WEIGHTED NON-TRIVIAL MULTIPLY INTERSECTING FAMILIES

PETER FRANKL, NORIHIDE TOKUSHIGE

Received July 13, 2001
Revised February 11, 2005

Let n and r be positive integers. Suppose that a family $\mathcal{F} \subset 2^{[n]}$ satisfies $F_{1} \cap \cdots \cap F_{r} \neq \emptyset$ for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$ and $\bigcap_{F \in \mathcal{F}} F=\emptyset$. We prove that there exists $\epsilon=\epsilon(r)>0$ such that $\sum_{F \in \mathcal{F}} w^{|F|}(1-w)^{n-|F|} \leq w^{r}(r+1-r w)$ holds for $1 / 2 \leq w \leq 1 / 2+\epsilon$ if $r \geq 13$.

1. Introduction

Let n, r and t be positive integers. A family \mathcal{F} of subsets of $[n]=\{1,2, \ldots, n\}$ is called r-wise t-intersecting if $\left|F_{1} \cap \cdots \cap F_{r}\right| \geq t$ holds for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$. An r-wise 1-intersecting family is also called an r-wise intersecting family for short. An r-wise t-intersecting family \mathcal{F} is called non-trivial if $\left|\bigcap_{F \in \mathcal{F}} F\right|<t$.

Let us define the Brace-Daykin structure as follows.

$$
\mathcal{F}_{B D}^{r}=\{F \subset[n]:|F \cap[r+1]| \geq r\} .
$$

Then $\mathcal{F}_{B D}^{r}$ is a non-trivial r-wise intersecting family. Brace and Daykin proved the following.

Theorem 1 ([1]). Suppose that $\mathcal{F} \subset 2^{[n]}$ is a non-trivial r-wise intersecting family. Then $|\mathcal{F}| \leq\left|\mathcal{F}_{B D}^{r}\right|$.

For a real $w \in(0,1)$ let us define the weighted size (or simply weight) $W_{w}(\mathcal{F})$ of \mathcal{F} by

$$
W_{w}(\mathcal{F})=\sum_{F \in \mathcal{F}} w^{|F|}(1-w)^{n-|F|}
$$

Mathematics Subject Classification (2000): 05D05

Note that $W_{1 / 2}(\mathcal{F})=|\mathcal{F}| / 2^{n}$. See [3] for the maximum weighted size of intersecting families, and see $[2,4]$ for applications of weighted size to Erdős-KoRado and Sperner type results concerning multiply intersecting families. In this note, we consider the maximum weighted size of non-trivial intersecting families and extend Theorem 1. The weight of the Brace-Daykin family is calculated as follows:

$$
W_{w}\left(\mathcal{F}_{B D}^{r}\right)=(r+1) w^{r}(1-w)+w^{r+1}=w^{r}(r+1-r w)
$$

Let us define

$$
\begin{gathered}
g_{n}(w, r, t):=\max \left\{W_{w}(\mathcal{F}): \mathcal{F} \subset 2^{[n]} \text { is non-trivial } r \text {-wise } t \text {-intersecting }\right\} \\
g(w, r, t):=\lim _{n \rightarrow \infty} g_{n}(w, r, t)
\end{gathered}
$$

Then the Brace-Daykin theorem states that $g_{n}(1 / 2, r, 1)=W_{1 / 2}\left(\mathcal{F}_{B D}^{r}\right)$ and thus $g(1 / 2, r, 1)=(r+2)(1 / 2)^{r+1}$. Can we expect the same thing for $w=$ $1 / 2+\epsilon$? The answer is "yes" for $r \geq 13$, and "no" for $r \leq 5$.

Theorem 2. Let $r \geq 13$. Then there exists $\epsilon=\epsilon(r)>0$ such that $g(w, r, 1)=$ $W_{w}\left(\mathcal{F}_{B D}^{r}\right)=w^{r}(r+1-r w)$ holds for $1 / 2 \leq w \leq 1 / 2+\epsilon$.

In the last section, we shall construct non-trivial r-wise intersecting families with weights larger than $W_{w}\left(\mathcal{F}_{B D}^{r}\right)$ for $r \leq 5$. The cases $6 \leq r \leq 12$ remain open.

Conjecture 1. Theorem 2 is true for $r \geq 6$.

2. Tools

In this section we summarize some results on the maximum weight of (not necessarily non-trivial) r-wise t-intersecting families. Let us define

$$
\begin{gathered}
f_{n}(w, r, t):=\max \left\{W_{w}(\mathcal{F}): \mathcal{F} \subset 2^{[n]} \text { is } r \text {-wise } t \text {-intersecting }\right\} \\
f(w, r, t):=\lim _{n \rightarrow \infty} f_{n}(w, r, t)
\end{gathered}
$$

If $\mathcal{F} \subset 2^{[n]}$ satisfies $f_{n}(w, r, t)=W_{w}(\mathcal{F})$ then $\mathcal{F}^{\prime}:=\mathcal{F} \cup\{F \cup\{n+1\}: F \in \mathcal{F}\} \subset$ $2^{[n+1]}$ satisfies $W_{w}\left(\mathcal{F}^{\prime}\right)=W_{w}(\mathcal{F})=f_{n}(w, r, t)$, which implies $f_{n+1}(w, r, t) \geq$ $f_{n}(w, r, t)$. Since $\mathcal{F}=\{F \subset[n]:[t] \subset F\}$ is r-wise t-intersecting and $W_{w}(\mathcal{F})=$ w^{t}, it follows that $f(w, r, t) \geq f_{n}(w, r, t) \geq w^{t}$.

Let $\alpha_{w, r} \in(1 / 2,1)$ be the unique root of the equation $(1-w) x^{r}-x+w=0$. The following inequality is not sharp but it is very useful (see Fact 3 on page 98 of [2]).

Lemma 1. $f(w, r, t) \leq \alpha_{w, r}^{t}$.
For the case $t=1$, we proved the following in [3].
Lemma 2. $f(w, r, 1)=w$ if $w \leq \frac{r-1}{r}$, and $f(w, r, 1)=1$ if $w>\frac{r-1}{r}$.
For the case $r=3$, we proved the following in [2] (see Proposition 2 on page 104).

Lemma 3. $f(w, 3, t) \leq w^{2} \alpha_{w, 3}^{t-2}$ if $t \geq 2$ and $w<0.5018$.
We also use the following simple fact.
Lemma 4. If $\alpha_{w, r-1}^{t+1} \leq w^{t}$ then $f(w, r, t)=w^{t}$.
Proof. Suppose that \mathcal{F} is an r-wise t-intersecting family with $W_{w}(\mathcal{F})=$ $f(w, r, t) \geq w^{t}$. If \mathcal{F} has $(r-1)$ edges F_{1}, \ldots, F_{r-1} with $\left|F_{1} \cap \cdots \cap F_{r-1}\right|=t$ then all edges in \mathcal{F} must contain this t-subset, which proves $W_{w}(\mathcal{F}) \leq w^{t}$. Thus we may assume that \mathcal{F} is $(r-1)$-wise $(t+1)$-intersecting. By Lemma 1 , we have $W_{w}(\mathcal{F}) \leq f(w, r-1, t+1) \leq \alpha_{w, r-1}^{t+1} \leq w^{t}$.

Using above lemmas, we have the following.
Lemma 5. There exists $\epsilon=\epsilon(r)$ such that $f(w, r, t)=w^{t}$ holds for $1 / 2 \leq w \leq$ $1 / 2+\epsilon$ in the following cases: $r=3$ and $t \leq 2, r=4$ and $t \leq 2, r=5$ and $t \leq 7$.

Proof. The case $t=1$ follows from Lemma 2. The case $r=3$ and $t=2$ follows from Lemma 3.

Let us consider the case $r=4$ and $t=2$. Since $\alpha_{\frac{1}{2}, 3}=\frac{\sqrt{5}-1}{2} \approx 0.618$, we have $\alpha_{\frac{1}{2}, 3}^{3}<\left(\frac{1}{2}\right)^{2}$. Then, by the continuity, $\alpha_{\frac{1}{2}+\epsilon, 3}^{3}<\left(\frac{1}{2}+\epsilon\right)^{2}$ holds for sufficiently small $\epsilon>0$. Thus $f(w, 4,2) \leq w^{2}$ for $\frac{1}{2} \leq w \leq \frac{1}{2}+\epsilon$ follows from Lemma 4. One can prove the case $r=5$ and $2 \leq t \leq 7$ similarly.

Note also that

$$
\alpha_{\frac{1}{2}, r-1}^{t+1}<\left(\frac{1}{2}+\frac{1}{2^{r-1}}\right)^{t+1}=\left(\frac{1}{2}\right)^{t+1}\left(1+\frac{1}{2^{r-2}}\right)^{t+1}<\left(\frac{1}{2}\right)^{t+1} \exp \left(\frac{t+1}{2^{r-2}}\right)
$$

which is smaller than $(1 / 2)^{t}$ if $t+1 \leq 2^{r-2} \log 2$. This means that $f(w, r, t)=w^{t}$ holds for $w=1 / 2+\epsilon(r)$ if $t \leq 2^{r-2} \log 2-1$. We shall use the following weaker version later.

Proposition 1. Let $\mathcal{F} \subset 2^{[n]}$ be an r-wise r-intersecting family. If $r \geq 5$, then there exists $\epsilon=\epsilon(r)>0$ such that $W_{w}(\mathcal{F}) \leq w^{r}$ holds for $\frac{1}{2} \leq w \leq \frac{1}{2}+\epsilon$.

3. Proof of Theorem 2

Proof. We prove Theorem 2 by induction on r. First we prove the initial step $r=13$.

Proposition 2. Suppose that $\mathcal{F} \subset 2^{[n]}$ is a non-trivial 13-wise intersecting family. Then there exists $\epsilon>0$ such that $W_{w}(\mathcal{F}) \leq W_{w}\left(\mathcal{F}_{B D}^{13}\right)$ holds for $\frac{1}{2} \leq w \leq \frac{1}{2}+\epsilon$.

Proof. Let $\mathcal{F} \subset 2^{[n]}$ be a non-trivial 13 -wise intersecting family. We assume that \mathcal{F} is shifted and (size) maximal. (Recall that \mathcal{F} is called shifted iff $(F-\{j\}) \cup\{i\} \in \mathcal{F}$ holds for all $1 \leq i<j \leq n$ and for all $F \in \mathcal{F}$ which satisfies $F \cap\{i, j\}=\{j\}$. See [2] for more about shifting.) Note also that if $F \in \mathcal{F}$ and $F \subset G$ then $G \in \mathcal{F}$ because \mathcal{F} is maximal.

Let

$$
k:=\max \{i: \forall F \in \mathcal{F},|F \cap[i+1]| \geq i\}
$$

We can find such k, for $|F \cap[1]| \geq 0$ (i.e., the case $i=0$) is evident. If $k \geq 13$ then $\mathcal{F} \subset \mathcal{F}_{B D}^{13}$. So we may assume that $k \leq 12$. Let $t(\ell):=\max \{t$: \mathcal{F} is ℓ-wise t-intersecting $\}$. Then $1 \leq t(13)<t(12)<\cdots<t(6)<\cdots$. This implies $8 \leq t(6)<t(5)<t(4)$.

Since $\alpha_{1 / 2,4} \approx 0.543689$, the weight of 4 -wise 12 -intersecting family is, by Lemma 1 , at most $\alpha_{1 / 2,4}^{12} \approx 0.000667124$. On the other hand, $W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right)=15(1 / 2)^{14} \approx 0.000915527$. Thus for sufficiently small $\epsilon>0$ we have $\alpha_{\frac{1}{2}+\epsilon, 4}^{12}<W_{\frac{1}{2}+\epsilon}\left(\mathcal{F}_{B D}^{13}\right)$, because these functions of both sides are continuous with respect to $w=\frac{1}{2}+\epsilon$. This means $W_{w}(\mathcal{F})<W_{w}\left(\mathcal{F}_{B D}^{13}\right)$ holds for $\frac{1}{2} \leq w \leq \frac{1}{2}+\epsilon$ if \mathcal{F} is 4 -wise 12 -intersecting. So we may assume that \mathcal{F} is not 4 -wise 12 -intersecting, that is, $t(4) \leq 11$. Consequently we have $8 \leq t(6)<t(5)<t(4) \leq 11$, and so $t(6)+1=t(5)$ or $t(5)+1=t(4)$.

Lemma 6. If $t(\ell+1)+1=t(\ell)$ then $k \geq t(\ell+1)$.
Proof. Set $t:=t(\ell+1)$. If $t(\ell)=t+1$ then \mathcal{F} is ℓ-wise $(t+1)$-intersecting, but \mathcal{F} is not ℓ-wise $(t+2)$-intersecting. So there exist $F_{1}, \ldots, F_{\ell} \in \mathcal{F}$ such that $\left|F_{1} \cap \cdots \cap F_{\ell}\right|=t+1$. Since \mathcal{F} is shifted, we may assume that $F_{1} \cap \cdots \cap F_{\ell}=[t+1]$. If there exists $F \in \mathcal{F}$ such that $|F \cap[t+1]| \leq t-1$, then $\left|F \cap F_{1} \cap \cdots \cap F_{\ell}\right| \leq t-1$ and this means \mathcal{F} is not $(\ell+1)$-wise t-intersecting. Thus we must have $|F \cap[t+1]| \geq t$ for all $F \in \mathcal{F}$ and this proves $k \geq t=t(\ell+1)$.

Using the lemma we have $k \geq t(6)$ if $t(6)+1=t(5)$, or $k \geq t(5)>t(6)$ if $t(5)+1=t(4)$. In either case we have $8 \leq t(6) \leq k \leq 12$. For $1 \leq i \leq k+1$ define

$$
\mathcal{F}(i):=\{F \in \mathcal{F}: F \cap[k+1]=([k+1] \backslash\{i\})\}
$$

and for $i=0$ define $\mathcal{F}(0):=\{F \in \mathcal{F}:[k+1] \subset F\}$, and set

$$
\mathcal{G}(i):=\{F \cap[k+2, n]: F \in \mathcal{F}(i)\}
$$

for $0 \leq i \leq k+1$. Since \mathcal{F} is non-trivial intersecting, shifted and maximal, we have

$$
\begin{equation*}
\emptyset \neq \mathcal{G}(1) \subset \mathcal{G}(2) \subset \cdots \subset \mathcal{G}(k+1) \subset \mathcal{G}(0) . \tag{1}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
W_{w}(\mathcal{F})=w^{k}(1-w) \sum_{i=1}^{k+1} W_{w}(\mathcal{G}(i))+w^{k+1} W_{w}(\mathcal{G}(0)) \tag{2}
\end{equation*}
$$

By the definition of k, there exists $F \in \mathcal{F}$ such that $|F \cap[k+2]| \leq k$. Since \mathcal{F} is shifted and maximal, it follows that $E_{1}:=[n]-\{k+1, k+2\} \in \mathcal{F}$. By shifting E_{1}, we have $E_{i}:=[n]-\{k+i, k+i+1\} \in \mathcal{F}$ for $1 \leq i \leq n-k-1$. Set $s:=r-k=13-k$. We will only use the fact that there exist $\mathcal{F} \ni E_{1}, \ldots, E_{2 s}$ such that

$$
k+i, k+i+1 \notin E_{i} \text { for } i=1, \ldots, 2 s .
$$

Note that $E_{1} \cap E_{3} \cap \cdots \cap E_{2 j-1} \cap[k+1, k+2 j]=\emptyset$, and $E_{2} \cap E_{4} \cap \cdots \cap E_{2 j} \cap[k+$ $2, k+2 j+1]=\emptyset$.

Lemma 7. $\mathcal{G}(i)$ is $(k+1-i)$-wise $2 s$-intersecting for $i=1, \ldots, k-2$.
Proof. Suppose, on the contrary, that $\mathcal{G}(i)$ is not $(k+1-i)$-wise $2 s$ intersecting. Then we can find $G_{i}, G_{i+1}, \ldots, G_{k} \in \mathcal{G}(i)$ such that $\left|G_{i} \cap \cdots \cap G_{k}\right| \leq$ $2 s-1$. By the shiftedness, we may assume that $G_{i} \cap \cdots \cap G_{k}=[k+2, k+2 s]$. For $i \leq j \leq k$, let $F_{j}:=([k+1]-\{i\}) \cup G_{j} \in \mathcal{F}(i)$. Applying (i, j)-shift to F_{j} we have

$$
F_{j}^{\prime}:=\left(F_{j} \backslash\{j\}\right) \cup\{i\} \in \mathcal{F}(j) \text { for } i<j \leq k .
$$

Set $F_{i}^{\prime}:=F_{i}$ and choose $F_{j} \in \mathcal{F}(j)$ for $j=1, \ldots, i-1$ arbitrarily. Then $F_{1} \cap \cdots \cap F_{i-1} \cap F_{i}^{\prime} \cap \cdots \cap F_{k}^{\prime} \subset[k+2, k+2 s]$ and so $F_{1} \cap \cdots \cap F_{i-1} \cap F_{i}^{\prime} \cap \cdots \cap$ $F_{k}^{\prime} \cap E_{1} \cap E_{3} \cap \cdots \cap E_{2 s-1}=\emptyset$. This means that we have $k+s=r$ edges in \mathcal{F} whose intersection is empty and this is a contradiction.

Lemma 8. $\mathcal{G}(k-1)$ is 3 -wise $(2 s-1)$-intersecting if $s \geq 1$.
$\mathcal{G}(k)$ is 3 -wise ($2 s-3$)-intersecting if $s \geq 2$.
$\mathcal{G}(k+1)$ is 3 -wise $(2 s-5)$-intersecting if $s \geq 3$.
$\mathcal{G}(0)$ is 3 -wise $(2 s-6)$-intersecting if $s \geq 4$.

Proof. The proof is similar to the previous lemma. For example, suppose that $\mathcal{G}(k-1)$ is not 3 -wise $(2 s-1)$-intersecting. Then there exist $G_{k-1}, G_{k}, G_{k+1} \in \mathcal{G}(k-1)$ such that $G_{k-1} \cap G_{k} \cap G_{k+1}=[k+2, k+2 s-1]$. Set $F_{j}^{\prime}:=([k+1]-\{j\}) \cup G_{j} \in \mathcal{F}(j)$ for $j=k-1, k, k+1$ and choose $F_{j} \in \mathcal{F}(j)$ for $j=1, \ldots, k-2$ arbitrarily. Then $F_{1} \cap \cdots \cap F_{k-2} \cap F_{k-1}^{\prime} \cap F_{k}^{\prime} \cap F_{k+1}^{\prime} \cap E_{2} \cap E_{4} \cap$ $\cdots \cap E_{2 s-2}=\emptyset$, which is a contradiction. The remaining statements can be proved in the same way.

Recall that $8 \leq k \leq 12$ and so $1 \leq s \leq 5$. Let us deal with the hardest case $k=10(s=3)$ first.

Case 1. $k=10(s=3)$.
By Lemma 7 and Lemma 8, we get a table representing the ℓ-wise t intersecting property for $\mathcal{G}(i)$ as follows:

$\mathcal{G}(i)$	$\mathcal{G}(6)$	$\mathcal{G}(7)$	$\mathcal{G}(8)$	$\mathcal{G}(9)$	$\mathcal{G}(10)$	$\mathcal{G}(11)$
ℓ-wise	5	4	3	3	3	3
t-int.	6	6	6	5	3	1

By Lemma 5 we have $W_{w}(\mathcal{G}(6)) \leq w^{6}$. Using (1) we have

$$
W_{w}(\mathcal{G}(1))+\cdots+W_{w}(\mathcal{G}(6)) \leq 6 W_{w}(\mathcal{G}(6)) \leq 6 w^{6}
$$

By Lemma 1, $W_{w}(\mathcal{G}(7)) \leq \alpha_{w, 4}^{6}$ follows. By Lemma 3 we have

$$
W_{w}(\mathcal{G}(8))+W_{w}(\mathcal{G}(9))+W_{w}(\mathcal{G}(10)) \leq w^{2} \alpha_{w, 3}^{4}+w^{2} \alpha_{w, 3}^{3}+w^{2} \alpha_{w, 3}
$$

By Lemma 2, $W_{w}(\mathcal{G}(11)) \leq w$. For $\mathcal{G}(0)$ we use the trivial bound $W_{w}(\mathcal{G}(0)) \leq$ 1. Therefore using (kUz 2) we have

$$
\begin{equation*}
W_{w}(\mathcal{F}) \leq w^{10}(1-w)\left\{6 w^{6}+\alpha_{w, 4}^{6}+w^{2} \alpha_{w, 3}^{4}+w^{2} \alpha_{w, 3}^{3}+w^{2} \alpha_{w, 3}+w\right\}+w^{11} \tag{3}
\end{equation*}
$$

Since $\alpha_{1 / 2,3} \approx 0.618033$ and $\alpha_{1 / 2,4} \approx 0.543689$, we have

$$
W_{1 / 2}(\mathcal{F}) \leq 0.00091288<W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right) \approx 0.000915527
$$

So we can conclude that $W_{w}(\mathcal{F})<W_{w}\left(\mathcal{F}_{B D}^{13}\right)$ for $w=1 / 2+\epsilon$ because both the RHS of (3) and $W_{w}\left(\mathcal{F}_{B D}^{13}\right)=(14-13 w) w^{13}$ are continuous with respect to w.

The proof for the cases $k=12,11,9,8$ is similar (and easier). We give a sketchy proof here.

Case 2. $k=12(s=1)$.

By Lemma 7 and Lemma 8, we have the following table.

$\mathcal{G}(i)$	$\mathcal{G}(10)$	$\mathcal{G}(11)$
ℓ-wise	3	3
t-int.	2	1

Therefore, we have

$$
W_{w}(\mathcal{F}) \leq w^{12}(1-w)\left\{10 w^{2}+w+1+1\right\}+w^{13}
$$

and $W_{1 / 2}(\mathcal{F}) \leq 0.000732422<W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right)$.
Case 3. $k=11(s=2)$.
By Lemma 7 and Lemma 8, we have the following table.

$\mathcal{G}(i)$	$\mathcal{G}(9)$	$\mathcal{G}(10)$	$\mathcal{G}(11)$
ℓ-wise	3	3	3
t-int.	4	3	1

Therefore, we have

$$
W_{w}(\mathcal{F}) \leq w^{11}(1-w)\left\{9 w^{2} \alpha_{w, 3}^{2}+w^{2} \alpha_{w, 3}+w+1\right\}+w^{12}
$$

and $W_{1 / 2}(\mathcal{F}) \leq 0.000857893<W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right)$.
Case 4. $k=9(s=4)$.
By Lemma 7 and Lemma 8, we have the following table.

$\mathcal{G}(i)$	$\mathcal{G}(9)$	$\mathcal{G}(10)$	$\mathcal{G}(0)$
ℓ-wise	3	3	3
t-int.	5	3	2

Therefore, we have

$$
W_{w}(\mathcal{F}) \leq w^{9}(1-w)\left\{9 w^{2} \alpha_{w, 3}^{3}+w^{2} \alpha_{w, 3}\right\}+w^{10} \cdot w^{2}
$$

and $W_{1 / 2}(\mathcal{F}) \leq 0.000913729<W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right)$.
Case 5. $k=8(s=5)$.

By Lemma 7 and Lemma 8, we have the following table.

$\mathcal{G}(i)$	$\mathcal{G}(8)$	$\mathcal{G}(9)$	$\mathcal{G}(0)$
l-wise	3	3	3
t-int.	7	5	4

Therefore, we have

$$
W_{w}(\mathcal{F}) \leq w^{8}(1-w)\left\{8 w^{2} \alpha_{w, 3}^{5}+w^{2} \alpha_{w, 3}^{3}\right\}+w^{9} \cdot w^{2} \alpha_{w, 3}^{2}
$$

and $W_{1 / 2}(\mathcal{F}) \leq 0.000653997<W_{1 / 2}\left(\mathcal{F}_{B D}^{13}\right)$.
This completes the proof of Proposition 2.

Now we are going back to the proof of the theorem. Let \mathcal{F} be a nontrivial r-wise intersecting family. To apply induction, we suppose $r>13$. We also suppose that \mathcal{F} is shifted and maximal. Let us define

$$
\mathcal{F}(1):=\{F-\{1\}: 1 \in F \in \mathcal{F}\}, \quad \mathcal{F}(\overline{1}):=\{F \in \mathcal{F}: 1 \notin F\} .
$$

Since \mathcal{F} is non-trivial intersecting and maximal, we have $[2, n] \in \mathcal{F}(\overline{1})$. By shifting $[2, n]$, we have $[n]-\{i\} \in \mathcal{F}$ for $1 \leq i \leq n$. Thus $\bigcap_{F \in \mathcal{F}(1)} F=\emptyset$. Since \mathcal{F} is r-wise intersecting and $[2, n] \in \mathcal{F}$, it follows that $\mathcal{F}(1)$ is a non-trivial $(r-1)$-wise intersecting family. Thus using the induction hypothesis we have $W_{w}(\mathcal{F}(1)) \leq W_{w}\left(\mathcal{F}_{B D}^{r-1}\right)=w^{r-1}(r-(r-1) w)$.

On the other hand, $\mathcal{F}(\overline{1})$ is r-wise r-intersecting. To see this fact, suppose on the contrary that there exist $F_{1}, \ldots, F_{r} \in \mathcal{F}(\overline{1})$ such that $\left|F_{1} \cap \cdots \cap F_{r}\right|<r$. Since \mathcal{F} is shifted, we may assume that $F_{1} \cap \cdots \cap F_{r}=[2, r]$. Then $F_{i}^{\prime}:=$ $\left(F_{i}-\{i\} \cup\{1\}\right) \in \mathcal{F}$ for $2 \leq i \leq r$, and $F_{1} \cap F_{2}^{\prime} \cap \cdots \cap F_{r}^{\prime}=\emptyset$, a contradiction. Therefore $\mathcal{F}(\overline{1})$ is r-wise r-intersecting and using Proposition 1 we have $W_{w}(\mathcal{F}(\overline{1})) \leq w^{r}$. Consequently it follows that

$$
\begin{aligned}
W_{w}(\mathcal{F}) & =w W_{w}(\mathcal{F}(1))+(1-w) W_{w}(\mathcal{F}(\overline{1})) \\
& \leq w\left(w^{r-1}(r-(r-1) w)\right)+(1-w) w^{r} \\
& =w^{r}(r+1-r w)=W_{w}\left(\mathcal{F}_{B D}^{r}\right)
\end{aligned}
$$

This completes the proof of Theorem 2.

4. Constructions

First we check that Theorem 2 fails if $r=5$. Recall that $W_{w}\left(\mathcal{F}_{B D}^{r}\right)=(r+1-$ $r w) w^{r}$.

Example 1. We construct a non-trivial 5 -wise intersecting family $\mathcal{F} \subset 2^{[n]}$ as follows:

$$
\begin{gathered}
\mathcal{F}:=\left\{\{1,2,3\} \cup G: G \subset[4, n],|G| \geq\left\lceil\frac{n-2}{2}\right\rceil\right\} \cup\left\{F_{1}, F_{2}, F_{3}\right\}, \\
\text { where } F_{i}=[n] \backslash\{i\} .
\end{gathered}
$$

Then $\lim _{n \rightarrow \infty} W_{w}(\mathcal{F})=w^{3}$ for $w>1 / 2$. This implies $g(w, 5,1) \geq w^{3}>$ $W_{w}\left(\mathcal{F}_{B D}^{5}\right)=(6-5 w) w^{5}$ for $1 / 2<w<\frac{1+\sqrt{21}}{10}$.

Using the fact that $\binom{[n]}{k}$ is r-wise t-intersecting if $(r-1) n+(t-1)<r k$, we can extend the above construction to get a slightly general lower bound for $g(w, r, t)$ as follows.

Proposition 3. If $\frac{r-(i+1)}{r-i}<w$ then $g(w, r, t) \geq w^{i t}$, where i is a non-negative integer.

Proof. For sufficiently small $\epsilon>0$, we may assume that $\frac{r-(i+1)}{r-i}<(1-\epsilon) w$. Moreover, for sufficiently large n, we may assume that $\frac{r-(i+1)}{r-i}+\frac{t-1}{(r-i)(n-i t)}<$ $(1-\epsilon) w$. Set an open interval $I=((1-\epsilon) w n,(1+\epsilon) w n)$ and choose an integer $k \in I$, then $(1-\epsilon) w<k / n<k /(n-i t)$. Thus, $\frac{r-(i+1)}{r-i}+\frac{t-1}{(r-i)(n-i t)}<\frac{k}{n-i t}$, or equivalently, $(r-(i+1))(n-i t)+(t-1)<(r-i) k$. This means that $\binom{[i t+1, n]}{k}$ is a non-trivial $(r-i)$-wise t-intersecting family. Therefore, the family

$$
\mathcal{F}:=\left\{[i t] \cup G: G \in\binom{[i t+1, n]}{k}, k \in I\right\} \cup\{[n]-[j t+1,(j+1) t]: 0 \leq j<i\}
$$

is non-trivial r-wise t-intersecting, and
$g_{n}(w, r, t) \geq W_{w}(\mathcal{F})=w^{i t} \sum_{k \in I}\binom{n-i t}{k} w^{k}(1-w)^{n-i t-k}+i(1-w)^{t} w^{n-t} \rightarrow w^{i t}$
as $n \rightarrow \infty$.
Using the above proposition, Theorem 1 and Lemma 2, we have the following.

Example 2. $f(w, r, t)=g(w, r, t)=1$ if $w>(r-1) / r$.
$g(w, 3,1)=\left\{\begin{array}{c}5 / 16 \text { if } w=1 / 2 \\ w \text { if } 1 / 2<w \leq 2 / 3 \\ 1 \quad \text { if } 2 / 3<w \leq 1 .\end{array}\right.$
$g(w, 4,1)= \begin{cases}3 / 16 & \text { if } w=1 / 2 \\ \geq w^{2} & \text { if } 1 / 2<w \leq \frac{1+\sqrt{17}}{8} \\ \geq(5-4 w) w^{4} & \text { if } \frac{1+\sqrt{17} \leq w \leq 2 / 3}{8} \leq w \leq 3 / 4 \\ w & \text { if } 2 / 3<w \\ 1 & \text { if } 3 / 4<w \leq 1 .\end{cases}$
$g(w, 5,1)= \begin{cases}7 / 64 & \text { if } w=1 / 2 \\ \geq w^{3} & \text { if } 1 / 2<w \leq \frac{1+\sqrt{21}}{10} \\ \geq(6-5 w) w^{5} & \text { if } \frac{1+\sqrt{21} \leq w \leq 2 / 3}{10} \leq \\ \geq w^{2} & \text { if } 2 / 3<w \leq 3 / 4 \\ w & \text { if } 3 / 4<w \leq 4 / 5 \\ 1 & \text { if } 4 /<w \leq 1 .\end{cases}$

References

[1] A. Brace and D. E. Daykin: A finite set covering theorem I, II, III; Bull. Austral. Math. Soc. 5 (1971), 197-202; 6 (1972) 19-24, 417-433; IV: Infinite and Finite Sets, Colloq. Math. Soc. János Bolyai 10 (1975), 199-203.
[2] P. Frankl and N. Tokushige: Weighted 3-wise 2-intersecting families, J. Combin. Theory (A) 100 (2002), 94-115.
[3] P. Frankl and N. Tokushige: Weighted multiply intersecting families, Studia Sci. Math. Hungarica 40 (2003), 287-291.
[4] P. Frankl and N. Tokushige: Random walks and multiply intersecting families, J. Combin. Theory (A) 109 (2005), 121-134.

Peter Frankl
CNRS
ER 175 Combinatoire
2 Place Jussieu
75005 Paris
France
Peter111F@aol.com

Norihide Tokushige
College of Education
Ryukyu University
Nishihara, Okinawa, 903-0213
Japan
hide@edu.u-ryukyu.ac.jp

