A note on the jumping constant conjecture of Erdős

Peter Frankl ${ }^{\text {a }}$, Yuejian Peng ${ }^{\text {b }}$, Vojtech Rödl ${ }^{\text {c,1 }}$, John Talbot ${ }^{\text {d,2 }}$
a ShibuYa-Ku, Higashi, Tokyo, Japan
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
${ }^{\mathrm{d}}$ Department of Mathematics, University College London, WC1E 6BT, UK

Received 11 September 2005
Available online 21 June 2006

Abstract

Let $r \geqslant 2$ be an integer. The real number $\alpha \in[0,1]$ is a jump for r if there exists $c>0$ such that for every positive ϵ and every integer $m \geqslant r$, every r-uniform graph with $n>n_{0}(\epsilon, m)$ vertices and at least $(\alpha+\epsilon)\binom{n}{r}$ edges contains a subgraph with m vertices and at least $(\alpha+c)\binom{m}{r}$ edges. A result of Erdős, Stone and Simonovits implies that every $\alpha \in[0,1)$ is a jump for $r=2$. For $r \geqslant 3$, Erdős asked whether the same is true and showed that every $\alpha \in\left[0, \frac{r!}{r^{r}}\right)$ is a jump. Frankl and Rödl gave a negative answer by showing that $1-\frac{1}{l^{r-1}}$ is not a jump for r if $r \geqslant 3$ and $l>2 r$. Another well-known question of Erdős is whether $\frac{r!}{r^{r}}$ is a jump for $r \geqslant 3$ and what is the smallest non-jumping number. In this paper we prove that $\frac{5}{2} \frac{r!}{r^{r}}$ is not a jump for $r \geqslant 3$. We also describe an infinite sequence of non-jumping numbers for $r=3$. © 2006 Elsevier Inc. All rights reserved.

Keywords: Extremal hypergraph problems

1. Introduction

For a finite set V and a positive integer r we denote by $\binom{V}{r}$ the family of all r-subsets of V. We call $G=(V, E)$ an r-uniform graph if $E \subseteq\binom{V}{r}$. The density of G is defined by $d(G)=\frac{|E|}{\left|\binom{V}{r}\right|}$.

[^0]Let $\mathcal{S}=\left\{G_{n}\right\}_{n=1}^{\infty}, G_{n}=\left(V_{n}, E_{n}\right)$, be a sequence of r-uniform graphs with the property that $\left|V_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. For $k \geqslant r$ we define

$$
\begin{equation*}
\sigma_{k}(\mathcal{S})=\max _{n} \max _{V \in\binom{V_{n}}{k}} \frac{\left|E_{n} \cap\binom{V}{r}\right|}{\binom{k}{r}} . \tag{1}
\end{equation*}
$$

An averaging argument yields (cf. [5]): $\sigma_{k}(\mathcal{S}) \geqslant \sigma_{k+1}(\mathcal{S})$. Hence $\lim _{k \rightarrow \infty} \sigma_{k}(\mathcal{S})$ exists. We denote this limit by $\bar{d}(\mathcal{S})=\lim _{k \rightarrow \infty} \sigma_{k}(\mathcal{S})$ and call $\bar{d}(\mathcal{S})$ the upper density of \mathcal{S}.

Definition 1.1. For $0 \leqslant \alpha<1$ define $\Delta_{r}(\alpha)=\sup \{\delta: \bar{d}(\mathcal{S})>\alpha$ implies $\bar{d}(\mathcal{S}) \geqslant \alpha+\delta$ for all sequences of r-uniform graphs $\mathcal{S}=\left\{G_{n}\right\}_{n=1}^{\infty}, G_{n}=\left(V_{n}, E_{n}\right)$, with the property that $\left|V_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. We call α a jump for r if $\Delta_{r}(\alpha)>0$.

Erdős, Stone, Simonovits [2] proved that the only possible values of $\bar{d}(\mathcal{S})$, for $r=2$, are $1-\frac{1}{l}$ $(l=1,2,3, \ldots)$ and 1 , therefore every $\alpha \in[0,1)$ is a jump for $r=2$. This result follows easily from the following theorem.

Theorem 1.1. [3] For every $\epsilon>0$ and positive integers l, m, there exists $n_{0}(l, m, \epsilon)$ such that every graph G on $n>n_{0}(l, m, \epsilon)$ vertices with density $d(G) \geqslant 1-\frac{1}{l}+\epsilon$ contains a copy of the complete $(l+1)$-partite subgraph with partition class of size m (i.e., there exist $l+1$ pairwise disjoint subsets V_{1}, \ldots, V_{l+1} such that $\left\{x_{i}, x_{j}\right\}$ is an edge of G whenever $x_{i} \in V_{i}, x_{j} \in V_{j}$ and $i \neq j$ hold $)$.

For $r \geqslant 3$, Erdős proved that every $0 \leqslant \alpha<r!/ r^{r}$ is a jump. This result directly follows from the following theorem.

Theorem 1.2. [1] For every $c>0$ and positive integer m, there exists $n_{0}(c, m)$ such that every r-uniform graph G on $n>n_{0}(c, m)$ vertices with density $d(G) \geqslant c$ contains a copy of the complete r-partite r-uniform graph with partition class of size m (i.e., there exist r pairwise disjoint subsets V_{1}, \ldots, V_{r} such that $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is an edge whenever $\left.x_{i} \in V_{i}, 1 \leqslant i \leqslant r\right)$.

Furthermore, Erdős proposed the following jumping constant conjecture.
Conjecture 1.3. Every $\alpha \in[0,1)$ is a jump for every $r \geqslant 2$.
In [4], Frankl and Rödl disproved this conjecture by showing the following result.
Theorem 1.4. [4] Suppose $r \geqslant 3$ and $l>2 r$, then $1-\frac{1}{l^{r-1}}$ is not a jump for r.
It follows from Theorem 1.2 that every number in $\left[0, \frac{r!}{r^{r}}\right)$ is a jump for $r \geqslant 3$. To decide whether $\alpha=\frac{r!}{r^{r}}$ is a jump for $r \geqslant 3$ is a well-known problem of Erdős. It seems that the analogous problem for $\alpha \in\left(\frac{r!}{r^{r}}, 1\right)$ gets harder if α is small (that is close to $\frac{r!}{r^{r}}$). Therefore finding α 'as small as possible' which is not a jump seems to be a problem of interest. The smallest known value of a non-jumping number for $r \geqslant 3$, given by Theorem 1.4 [4], is $1-\frac{1}{(2 r+1)^{r-1}}$. In this paper we 'improve' on this by showing that $\frac{5}{2} \frac{r!}{r^{r}}$ is not a jump for $r \geqslant 3$.

The paper is organized as follows: in Section 2, we introduce the Lagrange function and some other tools used in the proof. In Section 3, we focus on the case $r=3$ and prove the following result.

Theorem 1.5. The number $\frac{5}{9}$ is not a jump for $r=3$.
In Section 4 we extend Theorem 1.5 to arbitrary $r \geqslant 3$ and show that $\frac{5}{2} \frac{r!}{r^{r}}$ is not a jump for $r \geqslant 3$.

In Section 5 we restrict our attention to $r=3$ again and describe an infinite sequence of non-jumping numbers.

We should emphasize that our method of proof is similar to that of [4]. In order to determine whether or not $\frac{r!}{r^{r}}$ is a jump for $r \geqslant 3$ we are likely to require an essentially new approach.

2. The Lagrange function of an r-uniform hypergraph

In this section we give a definition of the Lagrange function, $\lambda(G)$, which has proved to be a helpful tool in calculating the upper density of certain sequences of r-uniform graphs (cf. [4]).

Definition 2.1. For an r-uniform graph G with vertex set $V=\{1,2, \ldots, n\}$, edge set $E(G)$ and a vector $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define

$$
\lambda(G, \vec{x})=\sum_{\left\{i_{1}, \ldots, i_{r}\right\} \in E(G)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

Definition 2.2. Let $S=\left\{\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right): \sum_{i=1}^{n} x_{i}=1, x_{i} \geqslant 0\right.$ for $\left.i=1,2, \ldots, n\right\}$. The Lagrange function of G, denoted by $\lambda(G)$, is defined as

$$
\lambda(G)=\max \{\lambda(G, \vec{x}): \vec{x} \in S\} .
$$

Fact 2.1. Let G_{1}, G_{2} be r-uniform graphs and $G_{1} \subset G_{2}$. Then

$$
\lambda\left(G_{1}\right) \leqslant \lambda\left(G_{2}\right) .
$$

We call two vertices i, j of G equivalent if for all $f \in\binom{V(G)-\{i, j\}}{r-1}, f \cup\{j\} \in E(G)$ if and only if $f \cup\{i\} \in E(G)$. We denote this by $i \sim j$ and note that it is an equivalence relation. For an r-uniform graph G and $i \in V(G)$ we define G_{i} to be the $(r-1)$-uniform graph on $V-\{i\}$ with edge set $E\left(G_{i}\right)$ given by $e \in E\left(G_{i}\right)$ if and only if $e \cup\{i\} \in E(G)$. Similarly for $i, j \in V(G)$ we define $G_{i j}$ to be the ($r-2$)-uniform graph on $V-\{i, j\}$ with edge set given by $e \in E\left(G_{i j}\right)$ if and only if $e \cup\{i, j\} \in E(G)$.

An r-uniform graph G is said to be covering if for every $i, j \in V(G)$ there is an edge $e \in E(G)$ such that $i, j \in e$ (that is every pair of vertices is covered by an edge).

The following simple lemma will be useful when calculating the Lagrange function of certain graphs.

Lemma 2.2. (Cf. [4].) Let G be an r-uniform graph of order n.
(a) There exists a covering subgraph H of G such that $\lambda(G)=\lambda(H)$.
(b) Suppose $\vec{y} \in S$ satisfies $\lambda(G)=\lambda(G, \vec{y})$ and $v_{1}, \ldots, v_{t} \in V(G)$ are all pairwise equivalent. If $\vec{z} \in S$ is obtained from \vec{y} by setting the weights of the vertices v_{1}, \ldots, v_{t} to be equal while leaving the other weights unchanged then $\lambda(G)=\lambda(G, \vec{z})$.
(c) If $\vec{y} \in S$ satisfies $\lambda(G)=\lambda(G, \vec{y})$ and $y_{i}>0$ then $r \lambda(G)=\lambda\left(G_{i}, \vec{y}\right)$.

Proof. Let \vec{y} satisfy $\lambda(G)=\lambda(G, \vec{y})$. Let K be the induced subgraph consisting of those vertices v such that $y_{v}>0$. By Fact $2.1, \lambda(K)=\lambda(K, \vec{y})=\lambda(G)$. If $i, j \in V(K)$ and $\lambda\left(K_{i j}, \vec{y}\right)=0$ then w.l.o.g. $\lambda\left(K_{i}, \vec{y}\right) \geqslant \lambda\left(K_{j}, \vec{y}\right)$. Defining $\vec{z} \in S$ by $z_{i}=y_{i}+y_{j}, z_{j}=0$ and $z_{l}=y_{l}$ otherwise we have

$$
\lambda(K, \vec{z})-\lambda(K, \vec{y})=y_{j}\left(\lambda\left(K_{i}, \vec{y}\right)-\lambda\left(K_{j}, \vec{y}\right)\right) \geqslant 0 .
$$

Hence if H is the induced subgraph with vertex set $V(K)-\{j\}$ then $\lambda(G)=\lambda(K)=\lambda(H)$. Repeating this process yields a covering subgraph satisfying (a).

For (b) let $\vec{y} \in S$ be as above and suppose that $v_{1}, \ldots, v_{t} \in V(G)$ are all pairwise equivalent. If vertex v_{i} receives weight y_{i} then we may suppose that there are $1 \leqslant i, j \leqslant t$ such that $y_{i}>$ $\mu>y_{j}$, where $\mu=\sum_{i=1}^{t} y_{i} / t$ (otherwise \vec{y} already has the desired properties). If $\lambda\left(G_{i j}, \vec{y}\right)>0$ then taking $0<\delta<y_{i}-y_{j}$ and defining $\vec{z} \in S$ by $z_{i}=y_{i}-\delta, z_{j}=y_{j}+\delta$ and $z_{l}=y_{l}$ otherwise we have

$$
\lambda(G, \vec{z})-\lambda(G, \vec{y})=\delta \lambda\left(G_{i j}, \vec{y}\right)\left(y_{i}-y_{j}-\delta\right)>0,
$$

but this is impossible, hence $\lambda\left(G_{i j}, \vec{y}\right)=0$. Now defining $\vec{z} \in S$ by $z_{i}=\mu, z_{j}=y_{i}+y_{j}-\mu$ and $z_{l}=y_{l}$ otherwise we have $\lambda(G, \vec{z})=\lambda(G, \vec{y})=\lambda(G)$. Repeating this process we obtain $\vec{z} \in S$ with the desired properties after at most $t-1$ iterations.

For (c) let \vec{y} be as above with $y_{i}>0$ for $1 \leqslant i \leqslant k$ and $y_{j}=0$ for $k+1 \leqslant j \leqslant n$. If $y_{a}, y_{b}>0$ and $\lambda\left(G_{a}, \vec{y}\right)>\lambda\left(G_{b}, \vec{y}\right)$ then taking $0<\delta<y_{b}$ sufficiently small and defining $\vec{z} \in S$ by $z_{a}=$ $y_{a}+\delta, z_{b}=y_{b}-\delta$ and $z_{l}=y_{l}$ otherwise we have

$$
\lambda(G, \vec{z})-\lambda(G, \vec{y})=\delta\left(\lambda\left(G_{a}, \vec{y}\right)-\lambda\left(G_{b}, \vec{y}\right)\right)-O\left(\delta^{2}\right)>0
$$

which is impossible. Hence $\lambda\left(G_{i}, \vec{y}\right)$ is constant for $1 \leqslant i \leqslant k$. So if $y_{i}>0$ then

$$
r \lambda(G)=\sum_{l=1}^{n} y_{l} \lambda\left(G_{l}, \vec{y}\right)=\lambda\left(G_{i}, \vec{y}\right) \sum_{l=1}^{k} y_{l}=\lambda\left(G_{i}, \vec{y}\right)
$$

The blow-up of an r-uniform graph will play an important role in the proof of Theorem 1.5.
Definition 2.3. Let G be an r-uniform graph with n vertices and $\left(m_{1}, \ldots, m_{n}\right)$ be a nonnegative integer vector. Define the $\left(m_{1}, \ldots, m_{n}\right)$ blow-up of $G,\left(m_{1}, \ldots, m_{n}\right) \otimes G$ to be the n-partite r-uniform graph with vertex set $V_{1} \cup \cdots \cup V_{n},\left|V_{i}\right|=m_{i}, 1 \leqslant i \leqslant n$, and edge set $E\left(\left(m_{1}, \ldots, m_{n}\right) \otimes G\right)=\left\{\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}\right\}: v_{i} \in V_{i},\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E(G)\right\}$.

For an integer $m \geqslant 1$ and an r-uniform graph G, we simply write $(m, m, \ldots, m) \otimes G$ as $\vec{m} \otimes G$.

The Lagrange function of an r-uniform graph G is closely related to the upper density of a certain sequence of r-uniform graphs, as described in the following claim.

Claim 2.3. Let $m \geqslant 1$ be an integer and G be an r-uniform graph. Then $\bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right)=$ $r!\lambda(G)$ holds.

Proof. Suppose G has n vertices and $\vec{y}=\left(y_{1}, \ldots, y_{n}\right) \in S$ satisfies $\lambda(G)=\lambda(G, \vec{y})$. For a positive integer m, take the subgraph $H_{m}=\left(\left\lfloor m y_{1}\right\rfloor,\left\lfloor m y_{2}\right\rfloor, \ldots,\left\lfloor m y_{n}\right\rfloor\right) \otimes G$ of $\vec{m} \otimes G$. It is easy to verify that for every $\epsilon>0$, there exists $m_{0}(\epsilon)$ such that $d\left(H_{m}\right) \geqslant r!\lambda(G)-\epsilon$ if $m \geqslant m_{0}$. Hence $\bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right) \geqslant r!\lambda(G)$.

On the other hand, by the definition of $\bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right)$, for every $\epsilon>0$, there exists k_{0} such that for every $k \geqslant k_{0}$, there exist an integer m and a subgraph H of $\vec{m} \otimes G$ with $|V(H)|=k$ satisfying $d(H)>\bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right)-\epsilon / 2$. Suppose $V(H)=\bigcup_{i=1}^{n} V_{i}$, where $V_{i}, 1 \leqslant i \leqslant n$, are the corresponding color classes of the n-partite r-uniform graph H. If $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$, where $y_{i}=\left|V_{i}\right| / \sum_{i=1}^{n}\left|V_{i}\right|$, then it is easy to verify that $r!\lambda(G, \vec{y}) \geqslant d(H)-\epsilon / 2$. Consequently, for any $\epsilon>0$, we are able to find \vec{y} such that

$$
r!\lambda(G, \vec{y}) \geqslant \bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right)-\epsilon
$$

Therefore $\bar{d}\left(\{\vec{m} \otimes G\}_{m=1}^{\infty}\right) \leqslant r!\lambda(G)$.
Lemma 2.2(a) implies that the following holds.
Fact 2.4. For every r-uniform graph G and every integer $m, \lambda(\vec{m} \otimes G)=\lambda(G)$.

3. The proof of Theorem 1.5

We require the following definition.
Definition 3.1. If \mathcal{F} is a family of r-uniform graphs and $\alpha \in[0,1]$ then we say that α is a threshold for \mathcal{F} if for every $\epsilon>0$ there exists $n_{0}=n_{0}(\epsilon, \alpha, r, \mathcal{F})$ such that every r-uniform graph G with $d(G) \geqslant \alpha+\epsilon$ and $|V(G)|>n_{0}$ contains some member of \mathcal{F} as a subgraph. We denote this fact by $\alpha \rightarrow \mathcal{F}$.

Our proof of Theorem 1.5 relies on the following result.
Lemma 3.1. (Cf. [4].) The following two properties are equivalent:
(1) α is a jump for r;
(2) $\alpha \rightarrow \mathcal{F}$ for some finite family \mathcal{F} of r-uniform graphs satisfying $\min _{F \in \mathcal{F}} \lambda(F)>\frac{\alpha}{r!}$.

The proof of this lemma was given in [4] and we omit it here.
For an integer $t \geqslant 2$ let $G(t)=(V, E)$ be the 3-uniform graph defined as follows. The vertex set $V=V_{1} \cup V_{2} \cup V_{3}$, where $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=t$ and V_{1}, V_{2}, V_{3} are pairwise disjoint. The edge set E consists of all triples of the form $\left\{\{a, b, c\}: a \in V_{1}, b \in V_{2}\right.$, and $\left.c \in V_{3}\right\}$ and all triples of the form $\left\{\{a, b, c\}: a \in V_{i}\right.$ and $b, c \in V_{j}$, where $\left.j-i=1 \bmod 3\right\}$.

By taking the vector $\vec{y}=\left(y_{1}, \ldots, y_{3 t}\right)$, where $y_{i}=1 / 3 t$ for each $i, 1 \leqslant i \leqslant 3 t$, it is easy to see that

$$
\begin{equation*}
\lambda(G(t)) \geqslant \frac{1}{3!}\left(\frac{5}{9}-\frac{1}{3 t}\right) \tag{2}
\end{equation*}
$$

Consider the sequence $\mathcal{S}=\{\vec{m} \otimes G(t)\}_{m=1}^{\infty}$. Inequality (2) and Claim 2.3 imply that $\bar{d}(\mathcal{S}) \geqslant \frac{5}{9}-\frac{1}{3 t}$. Our plan is to add $3 c t^{2}$ edges to $G(t)$ and hence obtain a new graph $G^{*}(t)$ satisfying

$$
\bar{d}\left(\left\{\vec{m} \otimes G^{*}(t)\right\}_{m=1}^{\infty}\right)=3!\lambda\left(G^{*}(t)\right)>\frac{5}{9}
$$

while $\lambda(F) \leqslant \frac{5}{9} \frac{1}{3!}$ for any small subgraph $F \subset \vec{m} \otimes G^{*}(t)$. Lemma 3.1 then implies that 5/9 cannot be a jump for $r=3$.

The next lemma allows us to construct $G^{*}(t)$.
Lemma 3.2. [4] Let k be any fixed integer and $c \geqslant 0$ be any fixed real number. Then there exists $t_{0}(k, c)$ such that for every $t>t_{0}(k, c)$, there exists a 3 -uniform graph A satisfying:
(i) $|V(A)|=t$;
(ii) $|E(A)| \geqslant c t^{2}$;
(iii) for all $V_{0} \subset V(A), 3 \leqslant\left|V_{0}\right| \leqslant k$ we have $\left|E(A) \cap\binom{V_{0}}{3}\right| \leqslant\left|V_{0}\right|-2$.

The proof of Lemma 3.2, based on a simple random construction, was given in [4]. We omit the proof here.

For k, c fixed and $t>t_{0}(k, c)$ let A be a 3-uniform graph satisfying the conditions of Lemma 3.2. We construct the graph $G^{*}(t, k, c)$ from $G(t)$ by adding a copy of $E(A)$ into each vertex class of $G(t)$. (So now $E\left(V_{i}\right)=E(A)$, for $i=1,2,3$.)

The proof of Theorem 1.5 is based on the following lemma.
Lemma 3.3. For any integer $k \geqslant 1$, real number $c>0$ and $t>t_{0}(k, c)$ given in Lemma 3.2 if M is a subgraph of $G^{*}(t, k, c)$ and $|V(M)| \leqslant k$, then

$$
\begin{equation*}
\lambda(M) \leqslant \frac{1}{3!} \cdot \frac{5}{9} \tag{3}
\end{equation*}
$$

Assuming this result for the moment we may complete the proof of Theorem 1.5 as follows.
Proof of Theorem 1.5. Suppose that $\frac{5}{9}$ is a jump. In view of Lemma 3.1, there exists a finite collection \mathcal{F} of 3 -uniform graphs satisfying the following two conditions:
(i) $\lambda(F)>\frac{1}{3!} \frac{5}{9}$ for all $F \in \mathcal{F}$;
(ii) $\frac{5}{9}$ is a threshold for \mathcal{F}.

Set $k=\max _{F \in \mathcal{F}}|V(F)|$ and $c=1$. Take $t>t_{0}(k, c)$ as given by Lemma 3.2 and let $G^{*}(t)=$ $G^{*}(t, k, c)$. If $\vec{y}=\left(y_{1}, \ldots, y_{3 t}\right)$, where $y_{i}=1 / 3 t$ for each $i, 1 \leqslant i \leqslant 3 t$, then

$$
3!\lambda\left(G^{*}(t)\right) \geqslant \frac{6\left|E\left(G^{*}(t)\right)\right|}{(3 t)^{3}} \geqslant \frac{2}{9 t^{3}}\left(t^{3}+3\binom{t}{2} t+3 t^{2}\right) \geqslant \frac{5}{9}+\frac{1}{3 t} .
$$

Hence, by Claim 2.3, we have

$$
\begin{equation*}
\bar{d}\left(\left\{\vec{m} \otimes G^{*}(t)\right\}_{m=1}^{\infty}\right) \geqslant \frac{5}{9}+\frac{1}{3 t} . \tag{4}
\end{equation*}
$$

Now condition (ii) above, the definition of 'threshold' and inequality (4) imply that some member F of \mathcal{F} is a subgraph of $\vec{m} \otimes G^{*}(t)$ for $m \geqslant m_{0}(k, t)$. For such $F \in \mathcal{F}$, there exists a subgraph M of $G^{*}(t)$ with $|V(M)| \leqslant k$ satisfying $F \subset \vec{m} \otimes M \subset \vec{m} \otimes G^{*}(t)$.

By Facts 2.1, 2.4 and Lemma 3.3, we have

$$
\lambda(F) \leqslant \lambda(\vec{m} \otimes M)=\lambda(M) \leqslant \frac{1}{3!} \cdot \frac{5}{9}
$$

which contradicts condition (i) above that $\lambda(F)>\frac{1}{3!} \frac{5}{9}$ for all $F \in \mathcal{F}$. This completes the proof of Theorem 1.5.

It remains to prove Lemma 3.3.
Proof of Lemma 3.3. By Fact 2.1, we may assume that M is an induced subgraph of $G^{*}(t)$. Let

$$
U_{i}=V(M) \cap V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{k_{i}}^{i}\right\}
$$

So $k=k_{1}+k_{2}+k_{3}$.
Claim 3.4. (Cf. [4].) If N is the 3 -uniform graph formed from M by removing the edges contained in each U_{i} and inserting the edges $\left\{\left\{v_{1}^{i}, v_{2}^{i}, v_{j}^{i}\right\}: 1 \leqslant i \leqslant 3,3 \leqslant j \leqslant k_{i}\right\}$ then $\lambda(M) \leqslant \lambda(N)$.

Proof. Let $M_{i}=\left(U_{i}, E(M) \cap\binom{U_{i}}{3}\right), N_{i}=\left(U_{i}, E(N) \cap\binom{U_{i}}{3}\right)$ and $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{k_{i}} \geqslant 0$. It is sufficient to prove that $\lambda\left(M_{i}, \vec{x}\right) \leqslant \lambda\left(N_{i}, \vec{x}\right)$.

Let the edges of M_{i} in decreasing order be $e_{1}, e_{2}, \ldots, e_{s}$, i.e., $\prod_{v \in e_{p}} x_{v} \geqslant \prod_{v \in e_{q}} x_{v}$ for $p<q$. By the construction of $G^{*}(t)$ (Lemma 3.2(iii)) we have $s \leqslant k_{i}-2$. We will prove that $\prod_{v \in e_{p}} x_{v} \leqslant$ $x_{1} x_{2} x_{2+p}$ for all $1 \leqslant p \leqslant s$. By Lemma 3.2(iii) we have $\left|e_{1} \cup e_{2} \cup \cdots \cup e_{p}\right| \geqslant 2+p$ for $p=$ $1,2, \ldots, s$, so at least one of the edges from $e_{1}, e_{2}, \ldots, e_{p}$ contains some v_{j}^{i} with $j \geqslant 2+p$ and thus, by monotonicity, $\prod_{v \in e_{p}} x_{v} \leqslant x_{1} x_{2} x_{2+p}$. Thus $\lambda\left(M_{i}, \vec{x}\right) \leqslant \lambda\left(N_{i}, \vec{x}\right)$.

By Claim 3.4 the proof of Lemma 3.3 will be complete if we show that $\lambda(N) \leqslant 5 / 54$. Since $v_{1}^{i} \sim v_{2}^{i}$ and $v_{3}^{i}, v_{4}^{i}, \ldots, v_{k_{i}}^{i}$ are all pairwise equivalent we can use Lemma 2.2(b) to obtain $\vec{z} \in S$ satisfying $\lambda(N, \vec{z})=\lambda(N)$ such that

$$
z_{1}^{i}=z_{2}^{i}=a_{i}, \quad z_{3}^{i}=z_{4}^{i}=\cdots=z_{k_{i}}^{i}=b_{i}
$$

where $a_{i}, b_{i}(i=1,2,3)$ are constants.
Let $w_{i}=2 a_{i}+\left(k_{i}-2\right) b_{i}$ (so $w_{1}+w_{2}+w_{3}=1$). If $P=\left\{i: w_{i}>0\right\}$ and $p=|P|$ then we may suppose that $p \geqslant 2$ (since otherwise Lemma 2.2(a) allows us to reduce M to a single edge with $\lambda(M)=1 / 27)$. So suppose that $2 \leqslant p \leqslant 3$.

For each $i \in P$ take a vertex $u_{i} \in U_{i}$ as follows: if $b_{i}>0$ then $u_{i}=v_{3}^{i}$ otherwise $u_{i}=v_{1}^{i}$. The vertex u_{i} receives non-zero weight so by Lemma 2.2(c) we have $3 \lambda(N)=\lambda\left(N_{u_{i}}, \vec{z}\right)$. Moreover, by considering the edges containing vertex u_{i} we have

$$
\begin{equation*}
\lambda\left(N_{u_{i}}, \vec{z}\right) \leqslant a_{i}^{2}+w_{i} w_{i+2}+w_{i+1} w_{i+2}+\sum_{\{c, d\} \in\binom{U_{i+1}}{2}} z_{c} z_{d}, \tag{5}
\end{equation*}
$$

where all subscripts are modulo 3 .
Now, since $\sum_{\{c, d\} \in\binom{U_{i+1}}{2}} z_{c} z_{d}$ is zero if $w_{i+1}=0$, so (5) implies that

$$
\begin{equation*}
3 p \lambda(N)=\sum_{i \in P} \lambda\left(N_{u_{i}}, \vec{z}\right) \leqslant \sum_{i \in P}\left(a_{i}^{2}+w_{i+2}\left(1-w_{i+2}\right)+\sum_{\{c, d\} \in\binom{U_{i}}{2}} z_{c} z_{d}\right) . \tag{6}
\end{equation*}
$$

We claim that the following holds for $i=1,2,3$:

$$
\begin{equation*}
a_{i}^{2}+\sum_{\{c, d\} \in\binom{U_{i}}{2}} z_{c} z_{d} \leqslant \frac{w_{i}^{2}}{2} . \tag{7}
\end{equation*}
$$

We have $w_{i}=2 a_{i}+\left(k_{i}-2\right) b_{i}$.

Hence

$$
a_{i}^{2}+\sum_{\{c, d\} \in\binom{U_{i}}{2}} z_{c} z_{d}=2 a_{i}^{2}+2\left(k_{i}-2\right) a_{i} b_{i}+\binom{k_{i}-2}{2} b_{i}^{2} \leqslant \frac{w_{i}^{2}}{2} .
$$

Combining (6) and (7) we obtain

$$
3 p \lambda(N) \leqslant \sum_{i \in P}\left(\frac{w_{i}^{2}}{2}+w_{i+2}\left(1-w_{i+2}\right)\right) .
$$

Now, using $w_{1}+w_{2}+w_{3}=1$, if $p=3$ we have

$$
9 \lambda(N) \leqslant 1-\frac{w_{1}^{2}+w_{2}^{2}+w_{3}^{2}}{2} \leqslant \frac{5}{6} .
$$

While if $p=2$ (so w.l.o.g. $w_{3}=0$) then we have

$$
6 \lambda(N) \leqslant \frac{\left(w_{1}+w_{2}\right)^{2}}{2}=\frac{1}{2} .
$$

Hence $\lambda(N) \leqslant 5 / 54$ as required.

4. An extension of Theorem 1.5

In this section we extend Theorem 1.5 to arbitrary $r \geqslant 3$ and prove the following result.
Theorem 4.1. Let $r \geqslant 3$ be an integer. Then $\frac{5}{2} \cdot \frac{r!}{r^{r}}$ is not a jump for r.
Proof. We assume that $r \geqslant 4$ and $\frac{5}{2} \cdot \frac{r!}{r^{r}}$ is a jump for r. In view of Lemma 3.1, there exists a finite collection \mathcal{F} of r-uniform graphs satisfying the following:
(i) $\lambda(F)>\frac{5}{2} \cdot \frac{1}{r^{r}}$ for all $F \in \mathcal{F}$, and
(ii) $\frac{5}{2} \cdot \frac{r!}{r^{r}}$ is a threshold for \mathcal{F}.

Set $k=\max _{F \in \mathcal{F}}|V(F)|$ and $c=1$. Let $t_{0}(k, c)$ be as in Lemma 3.2. For $t>t_{0}(k, c)$, take the 3-uniform graph $G^{(3)}=G^{*}(t, k, c)$ on vertex set $V_{1} \cup V_{2} \cup V_{3}$ constructed as in Section 3. Note that

$$
\left|E\left(G^{(3)}\right)\right| \geqslant \frac{5 t^{3}}{2}+\frac{3 t^{2}}{2}
$$

Based on the 3-uniform graph $G^{(3)}$, we construct an r-uniform graph $G^{(r)}$ on r pairwise disjoint sets $V_{1}, V_{2}, V_{3}, V_{4}, \ldots, V_{r}$, each of order t. An r-element set $\left\{u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{r}\right\}$ is an edge of $G^{(r)}$ if and only if $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an edge in $G^{(3)}$ and for each $j, 4 \leqslant j \leqslant r, u_{j} \in V_{j}$. Notice that

$$
\left|E\left(G^{(r)}\right)\right|=t^{r-3}\left|E\left(G^{(3)}\right)\right| \geqslant \frac{5 t^{r}}{2}+\frac{3 t^{r-1}}{2}
$$

We can now give a lower bound for $\lambda\left(G^{(r)}\right)$. Corresponding to the $r t$ vertices of this r-uniform graph, let us take vector $\vec{y}=\left(y_{1}, \ldots, y_{r t}\right)$, where $y_{i}=\frac{1}{r t}$ for each $i, 1 \leqslant i \leqslant r t$.

Then

$$
\lambda\left(G^{(r)}\right) \geqslant \lambda\left(G^{(r)}, \vec{y}\right)=\frac{\left|E\left(G^{(r)}\right)\right|}{(r t)^{r}} \geqslant\left(\frac{5}{2}+\frac{3}{2 t}\right) \frac{1}{r^{r}}
$$

Similarly as Theorem 1.5 follows from Lemma 3.3, in order to prove Theorem 4.1, it will be sufficient to prove the following lemma.

Lemma 4.2. Let $M^{(r)}$ be a subgraph of $G^{(r)}$ with $\left|V\left(M^{(r)}\right)\right| \leqslant k$. Then

$$
\begin{equation*}
\lambda\left(M^{(r)}\right) \leqslant \frac{5}{2} \cdot \frac{1}{r^{r}} \tag{8}
\end{equation*}
$$

holds.
We are going to use Lemma 3.3 to prove it.
Proof. Again, by Fact 2.1, we may assume that $M^{(r)}$ is a non-empty induced subgraph of $G^{(r)}$. Define $U_{i}=V\left(M^{(r)}\right) \cap V_{i}$ for $1 \leqslant i \leqslant r$. Let $M^{(3)}$ be the 3-uniform graph defined on $\bigcup_{i=1}^{3} U_{i}$. The edge set of $M^{(3)}$ consists of all 3-sets of the form of $e \cap\left(\bigcup_{i=1}^{3} U_{i}\right)$, where e is an edge in $M^{(r)}$. Let $\vec{\xi}$ be an optimal vector for $\lambda\left(M^{(r)}\right)$, i.e., $\lambda\left(M^{(r)}, \vec{\xi}\right)=\lambda\left(M^{(r)}\right)$. Let $\vec{\xi}^{(3)}$ be the restriction of $\vec{\xi}$ to $U_{1} \cup U_{2} \cup U_{3}$. Let w_{i} be the sum of all components of $\vec{\xi}$ corresponding to vertices in $U_{i}, 1 \leqslant i \leqslant r$, respectively. In view of the relationship between $M^{(r)}$ and $M^{(3)}$, we have

$$
\lambda\left(M^{(r)}\right)=\lambda\left(M^{(3)}, \vec{\xi}^{(3)}\right) \times \prod_{i=4}^{r} w_{i}
$$

Note that $M^{(3)}$ is a subgraph of $G^{(3)}=G^{*}(t, k, c)$ satisfying $\left|V\left(M^{(3)}\right)\right| \leqslant\left|V\left(M^{(r)}\right)\right| \leqslant k$. Also note that the summation of all components of $\vec{\xi}^{(3)}$ is $1-\sum_{i=4}^{r} w_{i}$ and every term in $\lambda\left(M^{(3)}, \vec{\xi}^{(3)}\right)$ has degree 3 . Consequently by Lemma 3.3, we infer that

$$
\lambda\left(M^{(3)}, \vec{\xi}^{(3)}\right) \leqslant \frac{5}{54}\left(1-\sum_{i=4}^{r} w_{i}\right)^{3} .
$$

Therefore,

$$
\lambda\left(M^{(r)}\right) \leqslant \frac{5}{54}\left(1-\sum_{i=4}^{r} w_{i}\right)^{3} \prod_{i=4}^{r} w_{i}=\frac{5}{2}\left(\frac{1-\sum_{i=4}^{r} w_{i}}{3}\right)^{3} \prod_{i=4}^{r} w_{i} .
$$

Since the geometric mean is no more than the arithmetic mean, we obtain

$$
\lambda\left(M^{(r)}\right) \leqslant \frac{5}{2} \cdot \frac{1}{r^{r}}
$$

This completes the proof of Lemma 4.2.

5. More non-jumping numbers

In this section, we return to the case $r=3$. The construction used in the proof of Theorem 1.5 can be easily generalized to give the following result.

Theorem 5.1. For any integers $s \geqslant 1$ and $l \geqslant 9 s+6$ the number $1-\frac{3}{l}+\frac{3 s+2}{l^{2}}$ is not a jump for $r=3$.

For l, s as in the statement of Theorem 5.1 and $t \geqslant 2$ consider the 3-uniform hypergraph $G(l, s, t)$ with vertex set $V=\bigcup_{i=1}^{l} V_{i}$, where $\left|V_{i}\right|=t$ and $V_{i}, 1 \leqslant i \leqslant l$, are pairwise disjoint. The edge set consists of all triples of the form $\left\{\{a, b, c\}: a \in V_{i}, b \in V_{j}\right.$, and $c \in V_{k}$, $\left.\{i, j, k\} \in\binom{[l]}{3}\right\}$, if $l \geqslant 3$, and all triples of the form $\left\{\{a, b, c\}: a \in V_{i}\right.$ and $b, c \in V_{j}$, with $1 \leqslant(j-i) \bmod l \leqslant s\}$. When $l=3, s=1, G(l, s, t)$ is $G(t)$.

Now let $k \geqslant 1$ be an integer, $c=s$ and $t \geqslant t_{0}(k, c)$ be as given by Lemma 3.2. We construct $G^{*}(l, s, t)$ from $G(l, s, t)$ by inserting into each V_{i} a copy of a graph A as given by Lemma 3.2. Note that

$$
\lambda\left(G^{*}(l, s, t)\right) \geqslant \frac{\left|E\left(G^{*}(l, s, t)\right)\right|}{(l t)^{3}} \geqslant \frac{\binom{l}{3} t^{3}+l s\binom{t}{2} t+l s t^{2}}{(l t)^{3}}=\frac{1}{6}\left(1-\frac{3}{l}+\frac{3 s+2}{l^{2}}+\frac{3 s}{l^{2} t}\right) .
$$

As with Theorem 1.5, the proof of Theorem 5.1 may be reduced to proving the following lemma.

Lemma 5.2.

$$
\begin{equation*}
\lambda(M) \leqslant \frac{1}{6}\left(1-\frac{3}{l}+\frac{3 s+2}{l^{2}}\right) \tag{9}
\end{equation*}
$$

holds for any subgraph M of $G^{*}(l, s, t)$ with $|V(M)| \leqslant k$.
Proof. An obvious analogue of Claim 3.4 holds so if N is the 3-uniform graph formed from M by replacing the edges contained in each $U_{i}=V_{i} \cap V(M)$ with the following edges: $\left\{\left\{v_{1}^{i}, v_{2}^{i}, v_{j}^{i}\right\}: 1 \leqslant i \leqslant l, 3 \leqslant j \leqslant k_{i}\right\}$ then it is sufficient to prove that

$$
\lambda(N) \leqslant \frac{1}{6}\left(1-\frac{3}{l}+\frac{3 s+2}{l^{2}}\right) .
$$

As before (using Lemma 2.2(b)) we may take $\vec{z} \in S$ such that $\lambda(G, \vec{z})=\lambda(G)$ and $z_{1}^{i}=z_{2}^{i}=a_{i}$ and $z_{3}^{i}=z_{4}^{i}=\cdots=z_{k_{i}}^{i}=b_{i}$. Let $w_{i}=2 a_{i}+\left(k_{i}-2\right) b_{i}, P=\left\{1 \leqslant i \leqslant l: w_{i}>0\right\}$ and $p=$ $|P| \leqslant l$. For $i \in P$ define $P_{i}^{+}=P \cap\{i+1, i+2, \ldots, i+s\}$ and $P_{i}^{-}=P \cap\{i-1, i-2, \ldots, i-s\}$. For $i \in P$ let u_{i} be a vertex in U_{i} receiving weight b_{i}, if $b_{i}>0$, and otherwise receiving weight $a_{i}>0$. Considering the edges containing u_{i} we have

$$
\lambda\left(N_{u_{i}}, \vec{z}\right) \leqslant a_{i}^{2}+\sum_{j \in P_{i}^{+}} \sum_{\{c, d\} \in\binom{U_{j}}{2}} z_{c} z_{d}+w_{i} \sum_{j \in P_{i}^{-}} w_{j}+\sum_{\{j, k\} \in\binom{P-(i)}{2}} w_{j} w_{k} .
$$

Using Lemma 2.2(c) we obtain

$$
\begin{align*}
3 p \lambda(N) & =\sum_{i \in P} \lambda\left(N_{u_{i}}, \vec{z}\right) \\
& \leqslant \sum_{i \in P}\left(a_{i}^{2}+\sum_{j \in P_{i}^{+}} \sum_{\{c, d\} \in\binom{U_{j}}{2}} z_{c} z_{d}+w_{i} \sum_{j \in P_{i}^{-}} w_{j}+\sum_{\{j, k\} \in\binom{P-\{i\}}{2}} w_{j} w_{k}\right) . \tag{10}
\end{align*}
$$

Now (7) holds for $i \in P$ so

$$
\sum_{i \in P}\left(a_{i}^{2}+\sum_{j \in P_{i}^{+}} \sum_{\{c, d\} \in\binom{U_{j}}{2}} z_{c} z_{d}\right) \leqslant \sum_{i \in P_{b}} a_{i}^{2}+\sum_{i \in P} \sum_{j \in P_{i}^{+}} \frac{w_{j}^{2}}{2}
$$

where $P_{b}=\left\{i \in P: P_{i}^{-}=\emptyset\right\}$ (so P_{b} contains precisely those $i \in P$ for which there is no term $\sum_{\{c, d\} \in\binom{U_{i}}{2}} z_{c} z_{d}$ in (10)). Using this together with $w_{i} w_{j} \leqslant\left(w_{i}^{2}+w_{j}^{2}\right) / 2$ we obtain

$$
3 p \lambda(N) \leqslant \sum_{i \in P_{b}} a_{i}^{2}+\sum_{i \in P}\left(\sum_{j \in P_{i}^{+}} \frac{w_{j}^{2}}{2}+\sum_{j \in P_{i}^{-}} \frac{\left(w_{i}^{2}+w_{j}^{2}\right)}{2}+\sum_{\{j, k\} \in\binom{P-(i)}{2}} w_{j} w_{k}\right) .
$$

Now $a_{i}^{2} \leqslant w_{i}^{2} / 2$ and $\left|P_{i}^{-}\right|,\left|P_{i}^{+}\right| \leqslant s$, so we have

$$
\begin{aligned}
3 p \lambda(N) & \leqslant \frac{1}{2}\left(\sum_{i \in P_{b}} w_{i}^{2}+\sum_{i \in P}\left(\left|P_{i}^{+}\right|+2\left|P_{i}^{-}\right|\right) w_{i}^{2}\right)+\sum_{\{j, k\} \in\binom{P-\{i\}}{2}} w_{j} w_{k} \\
& \leqslant \frac{1}{2}\left(\sum_{i \in P_{b}}(1+s) w_{i}^{2}+\sum_{i \in P \backslash P_{b}} 3 s w_{i}^{2}\right)+\sum_{\{j, k\} \in\binom{P-\langle i\}}{2}} w_{j} w_{k} \\
& \leqslant \frac{3 s}{2} \sum_{i \in P} w_{i}^{2}+(p-2) \sum_{\{j, k\} \in\binom{P}{2}} w_{j} w_{k} .
\end{aligned}
$$

Note that since $\sum_{i \in P} w_{i}=1$ we have

$$
\begin{equation*}
\sum_{\{j, k\} \in\binom{P}{2}} w_{j} w_{k}=\frac{1}{2}-\sum_{i \in P} \frac{w_{i}^{2}}{2} . \tag{11}
\end{equation*}
$$

Hence if $p \geqslant 3 s+2$ then

$$
3 p \lambda(N) \leqslant \frac{p-2}{2}-\left(\frac{p-(3 s+2)}{2}\right) \sum_{i \in P} w_{i}^{2} \leqslant \frac{p}{2}\left(1-\frac{3}{p}+\frac{3 s+2}{p^{2}}\right)
$$

where the last inequality follows from $\sum_{i=1}^{l} w_{i}^{2} \geqslant 1 / p$. The desired bound now follows easily.
To complete the proof we need to consider the case $p \leqslant 3 s+1$. In this case $l \geqslant 9 s+6 \geqslant 3 p+3$ and so $3 / l \leqslant 1 /(p+1)$. Hence it is sufficient to prove that $3 \lambda(N) \leqslant \frac{1}{2}\left(1-\frac{1}{p+1}\right)$.

If $p=1,2$ then $\lambda(N) \leqslant 1 / 12$ (see the proof of Lemma 3.3) so we may suppose that $3 \leqslant p \leqslant$ $3 s+1$.

Choose $i \in P$ such that $w_{i} \geqslant 1 / p$ (since $\sum_{i \in P} w_{i}=1$ such an i must exist) then

$$
3 \lambda(N)=\lambda\left(N_{u_{i}}, \vec{z}\right) \leqslant a_{i}^{2}+\sum_{j \in P_{i}^{+}} \sum_{\{c, d\} \in\binom{U_{j}}{2}} z_{c} z_{d}+w_{i} \sum_{j \in P_{i}^{-}} w_{j}+\sum_{\{j, k\} \in\binom{P-(i i)}{2}} w_{j} w_{k}
$$

Since (7) holds for any $j \in P$ we have

$$
\sum_{j \in P_{i}^{+}} \sum_{\{c, d\} \in\binom{U_{j}}{2}} z_{c} z_{d} \leqslant \sum_{j \in P_{i}^{+}} \frac{w_{j}^{2}}{2} .
$$

Also $a_{i}^{2} \leqslant w_{i}^{2} / 4$ and (11) imply that

$$
3 \lambda(N) \leqslant \frac{1}{2}-\frac{w_{i}^{2}}{4}-\sum_{j \in C_{i}} \frac{w_{j}^{2}}{2}-w_{i} \sum_{j \in D_{i}} w_{j}
$$

where $C_{i}=P-\left(P_{i}^{+} \cup\{i\}\right)$ and $D_{i}=P-\left(P_{i}^{-} \cup\{i\}\right)$. Now $l \geqslant 2 s+1$ implies that $P_{i}^{+} \cap P_{i}^{-}=\emptyset$ and so $C_{i} \cup D_{i} \cup\{i\}=P$. Hence if $\sum_{j \in C_{i}} w_{j}=\alpha, \sum_{j \in D_{i}} w_{j}=\beta$ and $w_{i}=\gamma$ then $\alpha+\beta+\gamma \geqslant 1$. Moreover, $\gamma=w_{i} \geqslant 1 / p$. Note that since $\left|C_{i}\right| \leqslant p-1$ so $\sum_{j \in C_{i}} w_{j}^{2} \geqslant$ $\alpha^{2} /(p-1)$ so we have

$$
3 \lambda(N) \leqslant \frac{1}{2}\left(1-\left(\frac{\gamma^{2}}{2}+\frac{\alpha^{2}}{p-1}+2 \beta \gamma\right)\right)
$$

Defining

$$
f(\alpha, \beta, \gamma)=\frac{\gamma^{2}}{2}+\frac{\alpha^{2}}{p-1}+2 \beta \gamma
$$

the proof will be complete if we show that for $\alpha+\beta+\gamma \geqslant 1,0 \leqslant \alpha, \beta \leqslant 1-1 / p$ and $1 / p \leqslant$ $\gamma \leqslant 1, f(\alpha, \beta, \gamma)$ is always at least $1 /(p+1)$. Now f is clearly minimized (subject to the constraints) when $\alpha+\beta+\gamma=1$ so substituting for β we need to minimize

$$
g(\alpha, \gamma)=\frac{\alpha^{2}}{p-1}+2 \gamma-2 \alpha \gamma-\frac{3 \gamma^{2}}{2}
$$

subject to $0 \leqslant \alpha \leqslant 1-\gamma, 1 / p \leqslant \gamma \leqslant 1$. This function is decreasing in α so for fixed γ has minimum

$$
g(1-\gamma, \gamma)=h(\gamma)=\frac{(1-\gamma)^{2}}{p-1}+\frac{\gamma^{2}}{2} .
$$

Finally we minimize $h(\gamma)$ subject to $1 / p \leqslant \gamma \leqslant 1$. This function has a stationary point at $2 /(p+1)$ and so the constrained minimum occurs at either $\gamma=1 / p, \gamma=1$ or $\gamma=2 /(p+1)$. In each case we can check that $h(\gamma) \geqslant 1 /(p+1)$ (for $p \geqslant 3$). This completes the proof of Lemma 5.2 and of Theorem 5.1.

6. Concluding remarks

We remark that if $s=1$, then the condition $l \geqslant 15$ in Theorem 5.1 can be relaxed to $l \geqslant 2$. We also think that in general the condition $l \geqslant 9 s+6$ in Theorem 5.1 can be relaxed to $l \geqslant s+1$ although we are not able to prove this. Since no jump in the interval $\left[\frac{r!}{r^{r}}, 1\right.$) has been found, we ask the following question.

Question 6.1. For $r \geqslant 3$, does there exist $\alpha_{0} \in\left[\frac{r!}{r^{r}}, 1\right)$ such that the interval [$\left.\alpha_{0}, 1\right]$ contains no jump?

A recent result of Mubayi and Zhao [6] answers the analogous question for the related problem of co-degree density. They showed that in this case one can take $\alpha_{0}=0$ for all $r \geqslant 3$ (see [6, Theorem 1.6]).

References

[1] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183-190.
[2] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51-57.
[3] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
[4] P. Frankl, V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149-159.
[5] G. Katona, T. Nemetz, M. Simonovits, On a graph-problem of Turán, Mat. Fiz. Lapok 48 (1941) 436-452.
[6] D. Mubayi, Y. Zhao, Co-degree density of hypergraphs, preprint, 2006.

[^0]: E-mail addresses: mapeng@isugw.indstate.edu (Y. Peng), rodl@mathcs.emory.edu (V. Rödl), talbot@math.ucl.ac.uk (J. Talbot).
 1 The author is partially supported by NSF grants DMS-0071261 and DMS-0300529.
 2 The author is a Royal Society University Research Fellow.

