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Let n and 7 be positive integers. Suppose that a family F c 2" satisfies F1 N ---NF,. %0
for all F1,...,F. € F and ﬂFleF:@' We prove that there exists ¢ =¢(r) > 0 such that

ZFE}.w‘F‘(lfw)"f‘F‘ <w"(r+1—rw) holds for 1/2<w<1/2+¢ if r>13.

1. Introduction

Let n,r and ¢ be positive integers. A family F of subsets of [n]={1,2,...,n}

is called r-wise t-intersecting if |FyN---NF,|>t holds for all Fi,..., F.€F.

An r-wise 1-intersecting family is also called an r-wise intersecting family for

short. An r-wise t-intersecting family F is called non-trivial if |\pcr F| <t.
Let us define the Brace-Daykin structure as follows.

Fpp={F Cn]:|FN[r+1]] >r}.

Then F5p is a non-trivial r-wise intersecting family. Brace and Daykin
proved the following.

Theorem 1 ([1]). Suppose that F c 2"} is a non-trivial r-wise intersecting
family. Then |F|<|Fgpl-

For a real w € (0,1) let us define the weighted size (or simply weight)
Wy (F) of F by

Wo(F) = > w1 —w)n 17,
FeF

Mathematics Subject Classification (2000): 05D05

0209-9683/106/$6.00 (©2006 Jdnos Bolyai Mathematical Society



38 PETER FRANKL, NORIHIDE TOKUSHIGE

Note that Wy o (F)=|F|/2". See [3] for the maximum weighted size of inter-
secting families, and see [2,4] for applications of weighted size to Erdés—Ko—
Rado and Sperner type results concerning multiply intersecting families. In
this note, we consider the maximum weighted size of non-trivial intersecting
families and extend Theorem 1. The weight of the Brace-Daykin family is
calculated as follows:

Wu(Fpp) = (r+ Dw' (1 —w) + ™ = w'(r +1 - rw).
Let us define
Gn(w, 7, t) := max{W,,(F) : F C 2" is non-trivial r-wise t-intersecting},
glw,rt) = lim_gu(w,7,1).

Then the Brace-Daykin theorem states that g,(1/2,r,1) =W 5 (Fpzp) and
thus ¢g(1/2,r,1) = (r +2)(1/2)"*!. Can we expect the same thing for w =
1/2+€? The answer is “yes” for r>13, and “no” for r <5.

Theorem 2. Let r>13. Then there exists e=¢(r) >0 such that g(w,r,1)=
Wy (Fip)=w"(r+1—rw) holds for 1/2<w<1/2+e.

In the last section, we shall construct non-trivial r-wise intersecting fami-
lies with weights larger than W, (Fp ) for  <5. The cases 6 <r <12 remain
open.

Conjecture 1. Theorem 2 is true for r > 6.

2. Tools

In this section we summarize some results on the maximum weight of (not
necessarily non-trivial) r-wise t-intersecting families. Let us define

fuw, ) == max{ W, (F) : F C 2I" is r-wise t-intersecting},
flw,rt) = nh_)rréo frn(w,rt).

If F 2l satisfies f,(w,r,t)=W,(F) then F:=FU{FU{n+1}:FeF}cC
2l satisfies Wy (F') = Wiy (F) = fn(w,r,t), which implies f,,1(w,r,t) >
fu(w,r,t). Since F={F C|[n]:[t] C F'} is r-wise t-intersecting and W,,(F)=
wt, it follows that f(w,r,t)> fn(w,r,t)>w'.

Let oy €(1/2,1) be the unique root of the equation (1—w)z" —z+w=0.
The following inequality is not sharp but it is very useful (see Fact 3 on
page 98 of [2]).
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Lemma 1. f(w,rt)<al,,.

For the case t=1, we proved the following in [3].
Lemma 2. f(w,r,1)=w ifwg%, and f(w,r,1)=1 ifw>%.

For the case r =3, we proved the following in [2] (see Proposition 2 on
page 104).

Lemma 3. f(w,3,t)< wQaf;g if t>2 and w<0.5018.
We also use the following simple fact.

Lemma 4. If olf! | <w' then f(w,r,t)=w'.

Proof. Suppose that F is an r-wise t-intersecting family with W, (F) =
f(w,r,t)>w'. If F has (r—1) edges Fy,...,F,_1 with |[FiN---NF,_1|=t then
all edges in F must contain this ¢-subset, which proves W, (F) <w!. Thus
we may assume that F is (r —1)-wise (¢+ 1)-intersecting. By Lemma 1, we
have Wy, (F) < f(w,r—1,t+1) <ol  <wt |

w,r—1

Using above lemmas, we have the following.

Lemma 5. There exists e=¢(r) such that f(w,r,t)=w' holds for 1/2<w <
1/2+ € in the following cases: r=3 and t <2, r=4 and t<2, r=>5 and t<7.

Proof. The case t =1 follows from Lemma 2. The case r =3 and ¢t =2 follows
from Lemma 3.
Let us consider the case r =4 and ¢t = 2. Since a3 4 = \/52*1 ~ 0.618,
27

< (3 +€)? holds for

we have a3 , < (%)2 Then, by the continuity, o?

1

5,3 §+€,3
sufficiently small € > 0. Thus f(w,4,2) <w? for % <w< %4— e follows from
Lemma 4. One can prove the case r=>5 and 2<t <7 similarly. ]

Note also that

1 1 t+1 1 t+1 1 t+1 1 t+1 t+ 1
t+1 _ - _
1S (5 * 2r—1) - <2> (1 * 2r—2> = (2) exp (2T—2) ’

which is smaller than (1/2)? if ++1<2"~2log2. This means that f(w,r,t)=w!
holds for w=1/2+¢(r) if t <2"2log2—1. We shall use the following weaker
version later.

Proposition 1. Let F C 2" be an r-wise r-intersecting family. If r > 5,
then there exists e=e(r) >0 such that W,,(F)<w" holds for 3 <w<i+e.
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3. Proof of Theorem 2

Proof. We prove Theorem 2 by induction on 7. First we prove the initial
step r=13.

Proposition 2. Suppose that F C 2" is a non-trivial 13-wise intersecting
family. Then there exists € > 0 such that W, (F) < Wy (FL,) holds for
I<w<i+te

Proof. Let FC 2 be a non-trivial 13-wise intersecting family. We assume
that F is shifted and (size) maximal. (Recall that F is called shifted iff
(F—{j})u{i} € F holds for all 1<i<j<n and for all F'€F which satisfies
Fn{i,j}={j}. See [2] for more about shifting.) Note also that if F'€ F and
F C G then GE€F because F is maximal.
Let
k:=max{i :VF € F, |FN[i+1]| >i}.

We can find such k, for |[FFN[1]| > 0 (i.e., the case i = 0) is evident. If
k > 13 then F C Fj). So we may assume that k < 12. Let (/) := max{t :
F is (-wise t-intersecting}. Then 1 < ¢(13) < #(12) < --- < (6) < ---. This
implies 8 <t(6) <t(5) <t(4).

Since aq/p4 &~ 0.543689, the weight of 4-wise 12-intersecting family
is, by Lemma 1, at most a5274 ~ 0.000667124. On the other hand,

Wi 2(FEp) = 15(1/2)* &~ 0.000915527. Thus for sufficiently small € >0 we

12 13 : :
Ciea < W% +(FBp), because these functions of both sides are con-

tinuous with respect to w = 5 +e. This means Wy, (F) < W, (F%)) holds
for % <w< %—i—e if F is 4-wise 12-intersecting. So we may assume that
F is not 4-wise 12-intersecting, that is, ¢(4) < 11. Consequently we have
8 <t(6) <t(5) <t(4) <11, and so t(6)+1=t(5) or t(5)+1=t(4).

have «

Lemma 6. Ift({+1)+1=t({) then k>t({+1).

Proof. Set t:=t(¢+1). If t(¢)=t+1 then F is {-wise (t+1)-intersecting, but
F is not f-wise (t+ 2)-intersecting. So there exist Fi,...,Fy € F such that
|FiN---NFy|=t+1. Since F is shifted, we may assume that FyN---NFp=[t+1].
If there exists F'€ F such that |[FN[t+1]|<t—1, then |[FNFN---NFp|<t—1
and this means F is not (¢+ 1)-wise t-intersecting. Thus we must have
|FN[t+1]| >t for all F€F and this proves k>t=t({+1). 1

Using the lemma we have k> ¢(6) if ¢(6)+1=1(5), or k>1#(5) > t(6) if
t(5)+1=t(4). In either case we have 8<t(6) <k <12. For 1<i<k+1 define

F@)={FeF:Fnk+1]=(k+1]\{i})},



WEIGHTED NON-TRIVIAL MULTIPLY INTERSECTING FAMILIES 41

and for i=0 define F(0):={F e F:[k+1]C F}, and set
G@@) :={FN[k+2mn]:FecF(i}

for 0<i<k+1. Since F is non-trivial intersecting, shifted and maximal, we
have

(1) 0£G(1)cg2)c---cgk+1)cg(o).
Note also that

k+1
(2) W (F) = w1 —w) Y Wau(G(i)) + w1 Wi (G(0)).
i=1

By the definition of k, there exists F' € F such that |F'N[k+2]| <k. Since
F is shifted and maximal, it follows that Fy :=[n]|—{k+1,k+2} € F. By
shifting Fy, we have E;:=[n]—{k+i,k+i+1}€F for 1<i<n—k—1. Set
s:=r—k=13—k. We will only use the fact that there exist > E,..., Ea
such that

k+ik+i+1¢FE;fori=1,...,2s.

Note that EyNE3N---NEy_1N[k+1,k+2j]=0, and E;NE4N---NEyN[k+
2,k+2j+1]=0.

Lemma 7. G(i) is (k+1—1)-wise 2s-intersecting for i=1,...,k—2.

Proof. Suppose, on the contrary, that G(i) is not (k+ 1 — i)-wise 2s-
intersecting. Then we can find G;,G;y1,...,Gr €G(i) such that |G;N-- NG| <
2s—1. By the shiftedness, we may assume that G;N---NGr=[k+2,k+2s].
For i<j<k,let Fj:=([k+1]—{i})UG; € F(i). Applying (i,7)-shift to F; we
have

Flim (Fy\ () Ui} € F() for i < j < k.

Set Fj := F; and choose F; € F(j) for j = 1,...,i— 1 arbitrarily. Then
Fin---NF_1NE/N---NF,Clk+2,k+2s] and so F1N---NE_1NF/N---N
F/NENE3N---NEys_1=10. This means that we have k+ s=r edges in F
whose intersection is empty and this is a contradiction. |

Lemma 8. G(k—1) is 3-wise (2s — 1)-intersecting if s> 1.
G(k) is 3-wise (2s — 3)-intersecting if s> 2.

G(k+1) is 3-wise (2s — b5)-intersecting if s> 3.

G(0) is 3-wise (2s —6)-intersecting if s >4.
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Proof. The proof is similar to the previous lemma. For example, sup-
pose that G(k — 1) is not 3-wise (2s — 1)-intersecting. Then there exist
Gi_1,Gi,Gri1€G(k—1) such that Gy_1NGpNGyy1=[k+2,k+2s—1]. Set
Fi=([k+1]-{j})UG; € F(j) for j=k—1,k,k+1 and choose F; € F(j) for
j=1,...,k—2 arbitrarily. Then FyN---NF,_oNF,_ NFNF_  NENEN
-++N Eas_o =), which is a contradiction. The remaining statements can be
proved in the same way. ]

Recall that 8 <k <12 and so 1<s<5. Let us deal with the hardest case
k=10 (s=3) first.
Case 1. k=10 (s=3).

By Lemma 7 and Lemma 8, we get a table representing the (-wise t-
intersecting property for G(i) as follows:

G(4) 16(6) 6(7) G(8) 9(9) 6(10) G(11)
(wise] 5 4 3 3 3
tint.| 6 6 6 5 3 1

By Lemma 5 we have W,,(G(6)) <wS. Using (1) we have
W(G(1)) + -+ + Wiu(G(6)) < 6W,(G(6)) < 6u’.
By Lemma 1, W,,(G(7)) gaqu follows. By Lemma 3 we have

W (G(8)) + Wiw(G(9)) + Wi (G(10)) < way, 5 + w?al, 5 + wau,s.

By Lemma 2, W,,(G(11)) <w. For G(0) we use the trivial bound W,,(G(0)) <
1. Therefore using (kUz2) we have

(3) Ww(]:)§w10(1—w){6w6—|—a6A—l—wzaﬁl,g—l—wQag +w o, 3+ w} 4w,

w w,3

Since ay /93/0.618033 and a5 4~0.543689, we have
Wi /9(F) < 0.00091288 < Wy o(Fpp) ~ 0.000915527.

So we can conclude that Wy, (F) < Wy, (F5,) for w=1/2+¢ because both
the RHS of (3) and W, (F5) = (14— 13w)w'? are continuous with respect
to w.

The proof for the cases k=12,11,9,8 is similar (and easier). We give a
sketchy proof here.

Case 2. k=12 (s=1).
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By Lemma 7 and Lemma 8, we have the following table.

g(i) 1(10) G(11)
f-wise| 3 3
t-int. | 2 1

Therefore, we have
W (F) < w'?(1 — w){10w? + w+1+1} + w'?,
and W j5(F) <0.000732422 < W1 o (FED).
Case 3. k=11 (s=2).
By Lemma 7 and Lemma 8, we have the following table.

g(i) |9(9) 6(10) g(11)
f-wise| 3 3 3
t-int. | 4 3 1

Therefore, we have
Wo(F) < w'(1 - w){9w2afvy3 + w3 +w+ 1} + w'?,
and W j5(F) <0.000857893 < W1 o (FEh).-
Case 4. k=9 (s=4).
By Lemma 7 and Lemma 8, we have the following table.

G(i) 19(9) 6(10) G(0)
f-wise| 3 3 3
t-int. | 5 3 2

Therefore, we have
W (F) <w’(1 = w){9uw?ay, 5 + way 3} +w' - w?,
and W j(F) <0.000913729 < Wy o (FE).-

Case 5. k=8 (s=5).

43
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By Lemma 7 and Lemma 8, we have the following table.

G(i) 1G(8) G(9) G(0)
f-wise| 3 3 3
t-int. | 7 5 4

Therefore, we have
W (F) < w(1 — w){8wa), 5 + w?al, 3} + w” - w?al, 5,

and W 5(F) <0.000653997 < Wy jo (FED)-

This completes the proof of Proposition 2. ]

Now we are going back to the proof of the theorem. Let F be a non-
trivial r-wise intersecting family. To apply induction, we suppose r >13. We
also suppose that F is shifted and maximal. Let us define

F)={F-{1}:1eFerF}, FA)={FeF:1¢F}.

Since F is non-trivial intersecting and maximal, we have [2,n] € F(1). By
shifting [2,n], we have [n] —{i} € F for 1 <i<n. Thus Npcrq) F =0. Since
F is r-wise intersecting and [2,n] € F, it follows that F(1) is a non-trivial
(r—1)-wise intersecting family. Thus using the induction hypothesis we have
W (F(1) <Wy(Fpp ) =w" " r— (r—1)w).

On the other hand, (1) is r-wise r-intersecting. To see this fact, suppose
on the contrary that there exist Fi,...,F, € F(1) such that |[FiN---NF,|<r.
Since F is shifted, we may assume that Fy N---NF, = [2,r]. Then F]:=
(F;—{i}u{1})eF for 2<i<r,and FiNF;N---NF =0, a contradiction.
Therefore F(1) is r-wise r-intersecting and using Proposition 1 we have
W (F(1)) <w". Consequently it follows that

W (F) = wiWu(F(1)) + (1 - @)W, (F(1)
< w(w ™ (r - S =)+ (=
= (r 41— rw) = Wu(Fpp).

This completes the proof of Theorem 2. |
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4. Constructions

First we check that Theorem 2 fails if r=5. Recall that W, (Fpp)=(r+1—
rw)w”.

Example 1. We construct a non-trivial 5-wise intersecting family F c 2"
as follows:

F={{1,2,3} UG : G C [4,n],|G| > [2521} U{F\, F», F3},

where F; = [n] \ {i}.

Then lim,, oo Wy (F) = w? for w > 1/2. This implies g(w,5,1) > w3 >
W (F2p)=(6—5w)w’® for 1/2<w< 1+‘/_.

Using the fact that ([2]) is r-wise t-intersecting if (r—1)n+(t—1) <rk,
we can extend the above construction to get a slightly general lower bound
for g(w,r,t) as follows.

Proposition 3. If% <w then g(w,r,t)>w', where i is a non-negative
integer.

Proof. For sufficiently small ¢ >0, we may assume that - (ZH) <(l—¢€)w.
(+1) t—1

rii + (r—i)(n—it) <
(1—e)w. Set an open interval I =((1—¢)wn, (1+€)wn) and Choose an integer

. r—(i+1) k
kel, then (1-e)w<k/n<k/(n—it). Thus, —— + o= Z)(n 7 < e OF

equivalently, (r—(i+1))(n—it)+ (t—1) < (r—1i)k. This means that ([it*'kl’”])
is a non-trivial (r —i)-wise t-intersecting family. Therefore, the family

Moreover, for sufficiently large n, we may assume that =

Fe {[z’t] UG:Ge (“t *kl’”]>,k c I}U{[n]—[jtJrl, (+1)1] : 0 < j < i}

is non-trivial r-wise t-intersecting, and

gn(w,r,t) > =" Z ( ) (1—w)" ki (1—w) ™t — w®

kel
as 1 — 00. [ |

Using the above proposition, Theorem 1 and Lemma 2, we have the
following.
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Example 2. f(w,rt)=g(w,r,t)=1if w>(r—1)/r.
5/16 if w=1/2

g(w,3,1)=¢ w ifl/2<w<2/3
1 if2/3<w<l.

3/16 if w=1/2

>w? i 1/2 < w < BT
9w, A )= > (5—dw)w' it T <w<2/3

w if 2/3<w<3/4

1 if 3/4<w<1.

7/64 ifw=1/2

>w? i 1/2 < w < Hey2L
g(w,5,1) =4 = (6=5w)w if L2l <w<2/3

>w? if 2/3<w<3/4

w if 3/4<w<4/5

1 if4/<w<l.
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