

Available online at www.sciencedirect.com

Journal of Combinatorial Theory _{Series B}

Journal of Combinatorial Theory, Series B 97 (2007) 204-216

www.elsevier.com/locate/jctb

A note on the jumping constant conjecture of Erdős

Peter Frankl^a, Yuejian Peng^b, Vojtech Rödl^{c,1}, John Talbot^{d,2}

^a ShibuYa-Ku, Higashi, Tokyo, Japan

^b Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
 ^c Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
 ^d Department of Mathematics, University College London, WC1E 6BT, UK

Received 11 September 2005

Available online 21 June 2006

Abstract

Let $r \ge 2$ be an integer. The real number $\alpha \in [0, 1]$ is a jump for r if there exists c > 0 such that for every positive ϵ and every integer $m \ge r$, every r-uniform graph with $n > n_0(\epsilon, m)$ vertices and at least $(\alpha + \epsilon) \binom{n}{r}$ edges contains a subgraph with m vertices and at least $(\alpha + c) \binom{m}{r}$ edges. A result of Erdős, Stone and Simonovits implies that every $\alpha \in [0, 1)$ is a jump for r = 2. For $r \ge 3$, Erdős asked whether the same is true and showed that every $\alpha \in [0, \frac{r}{r^r})$ is a jump. Frankl and Rödl gave a negative answer by showing that $1 - \frac{1}{l^{r-1}}$ is not a jump for r if $r \ge 3$ and l > 2r. Another well-known question of Erdős is whether $\frac{r!}{r^r}$ is a jump for $r \ge 3$ and what is the smallest non-jumping number. In this paper we prove that $\frac{5}{2}\frac{r!}{r^r}$ is not a jump for $r \ge 3$. We also describe an infinite sequence of non-jumping numbers for r = 3. © 2006 Elsevier Inc. All rights reserved.

Keywords: Extremal hypergraph problems

1. Introduction

For a finite set V and a positive integer r we denote by $\binom{V}{r}$ the family of all r-subsets of V. We call G = (V, E) an r-uniform graph if $E \subseteq \binom{V}{r}$. The density of G is defined by $d(G) = \frac{|E|}{|\binom{V}{r}|}$.

0095-8956/\$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2006.05.004

E-mail addresses: mapeng@isugw.indstate.edu (Y. Peng), rodl@mathcs.emory.edu (V. Rödl), talbot@math.ucl.ac.uk (J. Talbot).

¹ The author is partially supported by NSF grants DMS-0071261 and DMS-0300529.

² The author is a Royal Society University Research Fellow.

Let $S = \{G_n\}_{n=1}^{\infty}$, $G_n = (V_n, E_n)$, be a sequence of *r*-uniform graphs with the property that $|V_n| \to \infty$ as $n \to \infty$. For $k \ge r$ we define

$$\sigma_k(\mathcal{S}) = \max_n \max_{V \in \binom{V_n}{k}} \frac{|E_n \cap \binom{V}{r}|}{\binom{k}{r}}.$$
(1)

An averaging argument yields (cf. [5]): $\sigma_k(S) \ge \sigma_{k+1}(S)$. Hence $\lim_{k\to\infty} \sigma_k(S)$ exists. We denote this limit by $\bar{d}(S) = \lim_{k\to\infty} \sigma_k(S)$ and call $\bar{d}(S)$ the *upper density* of S.

Definition 1.1. For $0 \le \alpha < 1$ define $\Delta_r(\alpha) = \sup\{\delta: \overline{d}(S) > \alpha \text{ implies } \overline{d}(S) \ge \alpha + \delta \text{ for all sequences of } r \text{-uniform graphs } S = \{G_n\}_{n=1}^{\infty}, G_n = (V_n, E_n), \text{ with the property that } |V_n| \to \infty \text{ as } n \to \infty\}$. We call α a *jump* for r if $\Delta_r(\alpha) > 0$.

Erdős, Stone, Simonovits [2] proved that the only possible values of $\bar{d}(S)$, for r = 2, are $1 - \frac{1}{l}$ (l = 1, 2, 3, ...) and 1, therefore every $\alpha \in [0, 1)$ is a jump for r = 2. This result follows easily from the following theorem.

Theorem 1.1. [3] For every $\epsilon > 0$ and positive integers l, m, there exists $n_0(l, m, \epsilon)$ such that every graph G on $n > n_0(l, m, \epsilon)$ vertices with density $d(G) \ge 1 - \frac{1}{l} + \epsilon$ contains a copy of the complete (l + 1)-partite subgraph with partition class of size m (i.e., there exist l + 1 pairwise disjoint subsets V_1, \ldots, V_{l+1} such that $\{x_i, x_j\}$ is an edge of G whenever $x_i \in V_i, x_j \in V_j$ and $i \ne j$ hold).

For $r \ge 3$, Erdős proved that every $0 \le \alpha < r!/r^r$ is a jump. This result directly follows from the following theorem.

Theorem 1.2. [1] For every c > 0 and positive integer m, there exists $n_0(c, m)$ such that every r-uniform graph G on $n > n_0(c, m)$ vertices with density $d(G) \ge c$ contains a copy of the complete r-partite r-uniform graph with partition class of size m (i.e., there exist r pairwise disjoint subsets V_1, \ldots, V_r such that $\{x_1, x_2, \ldots, x_r\}$ is an edge whenever $x_i \in V_i$, $1 \le i \le r$).

Furthermore, Erdős proposed the following jumping constant conjecture.

Conjecture 1.3. *Every* $\alpha \in [0, 1)$ *is a jump for every* $r \ge 2$.

In [4], Frankl and Rödl disproved this conjecture by showing the following result.

Theorem 1.4. [4] Suppose $r \ge 3$ and l > 2r, then $1 - \frac{1}{l^{r-1}}$ is not a jump for r.

It follows from Theorem 1.2 that every number in $[0, \frac{r!}{r^r})$ is a jump for $r \ge 3$. To decide whether $\alpha = \frac{r!}{r^r}$ is a jump for $r \ge 3$ is a well-known problem of Erdős. It seems that the analogous problem for $\alpha \in (\frac{r!}{r^r}, 1)$ gets harder if α is small (that is close to $\frac{r!}{r^r}$). Therefore finding α 'as small as possible' which is not a jump seems to be a problem of interest. The smallest known value of a non-jumping number for $r \ge 3$, given by Theorem 1.4 [4], is $1 - \frac{1}{(2r+1)^{r-1}}$. In this paper we 'improve' on this by showing that $\frac{5}{2}\frac{r!}{r^r}$ is not a jump for $r \ge 3$.

The paper is organized as follows: in Section 2, we introduce the Lagrange function and some other tools used in the proof. In Section 3, we focus on the case r = 3 and prove the following result.

Theorem 1.5. The number $\frac{5}{9}$ is not a jump for r = 3.

In Section 4 we extend Theorem 1.5 to arbitrary $r \ge 3$ and show that $\frac{5}{2} \frac{r!}{r^r}$ is not a jump for $r \ge 3$.

In Section 5 we restrict our attention to r = 3 again and describe an infinite sequence of non-jumping numbers.

We should emphasize that our method of proof is similar to that of [4]. In order to determine whether or not $\frac{r!}{r^r}$ is a jump for $r \ge 3$ we are likely to require an essentially new approach.

2. The Lagrange function of an *r*-uniform hypergraph

In this section we give a definition of the Lagrange function, $\lambda(G)$, which has proved to be a helpful tool in calculating the upper density of certain sequences of *r*-uniform graphs (cf. [4]).

Definition 2.1. For an *r*-uniform graph *G* with vertex set $V = \{1, 2, ..., n\}$, edge set E(G) and a vector $\vec{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, define

$$\lambda(G, \vec{x}) = \sum_{\{i_1, \dots, i_r\} \in E(G)} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

Definition 2.2. Let $S = \{\vec{x} = (x_1, x_2, \dots, x_n): \sum_{i=1}^n x_i = 1, x_i \ge 0 \text{ for } i = 1, 2, \dots, n\}$. The Lagrange function of *G*, denoted by $\lambda(G)$, is defined as

$$\lambda(G) = \max\{\lambda(G, \vec{x}) \colon \vec{x} \in S\}.$$

Fact 2.1. Let G_1 , G_2 be *r*-uniform graphs and $G_1 \subset G_2$. Then

$$\lambda(G_1) \leq \lambda(G_2).$$

We call two vertices i, j of G equivalent if for all $f \in \binom{V(G)-\{i,j\}}{r-1}, f \cup \{j\} \in E(G)$ if and only if $f \cup \{i\} \in E(G)$. We denote this by $i \sim j$ and note that it is an equivalence relation. For an *r*-uniform graph G and $i \in V(G)$ we define G_i to be the (r-1)-uniform graph on $V - \{i\}$ with edge set $E(G_i)$ given by $e \in E(G_i)$ if and only if $e \cup \{i\} \in E(G)$. Similarly for $i, j \in V(G)$ we define G_{ij} to be the (r-2)-uniform graph on $V - \{i, j\}$ with edge set given by $e \in E(G_{ij})$ if and only if $e \cup \{i, j\} \in E(G)$.

An *r*-uniform graph *G* is said to be *covering* if for every $i, j \in V(G)$ there is an edge $e \in E(G)$ such that $i, j \in e$ (that is every pair of vertices is covered by an edge).

The following simple lemma will be useful when calculating the Lagrange function of certain graphs.

Lemma 2.2. (Cf. [4].) Let G be an r-uniform graph of order n.

- (a) There exists a covering subgraph H of G such that $\lambda(G) = \lambda(H)$.
- (b) Suppose y
 ∈ S satisfies λ(G) = λ(G, y) and v₁,..., v_t ∈ V(G) are all pairwise equivalent. If z
 ∈ S is obtained from y
 by setting the weights of the vertices v₁,..., v_t to be equal while leaving the other weights unchanged then λ(G) = λ(G, z).
- (c) If $\vec{y} \in S$ satisfies $\lambda(G) = \lambda(G, \vec{y})$ and $y_i > 0$ then $r\lambda(G) = \lambda(G_i, \vec{y})$.

Proof. Let \vec{y} satisfy $\lambda(G) = \lambda(G, \vec{y})$. Let *K* be the induced subgraph consisting of those vertices v such that $y_v > 0$. By Fact 2.1, $\lambda(K) = \lambda(K, \vec{y}) = \lambda(G)$. If $i, j \in V(K)$ and $\lambda(K_{ij}, \vec{y}) = 0$ then w.l.o.g. $\lambda(K_i, \vec{y}) \ge \lambda(K_j, \vec{y})$. Defining $\vec{z} \in S$ by $z_i = y_i + y_j$, $z_j = 0$ and $z_l = y_l$ otherwise we have

$$\lambda(K,\vec{z}) - \lambda(K,\vec{y}) = y_j \big(\lambda(K_i,\vec{y}) - \lambda(K_j,\vec{y}) \big) \ge 0.$$

Hence if *H* is the induced subgraph with vertex set $V(K) - \{j\}$ then $\lambda(G) = \lambda(K) = \lambda(H)$. Repeating this process yields a covering subgraph satisfying (a).

For (b) let $\vec{y} \in S$ be as above and suppose that $v_1, \ldots, v_t \in V(G)$ are all pairwise equivalent. If vertex v_i receives weight y_i then we may suppose that there are $1 \le i, j \le t$ such that $y_i > \mu > y_j$, where $\mu = \sum_{i=1}^t y_i/t$ (otherwise \vec{y} already has the desired properties). If $\lambda(G_{ij}, \vec{y}) > 0$ then taking $0 < \delta < y_i - y_j$ and defining $\vec{z} \in S$ by $z_i = y_i - \delta$, $z_j = y_j + \delta$ and $z_l = y_l$ otherwise we have

$$\lambda(G, \vec{z}) - \lambda(G, \vec{y}) = \delta\lambda(G_{ij}, \vec{y})(y_i - y_j - \delta) > 0,$$

but this is impossible, hence $\lambda(G_{ij}, \vec{y}) = 0$. Now defining $\vec{z} \in S$ by $z_i = \mu$, $z_j = y_i + y_j - \mu$ and $z_l = y_l$ otherwise we have $\lambda(G, \vec{z}) = \lambda(G, \vec{y}) = \lambda(G)$. Repeating this process we obtain $\vec{z} \in S$ with the desired properties after at most t - 1 iterations.

For (c) let \vec{y} be as above with $y_i > 0$ for $1 \le i \le k$ and $y_j = 0$ for $k + 1 \le j \le n$. If $y_a, y_b > 0$ and $\lambda(G_a, \vec{y}) > \lambda(G_b, \vec{y})$ then taking $0 < \delta < y_b$ sufficiently small and defining $\vec{z} \in S$ by $z_a = y_a + \delta$, $z_b = y_b - \delta$ and $z_l = y_l$ otherwise we have

$$\lambda(G, \vec{z}) - \lambda(G, \vec{y}) = \delta \left(\lambda(G_a, \vec{y}) - \lambda(G_b, \vec{y}) \right) - O\left(\delta^2\right) > 0$$

which is impossible. Hence $\lambda(G_i, \vec{y})$ is constant for $1 \leq i \leq k$. So if $y_i > 0$ then

$$r\lambda(G) = \sum_{l=1}^{n} y_l \lambda(G_l, \vec{y}) = \lambda(G_i, \vec{y}) \sum_{l=1}^{k} y_l = \lambda(G_i, \vec{y}). \quad \Box$$

The blow-up of an *r*-uniform graph will play an important role in the proof of Theorem 1.5.

Definition 2.3. Let *G* be an *r*-uniform graph with *n* vertices and (m_1, \ldots, m_n) be a nonnegative integer vector. Define the (m_1, \ldots, m_n) blow-up of *G*, $(m_1, \ldots, m_n) \otimes G$ to be the *n*-partite *r*-uniform graph with vertex set $V_1 \cup \cdots \cup V_n$, $|V_i| = m_i$, $1 \le i \le n$, and edge set $E((m_1, \ldots, m_n) \otimes G) = \{\{v_{i_1}, v_{i_2}, \ldots, v_{i_n}\}: v_i \in V_i, \{i_1, i_2, \ldots, i_r\} \in E(G)\}.$

For an integer $m \ge 1$ and an *r*-uniform graph *G*, we simply write $(m, m, ..., m) \otimes G$ as $\vec{m} \otimes G$.

The Lagrange function of an r-uniform graph G is closely related to the upper density of a certain sequence of r-uniform graphs, as described in the following claim.

Claim 2.3. Let $m \ge 1$ be an integer and G be an r-uniform graph. Then $\overline{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty}) = r!\lambda(G)$ holds.

Proof. Suppose *G* has *n* vertices and $\vec{y} = (y_1, \ldots, y_n) \in S$ satisfies $\lambda(G) = \lambda(G, \vec{y})$. For a positive integer *m*, take the subgraph $H_m = (\lfloor my_1 \rfloor, \lfloor my_2 \rfloor, \ldots, \lfloor my_n \rfloor) \otimes G$ of $\vec{m} \otimes G$. It is easy to verify that for every $\epsilon > 0$, there exists $m_0(\epsilon)$ such that $d(H_m) \ge r!\lambda(G) - \epsilon$ if $m \ge m_0$. Hence $\overline{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty}) \ge r!\lambda(G)$.

On the other hand, by the definition of $\bar{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty})$, for every $\epsilon > 0$, there exists k_0 such that for every $k \ge k_0$, there exist an integer m and a subgraph H of $\vec{m} \otimes G$ with |V(H)| = k satisfying $d(H) > \bar{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty}) - \epsilon/2$. Suppose $V(H) = \bigcup_{i=1}^{n} V_i$, where $V_i, 1 \le i \le n$, are the corresponding color classes of the *n*-partite *r*-uniform graph H. If $\vec{y} = (y_1, \ldots, y_n)$, where $y_i = |V_i| / \sum_{i=1}^{n} |V_i|$, then it is easy to verify that $r!\lambda(G, \vec{y}) \ge d(H) - \epsilon/2$. Consequently, for any $\epsilon > 0$, we are able to find \vec{y} such that

$$r!\lambda(G, \vec{y}) \ge \bar{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty}) - \epsilon.$$

Therefore $\bar{d}(\{\vec{m} \otimes G\}_{m=1}^{\infty}) \le r!\lambda(G).$

Lemma 2.2(a) implies that the following holds.

Fact 2.4. For every *r*-uniform graph *G* and every integer m, $\lambda(\vec{m} \otimes G) = \lambda(G)$.

3. The proof of Theorem 1.5

We require the following definition.

Definition 3.1. If \mathcal{F} is a family of *r*-uniform graphs and $\alpha \in [0, 1]$ then we say that α is a threshold for \mathcal{F} if for every $\epsilon > 0$ there exists $n_0 = n_0(\epsilon, \alpha, r, \mathcal{F})$ such that every *r*-uniform graph *G* with $d(G) \ge \alpha + \epsilon$ and $|V(G)| > n_0$ contains some member of \mathcal{F} as a subgraph. We denote this fact by $\alpha \to \mathcal{F}$.

Our proof of Theorem 1.5 relies on the following result.

Lemma 3.1. (Cf. [4].) The following two properties are equivalent:

- (1) α is a jump for r;
- (2) $\alpha \to \mathcal{F}$ for some finite family \mathcal{F} of r-uniform graphs satisfying $\min_{F \in \mathcal{F}} \lambda(F) > \frac{\alpha}{r!}$.

The proof of this lemma was given in [4] and we omit it here.

For an integer $t \ge 2$ let G(t) = (V, E) be the 3-uniform graph defined as follows. The vertex set $V = V_1 \cup V_2 \cup V_3$, where $|V_1| = |V_2| = |V_3| = t$ and V_1, V_2, V_3 are pairwise disjoint. The edge set *E* consists of all triples of the form $\{\{a, b, c\}: a \in V_1, b \in V_2, and c \in V_3\}$ and all triples of the form $\{\{a, b, c\}: a \in V_i, b \in V_2, and c \in V_3\}$ and all triples of the form $\{\{a, b, c\}: a \in V_i, and b, c \in V_j, where j - i = 1 \mod 3\}$.

By taking the vector $\vec{y} = (y_1, \dots, y_{3t})$, where $y_i = 1/3t$ for each $i, 1 \le i \le 3t$, it is easy to see that

$$\lambda(G(t)) \ge \frac{1}{3!} \left(\frac{5}{9} - \frac{1}{3t}\right). \tag{2}$$

Consider the sequence $S = \{\vec{m} \otimes G(t)\}_{m=1}^{\infty}$. Inequality (2) and Claim 2.3 imply that $\bar{d}(S) \ge \frac{5}{9} - \frac{1}{3t}$. Our plan is to add $3ct^2$ edges to G(t) and hence obtain a new graph $G^*(t)$ satisfying

$$\bar{d}\left(\left\{\vec{m}\otimes G^*(t)\right\}_{m=1}^{\infty}\right) = 3!\lambda\left(G^*(t)\right) > \frac{5}{9}$$

while $\lambda(F) \leq \frac{5}{9} \frac{1}{3!}$ for any small subgraph $F \subset \vec{m} \otimes G^*(t)$. Lemma 3.1 then implies that 5/9 cannot be a jump for r = 3.

The next lemma allows us to construct $G^*(t)$.

Lemma 3.2. [4] Let k be any fixed integer and $c \ge 0$ be any fixed real number. Then there exists $t_0(k, c)$ such that for every $t > t_0(k, c)$, there exists a 3-uniform graph A satisfying:

- (i) |V(A)| = t;
- (ii) $|E(A)| \ge ct^2$;

(iii) for all $V_0 \subset V(A)$, $3 \leq |V_0| \leq k$ we have $|E(A) \cap {\binom{V_0}{3}}| \leq |V_0| - 2$.

The proof of Lemma 3.2, based on a simple random construction, was given in [4]. We omit the proof here.

For k, c fixed and $t > t_0(k, c)$ let A be a 3-uniform graph satisfying the conditions of Lemma 3.2. We construct the graph $G^*(t, k, c)$ from G(t) by adding a copy of E(A) into each vertex class of G(t). (So now $E(V_i) = E(A)$, for i = 1, 2, 3.)

The proof of Theorem 1.5 is based on the following lemma.

Lemma 3.3. For any integer $k \ge 1$, real number c > 0 and $t > t_0(k, c)$ given in Lemma 3.2 if M is a subgraph of $G^*(t, k, c)$ and $|V(M)| \le k$, then

$$\lambda(M) \leqslant \frac{1}{3!} \cdot \frac{5}{9}.$$
(3)

Assuming this result for the moment we may complete the proof of Theorem 1.5 as follows.

Proof of Theorem 1.5. Suppose that $\frac{5}{9}$ is a jump. In view of Lemma 3.1, there exists a finite collection \mathcal{F} of 3-uniform graphs satisfying the following two conditions:

(i) $\lambda(F) > \frac{1}{3!} \frac{5}{9}$ for all $F \in \mathcal{F}$; (ii) $\frac{5}{9}$ is a threshold for \mathcal{F} .

Set $k = \max_{F \in \mathcal{F}} |V(F)|$ and c = 1. Take $t > t_0(k, c)$ as given by Lemma 3.2 and let $G^*(t) = G^*(t, k, c)$. If $\vec{y} = (y_1, \dots, y_{3t})$, where $y_i = 1/3t$ for each $i, 1 \le i \le 3t$, then

$$3!\lambda(G^*(t)) \ge \frac{6|E(G^*(t))|}{(3t)^3} \ge \frac{2}{9t^3} \left(t^3 + 3\binom{t}{2}t + 3t^2\right) \ge \frac{5}{9} + \frac{1}{3t}.$$

Hence, by Claim 2.3, we have

$$\bar{d}(\{\vec{m}\otimes G^*(t)\}_{m=1}^{\infty}) \ge \frac{5}{9} + \frac{1}{3t}.$$
(4)

Now condition (ii) above, the definition of 'threshold' and inequality (4) imply that some member F of \mathcal{F} is a subgraph of $\vec{m} \otimes G^*(t)$ for $m \ge m_0(k, t)$. For such $F \in \mathcal{F}$, there exists a subgraph M of $G^*(t)$ with $|V(M)| \le k$ satisfying $F \subset \vec{m} \otimes M \subset \vec{m} \otimes G^*(t)$.

By Facts 2.1, 2.4 and Lemma 3.3, we have

$$\lambda(F) \leq \lambda(\vec{m} \otimes M) = \lambda(M) \leq \frac{1}{3!} \cdot \frac{5}{9}$$

which contradicts condition (i) above that $\lambda(F) > \frac{1}{3!} \frac{5}{9}$ for all $F \in \mathcal{F}$. This completes the proof of Theorem 1.5. \Box

It remains to prove Lemma 3.3.

Proof of Lemma 3.3. By Fact 2.1, we may assume that M is an induced subgraph of $G^*(t)$. Let

$$U_i = V(M) \cap V_i = \{v_1^i, v_2^i, \dots, v_{k_i}^i\}.$$

So $k = k_1 + k_2 + k_3$.

Claim 3.4. (Cf. [4].) If N is the 3-uniform graph formed from M by removing the edges contained in each U_i and inserting the edges $\{\{v_1^i, v_2^i, v_i^i\}: 1 \le i \le 3, 3 \le j \le k_i\}$ then $\lambda(M) \le \lambda(N)$.

Proof. Let $M_i = (U_i, E(M) \cap {\binom{U_i}{3}}), N_i = (U_i, E(N) \cap {\binom{U_i}{3}})$ and $x_1 \ge x_2 \ge \cdots \ge x_{k_i} \ge 0$. It is sufficient to prove that $\lambda(M_i, \vec{x}) \le \lambda(N_i, \vec{x})$.

Let the edges of M_i in decreasing order be e_1, e_2, \ldots, e_s , i.e., $\prod_{v \in e_p} x_v \ge \prod_{v \in e_q} x_v$ for p < q. By the construction of $G^*(t)$ (Lemma 3.2(iii)) we have $s \le k_i - 2$. We will prove that $\prod_{v \in e_p} x_v \le x_1 x_2 x_{2+p}$ for all $1 \le p \le s$. By Lemma 3.2(iii) we have $|e_1 \cup e_2 \cup \cdots \cup e_p| \ge 2+p$ for $p = 1, 2, \ldots, s$, so at least one of the edges from e_1, e_2, \ldots, e_p contains some v_j^i with $j \ge 2+p$ and thus, by monotonicity, $\prod_{v \in e_p} x_v \le x_1 x_2 x_{2+p}$. Thus $\lambda(M_i, \vec{x}) \le \lambda(N_i, \vec{x})$.

By Claim 3.4 the proof of Lemma 3.3 will be complete if we show that $\lambda(N) \leq 5/54$. Since $v_1^i \sim v_2^i$ and $v_3^i, v_4^i, \ldots, v_{k_i}^i$ are all pairwise equivalent we can use Lemma 2.2(b) to obtain $\vec{z} \in S$ satisfying $\lambda(N, \vec{z}) = \lambda(N)$ such that

$$z_1^i = z_2^i = a_i, \qquad z_3^i = z_4^i = \dots = z_{k_i}^i = b_i,$$

where a_i, b_i (i = 1, 2, 3) are constants.

Let $w_i = 2a_i + (k_i - 2)b_i$ (so $w_1 + w_2 + w_3 = 1$). If $P = \{i: w_i > 0\}$ and p = |P| then we may suppose that $p \ge 2$ (since otherwise Lemma 2.2(a) allows us to reduce M to a single edge with $\lambda(M) = 1/27$). So suppose that $2 \le p \le 3$.

For each $i \in P$ take a vertex $u_i \in U_i$ as follows: if $b_i > 0$ then $u_i = v_3^i$ otherwise $u_i = v_1^i$. The vertex u_i receives non-zero weight so by Lemma 2.2(c) we have $3\lambda(N) = \lambda(N_{u_i}, \vec{z})$. Moreover, by considering the edges containing vertex u_i we have

$$\lambda(N_{u_i}, \vec{z}) \leq a_i^2 + w_i w_{i+2} + w_{i+1} w_{i+2} + \sum_{\{c,d\} \in \binom{U_{i+1}}{2}} z_c z_d,$$
(5)

where all subscripts are modulo 3.

Now, since $\sum_{\{c,d\} \in \binom{U_{i+1}}{2}} z_c z_d$ is zero if $w_{i+1} = 0$, so (5) implies that

$$3p\lambda(N) = \sum_{i \in P} \lambda(N_{u_i}, \vec{z}) \leq \sum_{i \in P} \left(a_i^2 + w_{i+2}(1 - w_{i+2}) + \sum_{\{c,d\} \in \binom{U_i}{2}} z_c z_d \right).$$
(6)

We claim that the following holds for i = 1, 2, 3:

$$a_i^2 + \sum_{\{c,d\} \in \binom{U_i}{2}} z_c z_d \leqslant \frac{w_i^2}{2}.$$
(7)

We have $w_i = 2a_i + (k_i - 2)b_i$.

Hence

$$a_i^2 + \sum_{\{c,d\} \in \binom{U_i}{2}} z_c z_d = 2a_i^2 + 2(k_i - 2)a_i b_i + \binom{k_i - 2}{2}b_i^2 \leqslant \frac{w_i^2}{2}.$$

Combining (6) and (7) we obtain

$$3p\lambda(N) \leq \sum_{i \in P} \left(\frac{w_i^2}{2} + w_{i+2}(1 - w_{i+2})\right).$$

Now, using $w_1 + w_2 + w_3 = 1$, if p = 3 we have

$$9\lambda(N) \leqslant 1 - \frac{w_1^2 + w_2^2 + w_3^2}{2} \leqslant \frac{5}{6}$$

While if p = 2 (so w.l.o.g. $w_3 = 0$) then we have

$$6\lambda(N) \leq \frac{(w_1 + w_2)^2}{2} = \frac{1}{2}.$$

Hence $\lambda(N) \leq 5/54$ as required. \Box

4. An extension of Theorem 1.5

In this section we extend Theorem 1.5 to arbitrary $r \ge 3$ and prove the following result.

Theorem 4.1. Let $r \ge 3$ be an integer. Then $\frac{5}{2} \cdot \frac{r!}{r^r}$ is not a jump for r.

Proof. We assume that $r \ge 4$ and $\frac{5}{2} \cdot \frac{r!}{r^r}$ is a jump for *r*. In view of Lemma 3.1, there exists a finite collection \mathcal{F} of *r*-uniform graphs satisfying the following:

(i) $\lambda(F) > \frac{5}{2} \cdot \frac{1}{r^r}$ for all $F \in \mathcal{F}$, and (ii) $\frac{5}{2} \cdot \frac{r!}{r^r}$ is a threshold for \mathcal{F} .

Set $k = \max_{F \in \mathcal{F}} |V(F)|$ and c = 1. Let $t_0(k, c)$ be as in Lemma 3.2. For $t > t_0(k, c)$, take the 3-uniform graph $G^{(3)} = G^*(t, k, c)$ on vertex set $V_1 \cup V_2 \cup V_3$ constructed as in Section 3. Note that

$$|E(G^{(3)})| \ge \frac{5t^3}{2} + \frac{3t^2}{2}.$$

Based on the 3-uniform graph $G^{(3)}$, we construct an *r*-uniform graph $G^{(r)}$ on *r* pairwise disjoint sets $V_1, V_2, V_3, V_4, \ldots, V_r$, each of order *t*. An *r*-element set $\{u_1, u_2, u_3, u_4, \ldots, u_r\}$ is an edge of $G^{(r)}$ if and only if $\{u_1, u_2, u_3\}$ is an edge in $G^{(3)}$ and for each $j, 4 \le j \le r, u_j \in V_j$. Notice that

$$|E(G^{(r)})| = t^{r-3} |E(G^{(3)})| \ge \frac{5t^r}{2} + \frac{3t^{r-1}}{2}$$

We can now give a lower bound for $\lambda(G^{(r)})$. Corresponding to the *rt* vertices of this *r*-uniform graph, let us take vector $\vec{y} = (y_1, \dots, y_{rt})$, where $y_i = \frac{1}{rt}$ for each $i, 1 \le i \le rt$.

Then

$$\lambda(G^{(r)}) \ge \lambda(G^{(r)}, \vec{y}) = \frac{|E(G^{(r)})|}{(rt)^r} \ge \left(\frac{5}{2} + \frac{3}{2t}\right) \frac{1}{r^r}.$$

Similarly as Theorem 1.5 follows from Lemma 3.3, in order to prove Theorem 4.1, it will be sufficient to prove the following lemma.

Lemma 4.2. Let $M^{(r)}$ be a subgraph of $G^{(r)}$ with $|V(M^{(r)})| \leq k$. Then

$$\lambda(M^{(r)}) \leqslant \frac{5}{2} \cdot \frac{1}{r^r} \tag{8}$$

holds.

We are going to use Lemma 3.3 to prove it.

Proof. Again, by Fact 2.1, we may assume that $M^{(r)}$ is a non-empty induced subgraph of $G^{(r)}$. Define $U_i = V(M^{(r)}) \cap V_i$ for $1 \le i \le r$. Let $M^{(3)}$ be the 3-uniform graph defined on $\bigcup_{i=1}^3 U_i$. The edge set of $M^{(3)}$ consists of all 3-sets of the form of $e \cap (\bigcup_{i=1}^3 U_i)$, where e is an edge in $M^{(r)}$. Let $\vec{\xi}$ be an optimal vector for $\lambda(M^{(r)})$, i.e., $\lambda(M^{(r)}, \vec{\xi}) = \lambda(M^{(r)})$. Let $\vec{\xi}^{(3)}$ be the restriction of $\vec{\xi}$ to $U_1 \cup U_2 \cup U_3$. Let w_i be the sum of all components of $\vec{\xi}$ corresponding to vertices in U_i , $1 \le i \le r$, respectively. In view of the relationship between $M^{(r)}$ and $M^{(3)}$, we have

$$\lambda(M^{(r)}) = \lambda(M^{(3)}, \vec{\xi}^{(3)}) \times \prod_{i=4}^r w_i.$$

Note that $M^{(3)}$ is a subgraph of $G^{(3)} = G^*(t, k, c)$ satisfying $|V(M^{(3)})| \leq |V(M^{(r)})| \leq k$. Also note that the summation of all components of $\vec{\xi}^{(3)}$ is $1 - \sum_{i=4}^r w_i$ and every term in $\lambda(M^{(3)}, \vec{\xi}^{(3)})$ has degree 3. Consequently by Lemma 3.3, we infer that

$$\lambda(M^{(3)}, \vec{\xi}^{(3)}) \leq \frac{5}{54} \left(1 - \sum_{i=4}^{r} w_i\right)^3$$

Therefore,

$$\lambda(M^{(r)}) \leq \frac{5}{54} \left(1 - \sum_{i=4}^{r} w_i \right)^3 \prod_{i=4}^{r} w_i = \frac{5}{2} \left(\frac{1 - \sum_{i=4}^{r} w_i}{3} \right)^3 \prod_{i=4}^{r} w_i.$$

Since the geometric mean is no more than the arithmetic mean, we obtain

$$\lambda(M^{(r)}) \leqslant \frac{5}{2} \cdot \frac{1}{r^r}.$$

This completes the proof of Lemma 4.2. \Box

5. More non-jumping numbers

In this section, we return to the case r = 3. The construction used in the proof of Theorem 1.5 can be easily generalized to give the following result.

212

Theorem 5.1. For any integers $s \ge 1$ and $l \ge 9s + 6$ the number $1 - \frac{3}{l} + \frac{3s+2}{l^2}$ is not a jump for r = 3.

For l, s as in the statement of Theorem 5.1 and $t \ge 2$ consider the 3-uniform hypergraph G(l, s, t) with vertex set $V = \bigcup_{i=1}^{l} V_i$, where $|V_i| = t$ and $V_i, 1 \le i \le l$, are pairwise disjoint. The edge set consists of all triples of the form $\{\{a, b, c\}: a \in V_i, b \in V_j, and c \in V_k, \{i, j, k\} \in {\binom{[l]}{3}}\}$, if $l \ge 3$, and all triples of the form $\{\{a, b, c\}: a \in V_i and b, c \in V_j, with 1 \le (j-i) \mod l \le s\}$. When l = 3, s = 1, G(l, s, t) is G(t).

Now let $k \ge 1$ be an integer, c = s and $t \ge t_0(k, c)$ be as given by Lemma 3.2. We construct $G^*(l, s, t)$ from G(l, s, t) by inserting into each V_i a copy of a graph A as given by Lemma 3.2. Note that

$$\lambda \left(G^*(l,s,t) \right) \ge \frac{|E(G^*(l,s,t))|}{(lt)^3} \ge \frac{\binom{l}{3}t^3 + ls\binom{t}{2}t + lst^2}{(lt)^3} = \frac{1}{6} \left(1 - \frac{3}{l} + \frac{3s+2}{l^2} + \frac{3s}{l^2t} \right).$$

As with Theorem 1.5, the proof of Theorem 5.1 may be reduced to proving the following lemma.

Lemma 5.2.

$$\lambda(M) \leqslant \frac{1}{6} \left(1 - \frac{3}{l} + \frac{3s+2}{l^2} \right) \tag{9}$$

holds for any subgraph M of $G^*(l, s, t)$ with $|V(M)| \leq k$.

Proof. An obvious analogue of Claim 3.4 holds so if N is the 3-uniform graph formed from M by replacing the edges contained in each $U_i = V_i \cap V(M)$ with the following edges: $\{\{v_i^i, v_2^i, v_i^i\}: 1 \le i \le l, 3 \le j \le k_i\}$ then it is sufficient to prove that

$$\lambda(N) \leq \frac{1}{6} \left(1 - \frac{3}{l} + \frac{3s+2}{l^2} \right).$$

As before (using Lemma 2.2(b)) we may take $\vec{z} \in S$ such that $\lambda(G, \vec{z}) = \lambda(G)$ and $z_1^i = z_2^i = a_i$ and $z_3^i = z_4^i = \cdots = z_{k_i}^i = b_i$. Let $w_i = 2a_i + (k_i - 2)b_i$, $P = \{1 \le i \le l: w_i > 0\}$ and $p = |P| \le l$. For $i \in P$ define $P_i^+ = P \cap \{i+1, i+2, \dots, i+s\}$ and $P_i^- = P \cap \{i-1, i-2, \dots, i-s\}$. For $i \in P$ let u_i be a vertex in U_i receiving weight b_i , if $b_i > 0$, and otherwise receiving weight $a_i > 0$. Considering the edges containing u_i we have

$$\lambda(N_{u_i}, \vec{z}) \leq a_i^2 + \sum_{j \in P_i^+} \sum_{\{c,d\} \in \binom{U_j}{2}} z_c z_d + w_i \sum_{j \in P_i^-} w_j + \sum_{\{j,k\} \in \binom{P-\{i\}}{2}} w_j w_k.$$

Using Lemma 2.2(c) we obtain

$$3p\lambda(N) = \sum_{i \in P} \lambda(N_{u_i}, \vec{z})$$

$$\leq \sum_{i \in P} \left(a_i^2 + \sum_{j \in P_i^+} \sum_{\{c,d\} \in \binom{U_j}{2}} z_c z_d + w_i \sum_{j \in P_i^-} w_j + \sum_{\{j,k\} \in \binom{P-[i]}{2}} w_j w_k \right).$$
(10)

Now (7) holds for $i \in P$ so

$$\sum_{i\in P} \left(a_i^2 + \sum_{j\in P_i^+} \sum_{\{c,d\}\in \binom{U_j}{2}} z_c z_d\right) \leqslant \sum_{i\in P_b} a_i^2 + \sum_{i\in P} \sum_{j\in P_i^+} \frac{w_j^2}{2},$$

where $P_b = \{i \in P: P_i^- = \emptyset\}$ (so P_b contains precisely those $i \in P$ for which there is no term $\sum_{\{c,d\} \in \binom{U_i}{2}} z_c z_d$ in (10)). Using this together with $w_i w_j \leq (w_i^2 + w_j^2)/2$ we obtain

$$3p\lambda(N) \leq \sum_{i \in P_b} a_i^2 + \sum_{i \in P} \left(\sum_{j \in P_i^+} \frac{w_j^2}{2} + \sum_{j \in P_i^-} \frac{(w_i^2 + w_j^2)}{2} + \sum_{\{j,k\} \in \binom{P-[i]}{2}} w_j w_k \right).$$

Now $a_i^2 \leq w_i^2/2$ and $|P_i^-|, |P_i^+| \leq s$, so we have

$$3p\lambda(N) \leq \frac{1}{2} \left(\sum_{i \in P_b} w_i^2 + \sum_{i \in P} (|P_i^+| + 2|P_i^-|) w_i^2 \right) + \sum_{\{j,k\} \in \binom{P-(i)}{2}} w_j w_k$$
$$\leq \frac{1}{2} \left(\sum_{i \in P_b} (1+s) w_i^2 + \sum_{i \in P \setminus P_b} 3s w_i^2 \right) + \sum_{\{j,k\} \in \binom{P-(i)}{2}} w_j w_k$$
$$\leq \frac{3s}{2} \sum_{i \in P} w_i^2 + (p-2) \sum_{\{j,k\} \in \binom{P}{2}} w_j w_k.$$

Note that since $\sum_{i \in P} w_i = 1$ we have

$$\sum_{\{j,k\}\in \binom{P}{2}} w_j w_k = \frac{1}{2} - \sum_{i\in P} \frac{w_i^2}{2}.$$
(11)

Hence if $p \ge 3s + 2$ then

$$3p\lambda(N) \leq \frac{p-2}{2} - \left(\frac{p-(3s+2)}{2}\right) \sum_{i \in P} w_i^2 \leq \frac{p}{2} \left(1 - \frac{3}{p} + \frac{3s+2}{p^2}\right),$$

where the last inequality follows from $\sum_{i=1}^{l} w_i^2 \ge 1/p$. The desired bound now follows easily.

To complete the proof we need to consider the case $p \leq 3s+1$. In this case $l \geq 9s+6 \geq 3p+3$ and so $3/l \leq 1/(p+1)$. Hence it is sufficient to prove that $3\lambda(N) \leq \frac{1}{2}(1-\frac{1}{p+1})$.

If p = 1, 2 then $\lambda(N) \leq 1/12$ (see the proof of Lemma 3.3) so we may suppose that $3 \leq p \leq 3s + 1$.

Choose $i \in P$ such that $w_i \ge 1/p$ (since $\sum_{i \in P} w_i = 1$ such an *i* must exist) then

$$3\lambda(N) = \lambda(N_{u_i}, \vec{z}) \leq a_i^2 + \sum_{j \in P_i^+} \sum_{\{c,d\} \in \binom{U_j}{2}} z_c z_d + w_i \sum_{j \in P_i^-} w_j + \sum_{\{j,k\} \in \binom{P-\{i\}}{2}} w_j w_k.$$

Since (7) holds for any $j \in P$ we have

$$\sum_{j \in P_i^+} \sum_{\{c,d\} \in \binom{U_j}{2}} z_c z_d \leqslant \sum_{j \in P_i^+} \frac{w_j^2}{2}$$

Also $a_i^2 \leq w_i^2/4$ and (11) imply that

$$3\lambda(N) \leq \frac{1}{2} - \frac{w_i^2}{4} - \sum_{j \in C_i} \frac{w_j^2}{2} - w_i \sum_{j \in D_i} w_j$$

where $C_i = P - (P_i^+ \cup \{i\})$ and $D_i = P - (P_i^- \cup \{i\})$. Now $l \ge 2s + 1$ implies that $P_i^+ \cap P_i^- = \emptyset$ and so $C_i \cup D_i \cup \{i\} = P$. Hence if $\sum_{j \in C_i} w_j = \alpha$, $\sum_{j \in D_i} w_j = \beta$ and $w_i = \gamma$ then $\alpha + \beta + \gamma \ge 1$. Moreover, $\gamma = w_i \ge 1/p$. Note that since $|C_i| \le p - 1$ so $\sum_{j \in C_i} w_j^2 \ge \alpha^2/(p-1)$ so we have

$$3\lambda(N) \leq \frac{1}{2} \left(1 - \left(\frac{\gamma^2}{2} + \frac{\alpha^2}{p-1} + 2\beta\gamma \right) \right).$$

Defining

$$f(\alpha, \beta, \gamma) = \frac{\gamma^2}{2} + \frac{\alpha^2}{p-1} + 2\beta\gamma,$$

the proof will be complete if we show that for $\alpha + \beta + \gamma \ge 1$, $0 \le \alpha$, $\beta \le 1 - 1/p$ and $1/p \le \gamma \le 1$, $f(\alpha, \beta, \gamma)$ is always at least 1/(p+1). Now f is clearly minimized (subject to the constraints) when $\alpha + \beta + \gamma = 1$ so substituting for β we need to minimize

$$g(\alpha, \gamma) = \frac{\alpha^2}{p-1} + 2\gamma - 2\alpha\gamma - \frac{3\gamma^2}{2},$$

subject to $0 \le \alpha \le 1 - \gamma$, $1/p \le \gamma \le 1$. This function is decreasing in α so for fixed γ has minimum

$$g(1 - \gamma, \gamma) = h(\gamma) = \frac{(1 - \gamma)^2}{p - 1} + \frac{\gamma^2}{2}.$$

Finally we minimize $h(\gamma)$ subject to $1/p \leq \gamma \leq 1$. This function has a stationary point at 2/(p+1) and so the constrained minimum occurs at either $\gamma = 1/p$, $\gamma = 1$ or $\gamma = 2/(p+1)$. In each case we can check that $h(\gamma) \ge 1/(p+1)$ (for $p \ge 3$). This completes the proof of Lemma 5.2 and of Theorem 5.1. \Box

6. Concluding remarks

We remark that if s = 1, then the condition $l \ge 15$ in Theorem 5.1 can be relaxed to $l \ge 2$. We also think that in general the condition $l \ge 9s + 6$ in Theorem 5.1 can be relaxed to $l \ge s + 1$ although we are not able to prove this. Since no jump in the interval $[\frac{r!}{r^r}, 1)$ has been found, we ask the following question.

Question 6.1. For $r \ge 3$, does there exist $\alpha_0 \in [\frac{r!}{r^r}, 1)$ such that the interval $[\alpha_0, 1]$ contains no jump?

A recent result of Mubayi and Zhao [6] answers the analogous question for the related problem of co-degree density. They showed that in this case one can take $\alpha_0 = 0$ for all $r \ge 3$ (see [6, Theorem 1.6]).

References

- [1] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183–190.
- [2] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.
- [3] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.
- [4] P. Frankl, V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149–159.
- [5] G. Katona, T. Nemetz, M. Simonovits, On a graph-problem of Turán, Mat. Fiz. Lapok 48 (1941) 436–452.
- [6] D. Mubayi, Y. Zhao, Co-degree density of hypergraphs, preprint, 2006.