b ∈ V2, and c ∈ V3} and all triples of
the form {{a, b, c}: a ∈ Vi and b, c ∈ Vj , where j − i = 1 mod 3}.

By taking the vector �y = (y1, . . . , y3t ), where yi = 1/3t for each i,1 � i � 3t , it is easy to see
that

λ
(
G(t)

)
� 1

3!
(

5

9
− 1

3t

)
. (2)

Consider the sequence S = { �m ⊗ G(t)}∞m=1. Inequality (2) and Claim 2.3 imply that
d̄(S) � 5

9 − 1
3t

. Our plan is to add 3ct2 edges to G(t) and hence obtain a new graph G∗(t)
satisfying

d̄
({ �m ⊗ G∗(t)

}∞
m=1

) = 3!λ(
G∗(t)

)
>

5

9

while λ(F ) � 5
9

1
3! for any small subgraph F ⊂ �m ⊗ G∗(t). Lemma 3.1 then implies that 5/9

cannot be a jump for r = 3.
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The next lemma allows us to construct G∗(t).

Lemma 3.2. [4] Let k be any fixed integer and c � 0 be any fixed real number. Then there exists
t0(k, c) such that for every t > t0(k, c), there exists a 3-uniform graph A satisfying:

(i) |V (A)| = t ;
(ii) |E(A)| � ct2;

(iii) for all V0 ⊂ V (A),3 � |V0| � k we have |E(A) ∩ (
V0
3

)| � |V0| − 2.

The proof of Lemma 3.2, based on a simple random construction, was given in [4]. We omit
the proof here.

For k, c fixed and t > t0(k, c) let A be a 3-uniform graph satisfying the conditions of
Lemma 3.2. We construct the graph G∗(t, k, c) from G(t) by adding a copy of E(A) into each
vertex class of G(t). (So now E(Vi) = E(A), for i = 1,2,3.)

The proof of Theorem 1.5 is based on the following lemma.

Lemma 3.3. For any integer k � 1, real number c > 0 and t > t0(k, c) given in Lemma 3.2 if M

is a subgraph of G∗(t, k, c) and |V (M)| � k, then

λ(M) � 1

3! · 5

9
. (3)

Assuming this result for the moment we may complete the proof of Theorem 1.5 as follows.

Proof of Theorem 1.5. Suppose that 5
9 is a jump. In view of Lemma 3.1, there exists a finite

collection F of 3-uniform graphs satisfying the following two conditions:

(i) λ(F ) > 1
3!

5
9 for all F ∈F ;

(ii) 5
9 is a threshold for F .

Set k = maxF∈F |V (F)| and c = 1. Take t > t0(k, c) as given by Lemma 3.2 and let G∗(t) =
G∗(t, k, c). If �y = (y1, . . . , y3t ), where yi = 1/3t for each i,1 � i � 3t , then

3!λ(
G∗(t)

)
� 6|E(G∗(t))|

(3t)3
� 2

9t3

(
t3 + 3

(
t

2

)
t + 3t2

)
� 5

9
+ 1

3t
.

Hence, by Claim 2.3, we have

d̄
({ �m ⊗ G∗(t)}∞m=1

)
� 5

9
+ 1

3t
. (4)

Now condition (ii) above, the definition of ‘threshold’ and inequality (4) imply that some
member F of F is a subgraph of �m ⊗ G∗(t) for m � m0(k, t). For such F ∈ F , there exists a
subgraph M of G∗(t) with |V (M)| � k satisfying F ⊂ �m ⊗ M ⊂ �m ⊗ G∗(t).

By Facts 2.1, 2.4 and Lemma 3.3, we have

λ(F ) � λ( �m ⊗ M) = λ(M) � 1

3! · 5

9

which contradicts condition (i) above that λ(F ) > 1
3!

5
9 for all F ∈ F . This completes the proof

of Theorem 1.5. �
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It remains to prove Lemma 3.3.

Proof of Lemma 3.3. By Fact 2.1, we may assume that M is an induced subgraph of G∗(t). Let

Ui = V (M) ∩ Vi = {
vi

1, v
i
2, . . . , v

i
ki

}
.

So k = k1 + k2 + k3.

Claim 3.4. (Cf. [4].) If N is the 3-uniform graph formed from M by removing the edges contained
in each Ui and inserting the edges {{vi

1, v
i
2, v

i
j }: 1 � i � 3, 3 � j � ki} then λ(M) � λ(N).

Proof. Let Mi = (Ui,E(M) ∩ (
Ui

3

)
), Ni = (Ui,E(N) ∩ (

Ui

3

)
) and x1 � x2 � · · · � xki

� 0. It is
sufficient to prove that λ(Mi, �x) � λ(Ni, �x).

Let the edges of Mi in decreasing order be e1, e2, . . . , es , i.e.,
∏

v∈ep
xv �

∏
v∈eq

xv for p < q .
By the construction of G∗(t) (Lemma 3.2(iii)) we have s � ki −2. We will prove that

∏
v∈ep

xv �
x1x2x2+p for all 1 � p � s. By Lemma 3.2(iii) we have |e1 ∪ e2 ∪ · · · ∪ ep| � 2 + p for p =
1,2, . . . , s, so at least one of the edges from e1, e2, . . . , ep contains some vi

j with j � 2 + p and
thus, by monotonicity,

∏
v∈ep

xv � x1x2x2+p . Thus λ(Mi, �x) � λ(Ni, �x). �
By Claim 3.4 the proof of Lemma 3.3 will be complete if we show that λ(N) � 5/54. Since

vi
1 ∼ vi

2 and vi
3, v

i
4, . . . , v

i
ki

are all pairwise equivalent we can use Lemma 2.2(b) to obtain �z ∈ S

satisfying λ(N, �z) = λ(N) such that

zi
1 = zi

2 = ai, zi
3 = zi

4 = · · · = zi
ki

= bi,

where ai, bi (i = 1,2,3) are constants.
Let wi = 2ai + (ki − 2)bi (so w1 + w2 + w3 = 1). If P = {i: wi > 0} and p = |P | then we

may suppose that p � 2 (since otherwise Lemma 2.2(a) allows us to reduce M to a single edge
with λ(M) = 1/27). So suppose that 2 � p � 3.

For each i ∈ P take a vertex ui ∈ Ui as follows: if bi > 0 then ui = vi
3 otherwise ui = vi

1. The
vertex ui receives non-zero weight so by Lemma 2.2(c) we have 3λ(N) = λ(Nui

, �z). Moreover,
by considering the edges containing vertex ui we have

λ(Nui
, �z) � a2

i + wiwi+2 + wi+1wi+2 +
∑

{c,d}∈(Ui+1
2 )

zczd, (5)

where all subscripts are modulo 3.
Now, since

∑
{c,d}∈(Ui+1

2 )
zczd is zero if wi+1 = 0, so (5) implies that

3pλ(N) =
∑
i∈P

λ(Nui
, �z) �

∑
i∈P

(
a2
i + wi+2(1 − wi+2) +

∑
{c,d}∈(Ui

2 )

zczd

)
. (6)

We claim that the following holds for i = 1,2,3:

a2
i +

∑
{c,d}∈(Ui

2 )

zczd �
w2

i

2
. (7)

We have wi = 2ai + (ki − 2)bi .
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Hence

a2
i +

∑
{c,d}∈(Ui

2 )

zczd = 2a2
i + 2(ki − 2)aibi +

(
ki − 2

2

)
b2
i �

w2
i

2
.

Combining (6) and (7) we obtain

3pλ(N) �
∑
i∈P

(
w2

i

2
+ wi+2(1 − wi+2)

)
.

Now, using w1 + w2 + w3 = 1, if p = 3 we have

9λ(N) � 1 − w2
1 + w2

2 + w2
3

2
� 5

6
.

While if p = 2 (so w.l.o.g. w3 = 0) then we have

6λ(N) � (w1 + w2)
2

2
= 1

2
.

Hence λ(N) � 5/54 as required. �
4. An extension of Theorem 1.5

In this section we extend Theorem 1.5 to arbitrary r � 3 and prove the following result.

Theorem 4.1. Let r � 3 be an integer. Then 5
2 · r!

rr is not a jump for r .

Proof. We assume that r � 4 and 5
2 · r!

rr is a jump for r . In view of Lemma 3.1, there exists a
finite collection F of r-uniform graphs satisfying the following:

(i) λ(F ) > 5
2 · 1

rr for all F ∈F , and
(ii) 5

2 · r!
rr is a threshold for F .

Set k = maxF∈F |V (F)| and c = 1. Let t0(k, c) be as in Lemma 3.2. For t > t0(k, c), take the
3-uniform graph G(3) = G∗(t, k, c) on vertex set V1 ∪ V2 ∪ V3 constructed as in Section 3. Note
that

∣∣E(
G(3)

)∣∣ � 5t3

2
+ 3t2

2
.

Based on the 3-uniform graph G(3), we construct an r-uniform graph G(r) on r pairwise
disjoint sets V1,V2,V3,V4, . . . , Vr , each of order t . An r-element set {u1, u2, u3, u4, . . . , ur} is
an edge of G(r) if and only if {u1, u2, u3} is an edge in G(3) and for each j , 4 � j � r , uj ∈ Vj .
Notice that

∣∣E(
G(r)

)∣∣ = t r−3
∣∣E(

G(3)
)∣∣ � 5t r

2
+ 3t r−1

2
.

We can now give a lower bound for λ(G(r)). Corresponding to the rt vertices of this r-uniform
graph, let us take vector �y = (y1, . . . , yrt ), where yi = 1 for each i,1 � i � rt .
rt
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Then

λ
(
G(r)

)
� λ

(
G(r), �y) = |E(G(r))|

(rt)r
�

(
5

2
+ 3

2t

)
1

rr
.

Similarly as Theorem 1.5 follows from Lemma 3.3, in order to prove Theorem 4.1, it will be
sufficient to prove the following lemma.

Lemma 4.2. Let M(r) be a subgraph of G(r) with |V (M(r))| � k. Then

λ
(
M(r)

)
� 5

2
· 1

rr
(8)

holds.

We are going to use Lemma 3.3 to prove it.

Proof. Again, by Fact 2.1, we may assume that M(r) is a non-empty induced subgraph of G(r).
Define Ui = V (M(r)) ∩ Vi for 1 � i � r . Let M(3) be the 3-uniform graph defined on

⋃3
i=1 Ui .

The edge set of M(3) consists of all 3-sets of the form of e ∩ (
⋃3

i=1 Ui), where e is an edge
in M(r). Let �ξ be an optimal vector for λ(M(r)), i.e., λ(M(r), �ξ) = λ(M(r)). Let �ξ (3) be the
restriction of �ξ to U1 ∪ U2 ∪ U3. Let wi be the sum of all components of �ξ corresponding to
vertices in Ui,1 � i � r , respectively. In view of the relationship between M(r) and M(3), we
have

λ
(
M(r)

) = λ
(
M(3), �ξ (3)

) ×
r∏

i=4

wi.

Note that M(3) is a subgraph of G(3) = G∗(t, k, c) satisfying |V (M(3))| � |V (M(r))| � k. Also
note that the summation of all components of �ξ (3) is 1−∑r

i=4 wi and every term in λ(M(3), �ξ (3))

has degree 3. Consequently by Lemma 3.3, we infer that

λ
(
M(3), �ξ (3)

)
� 5

54

(
1 −

r∑
i=4

wi

)3

.

Therefore,

λ
(
M(r)

)
� 5

54

(
1 −

r∑
i=4

wi

)3 r∏
i=4

wi = 5

2

(
1 − ∑r

i=4 wi

3

)3 r∏
i=4

wi.

Since the geometric mean is no more than the arithmetic mean, we obtain

λ
(
M(r)

)
� 5

2
· 1

rr
.

This completes the proof of Lemma 4.2. �
5. More non-jumping numbers

In this section, we return to the case r = 3. The construction used in the proof of Theorem 1.5
can be easily generalized to give the following result.
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Theorem 5.1. For any integers s � 1 and l � 9s + 6 the number 1 − 3
l
+ 3s+2

l2
is not a jump for

r = 3.

For l, s as in the statement of Theorem 5.1 and t � 2 consider the 3-uniform hypergraph
G(l, s, t) with vertex set V = ⋃l

i=1 Vi , where |Vi | = t and Vi,1 � i � l, are pairwise dis-
joint. The edge set consists of all triples of the form {{a, b, c}: a ∈ Vi, b ∈ Vj , and c ∈ Vk,

{i, j, k} ∈ ([l]
3

)}, if l � 3, and all triples of the form {{a, b, c}: a ∈ Vi and b, c ∈ Vj , with
1 � (j − i) mod l � s}. When l = 3, s = 1, G(l, s, t) is G(t).

Now let k � 1 be an integer, c = s and t � t0(k, c) be as given by Lemma 3.2. We construct
G∗(l, s, t) from G(l, s, t) by inserting into each Vi a copy of a graph A as given by Lemma 3.2.
Note that

λ
(
G∗(l, s, t)

)
� |E(G∗(l, s, t))|

(lt)3
�

(
l
3

)
t3 + ls

(
t
2

)
t + lst2

(lt)3
= 1

6

(
1 − 3

l
+ 3s + 2

l2
+ 3s

l2t

)
.

As with Theorem 1.5, the proof of Theorem 5.1 may be reduced to proving the following
lemma.

Lemma 5.2.

λ(M) � 1

6

(
1 − 3

l
+ 3s + 2

l2

)
(9)

holds for any subgraph M of G∗(l, s, t) with |V (M)| � k.

Proof. An obvious analogue of Claim 3.4 holds so if N is the 3-uniform graph formed from
M by replacing the edges contained in each Ui = Vi ∩ V (M) with the following edges:
{{vi

1, v
i
2, v

i
j }: 1 � i � l, 3 � j � ki} then it is sufficient to prove that

λ(N) � 1

6

(
1 − 3

l
+ 3s + 2

l2

)
.

As before (using Lemma 2.2(b)) we may take �z ∈ S such that λ(G, �z) = λ(G) and zi
1 = zi

2 = ai

and zi
3 = zi

4 = · · · = zi
ki

= bi . Let wi = 2ai + (ki − 2)bi , P = {1 � i � l: wi > 0} and p =
|P | � l. For i ∈ P define P +

i = P ∩{i+1, i+2, . . . , i+s} and P −
i = P ∩{i−1, i−2, . . . , i−s}.

For i ∈ P let ui be a vertex in Ui receiving weight bi , if bi > 0, and otherwise receiving weight
ai > 0. Considering the edges containing ui we have

λ(Nui
, �z) � a2

i +
∑

j∈P+
i

∑
{c,d}∈(Uj

2 )

zczd + wi

∑
j∈P−

i

wj +
∑

{j,k}∈(P−{i}
2 )

wjwk.

Using Lemma 2.2(c) we obtain

3pλ(N) =
∑
i∈P

λ(Nui
, �z)

�
∑
i∈P

(
a2
i +

∑
j∈P+

i

∑
{c,d}∈(Uj )

zczd + wi

∑
j∈P−

i

wj +
∑

{j,k}∈(P−{i}
2 )

wjwk

)
. (10)
2
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Now (7) holds for i ∈ P so

∑
i∈P

(
a2
i +

∑
j∈P+

i

∑
{c,d}∈(Uj

2 )

zczd

)
�

∑
i∈Pb

a2
i +

∑
i∈P

∑
j∈P+

i

w2
j

2
,

where Pb = {i ∈ P : P −
i = ∅} (so Pb contains precisely those i ∈ P for which there is no term∑

{c,d}∈(Ui
2 )

zczd in (10)). Using this together with wiwj � (w2
i + w2

j )/2 we obtain

3pλ(N) �
∑
i∈Pb

a2
i +

∑
i∈P

( ∑
j∈P+

i

w2
j

2
+

∑
j∈P−

i

(w2
i + w2

j )

2
+

∑
{j,k}∈(P−{i}

2 )

wjwk

)
.

Now a2
i � w2

i /2 and |P −
i |, |P +

i | � s, so we have

3pλ(N) � 1

2

( ∑
i∈Pb

w2
i +

∑
i∈P

(∣∣P +
i

∣∣ + 2
∣∣P −

i

∣∣)w2
i

)
+

∑
{j,k}∈(P−{i}

2 )

wjwk

� 1

2

( ∑
i∈Pb

(1 + s)w2
i +

∑
i∈P \Pb

3sw2
i

)
+

∑
{j,k}∈(P−{i}

2 )

wjwk

� 3s

2

∑
i∈P

w2
i + (p − 2)

∑
{j,k}∈(P

2)

wjwk.

Note that since
∑

i∈P wi = 1 we have

∑
{j,k}∈(P

2)

wjwk = 1

2
−

∑
i∈P

w2
i

2
. (11)

Hence if p � 3s + 2 then

3pλ(N) � p − 2

2
−

(
p − (3s + 2)

2

)∑
i∈P

w2
i � p

2

(
1 − 3

p
+ 3s + 2

p2

)
,

where the last inequality follows from
∑l

i=1 w2
i � 1/p. The desired bound now follows easily.

To complete the proof we need to consider the case p � 3s+1. In this case l � 9s+6 � 3p+3
and so 3/l � 1/(p + 1). Hence it is sufficient to prove that 3λ(N) � 1

2 (1 − 1
p+1 ).

If p = 1,2 then λ(N) � 1/12 (see the proof of Lemma 3.3) so we may suppose that 3 � p �
3s + 1.

Choose i ∈ P such that wi � 1/p (since
∑

i∈P wi = 1 such an i must exist) then

3λ(N) = λ(Nui
, �z) � a2

i +
∑

j∈P+
i

∑
{c,d}∈(Uj

2 )

zczd + wi

∑
j∈P−

i

wj +
∑

{j,k}∈(P−{i}
2 )

wjwk.

Since (7) holds for any j ∈ P we have

∑
j∈P+

i

∑
{c,d}∈(Uj )

zczd �
∑

j∈P+
i

w2
j

2
.

2
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Also a2
i � w2

i /4 and (11) imply that

3λ(N) � 1

2
− w2

i

4
−

∑
j∈Ci

w2
j

2
− wi

∑
j∈Di

wj ,

where Ci = P − (P +
i ∪ {i}) and Di = P − (P −

i ∪ {i}). Now l � 2s + 1 implies that
P +

i ∩ P −
i = ∅ and so Ci ∪ Di ∪ {i} = P . Hence if

∑
j∈Ci

wj = α,
∑

j∈Di
wj = β and wi = γ

then α + β + γ � 1. Moreover, γ = wi � 1/p. Note that since |Ci | � p − 1 so
∑

j∈Ci
w2

j �
α2/(p − 1) so we have

3λ(N) � 1

2

(
1 −

(
γ 2

2
+ α2

p − 1
+ 2βγ

))
.

Defining

f (α,β, γ ) = γ 2

2
+ α2

p − 1
+ 2βγ,

the proof will be complete if we show that for α + β + γ � 1, 0 � α,β � 1 − 1/p and 1/p �
γ � 1, f (α,β, γ ) is always at least 1/(p + 1). Now f is clearly minimized (subject to the
constraints) when α + β + γ = 1 so substituting for β we need to minimize

g(α, γ ) = α2

p − 1
+ 2γ − 2αγ − 3γ 2

2
,

subject to 0 � α � 1 − γ , 1/p � γ � 1. This function is decreasing in α so for fixed γ has
minimum

g(1 − γ, γ ) = h(γ ) = (1 − γ )2

p − 1
+ γ 2

2
.

Finally we minimize h(γ ) subject to 1/p � γ � 1. This function has a stationary point at
2/(p + 1) and so the constrained minimum occurs at either γ = 1/p, γ = 1 or γ = 2/(p + 1).
In each case we can check that h(γ ) � 1/(p + 1) (for p � 3). This completes the proof of
Lemma 5.2 and of Theorem 5.1. �
6. Concluding remarks

We remark that if s = 1, then the condition l � 15 in Theorem 5.1 can be relaxed to l � 2. We
also think that in general the condition l � 9s + 6 in Theorem 5.1 can be relaxed to l � s + 1
although we are not able to prove this. Since no jump in the interval [ r!

rr ,1) has been found, we
ask the following question.

Question 6.1. For r � 3, does there exist α0 ∈ [ r!
rr ,1) such that the interval [α0,1] contains no

jump?

A recent result of Mubayi and Zhao [6] answers the analogous question for the related problem
of co-degree density. They showed that in this case one can take α0 = 0 for all r � 3 (see [6,
Theorem 1.6]).
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