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Abstract. Let F be an n-uniform hypergraph on 2n vertices. Suppose that |F1 ∩F2 ∩F3| ≥ 1
and |F1 ∪ F2 ∪ F3| ≤ 2n − 1 holds for all F1, F2, F3 ∈ F . We prove that the size of F is at
most

(2n−2
n−1

)
.

1. Introduction

A family F ⊂ 2X is called r-wise intersecting if F1 ∩ · · · ∩ Fr �= ∅ holds for all
F1, . . . , Fr ∈F . A family F ⊂2X is called r-wise union if F1∪· · ·∪Fr �=X holds for all
F1, . . . , Fr ∈ F . The Erdős–Ko–Rado theorem [2] states that if n ≥ 2k and F ⊂ (

n
k

)

is 2-wise intersecting then |F | ≤ (
n−1
k−1

)
. By considering the complement, the theorem

can be restated as follows: if n ≤ 2k and F ⊂ (
n
k

)
is 2-wise union then |F | ≤ (

n−1
k

)
.

We can extend the Erdős–Ko–Rado theorem for r-wise intersecting families as
follows.

Theorem 1 [3]. If F ⊂ ([n]
k

)
is r-wise intersecting and (r − 1)n ≥ rk then |F | ≤ (

n−1
k−1

)
.

If r ≥ 3 then equality holds iff F = {F ∈ ([n]
k

)
: i ∈ F } holds for some i ∈ [n].

The equivalent complement version is the following. If F ⊂ ([n]
k

)
is r-wise union

and rk ≥ n then |F | ≤ (
n−1
k

)
.

Gronau [6], and Engel and Gronau [1] proved the following.

Theorem 2. Let r ≥ 4, s ≥ 4 and F ⊂ ([n]
k

)
. Suppose that F is r-wise intersecting and

s-wise union, and
n − 1

s
+ 1 ≤ k ≤ r − 1

r
(n − 1).

Then we have |F | ≤ (
n−2
k−1

)
.
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In this note we prove the following.

Theorem 3. Let F ⊂ ([2n]
n

)
be a 3-wise intersecting and 3-wise union family. Then we

have |F | ≤ (2n−2
n−1

)
. Equality holds iff F = {F ∈ ([2n]−{j}

n

)
: i ∈ F } holds for some

i, j ∈ [2n].

2. Proof of Theorem 3

We can prove the theorem for n ≤ 3 easily, so we assume that n ≥ 4. Let F ⊂ ([2n]
n

)

be a 3-wise intersecting and 3-wise union family. If F ⊂ ([2n]−{j}
n

)
holds for some

j ∈ [2n] then Theorem 1 implies that |F | ≤ (2n−2
n−1

)
and equality holds iff there exists

some i ∈ [2n] such that i ∈ F holds for all F ∈ F , which verifies the theorem. From
now on we assume that there is no such j , in other words, we assume that

⋃

F∈F
F = [2n]. (1)

Considering the complement, we may assume that
⋂

F∈F
F = ∅. (2)

Now suppose that

|F | ≥
(

2n − 2
n − 1

)
(3)

and we shall prove that there is no such F .

For A ∈ ([2n]
n

)
, we define the corresponding walk on Z

2, denoted by walk(A), in
the following way. The walk is from (0, 0) to (n, n) with 2n steps, and if i ∈ A (resp.
i �∈ A) then we move one unit up (resp. one unit to the right) at the i-th step. Let us
define

Ai := {A ∈ ([2n]
n

)
: |A ∩ [1 + 3�]| ≥ 1 + 2� first holds at � = i},

Aj̄ := {A ∈ ([2n]
n

)
: |A ∩ [2n − 3�, 2n]| ≤ � first holds at � = j}.

If A ∈ Ai then, after starting from the origin, walk(A) touches the line y = 2x + 1
at (i, 2i + 1) for the first time. If A ∈ Aj̄ then walk(A) touches the line y = 1

2 (x −
(n−1))+n at (n−2j −1, n−j) and after passing this point this walk never touches
the line again. Set Aij̄ := Ai ∩ Aj̄ , and

ai := |Ai |/
(2n−2

n−1

)
, aj̄ := |Aj̄ |/

(2n−2
n−1

)
, aij̄ := |Aij̄ |/

(2n−2
n−1

)
.

Set also

Fi := Ai ∩ F, Fj̄ := Aj̄ ∩ F, Fij̄ := Aij̄ ∩ F,
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fi := |Fi |/
(2n−2

n−1

)
, fj̄ := |Fj̄ |/

(2n−2
n−1

)
, fij̄ := |Fij̄ |/

(2n−2
n−1

)
,

and

Gij̄ := {F ∩ [3i + 2, 2n − 3j − 1] : F ∈ Fij̄ }.
Note that |Gij̄ | ≤ |Fij̄ | and equality holds if both of i and j are at most 1.

We also use the following basic facts about shifting. (See e.g., [8, 4, 5] for the
details.) We may assume that F ⊂ ([2n]

n

)
is shifted, i.e., for all F ∈ F and 1 ≤ i <

j ≤ 2n, if i �∈ F and j ∈ F then (F − {j}) ∪ {i} ∈ F . It follows then for all F ∈ F ,
walk (F ) must touch the line y = 2x + 1 because F is a shifted 3-wise 1-intersecting
family. In the same way, walk (F ) must touch the line y = 1

2 (x −(n−1))+n because
F is a shifted 3-wise 1-union family.

Claim 1. G00̄ ⊂ ([2,2n−1]
n−1

)
is 2-wise intersecting.

Proof. Otherwise we have A, B ∈ F00̄ such that A∩B = {1}. This forces
⋂

F∈F F =
{1}, contradicting (2). �

By Claim 1 and the Erdős–Ko–Rado theorem, we have |F00̄| = |G00̄| ≤ (2n−3
n−2

)

and

f00̄ ≤
(

2n − 3
n − 2

)/(
2n − 2
n − 1

)
= 1

2
. (4)

Claim 2. G10̄ ⊂ ([5,2n−1]
n−3

)
is 2-wise intersecting.

Proof. Suppose on the contrary that there exist A, B ∈ G10̄ such that A ∩ B = ∅.
Then {2, 3, 4}∪A, {2, 3, 4}∪B ∈ F10̄. Since F is shifted we also have {1, 3, 4}∪B ∈
F10̄. If there is F ∈ F such that |F ∩[4]| ≤ 2 then we may assume that F ∩ [2] = {1, 2}
by the shiftedness of F . But this is impossible because ({2, 3, 4} ∪ A) ∩ ({1, 3, 4} ∪
B) ∩ F = ∅.

Thus we may assume that |F ∩ [4]| ≥ 3 holds for all F ∈ F . Let

F(1̄234) := {F ∩ [5, 2n] : F ∈ F, F ∩ [4] = {2, 3, 4}} ⊂ ([5,2n]
n−3

)
,

F(12̄34) := {F ∩ [5, 2n] : F ∈ F, F ∩ [4] = {1, 3, 4}} ⊂ ([5,2n]
n−3

)
,

F(123̄4) := {F ∩ [5, 2n] : F ∈ F, F ∩ [4] = {1, 2, 4}} ⊂ ([5,2n]
n−3

)
.

Then |F(1̄234)| + |F(12̄34)| + |F(123̄4)| ≤ 3
(2n−4

n−3

)
. Let

F(123) := {F ∩ [4, 2n] : {1, 2, 3} ⊂ F ∈ F} ⊂ ([4,2n]
n−3

)
.

Then F(123) is 3-wise union and it follows from the complement version of Theo-
rem 1 that |F(123)| ≤ (2n−4

n−3

)
. Therefore we have

|F | = |F(1̄234)| + |F(12̄34)| + |F(123̄4)| + |F(123)| ≤ 4
(

2n − 4
n − 3

)
<

(
2n − 2
n − 1

)
,

which contradicts (3). �



228 P. Frankl and N. Tokushige

By Claim 2 and the Erdős–Ko–Rado theorem, we have |F10̄| = |G10̄| ≤ (2n−6
n−4

)

and

f10̄ ≤
(

2n − 6
n − 4

)/(
2n − 2
n − 1

)
= (n − 1)(n − 3)

4(2n − 3)(2n − 5)
.

Considering the complement, we have the same estimation for f01̄. Therefore we
have

f10̄ + f01̄ ≤ (n − 1)(n − 3)

2(2n − 3)(2n − 5)
. (5)

Claim 3. G11̄ ⊂ ([5,2n−4]
n−4

)
is 2-wise intersecting.

Proof. Suppose that there are A, B ∈ G11̄ such that A ∩ B = ∅. Then we have
F1 := {2, 3, 4, 2n} ∪ A ∈ F . Since F is shifted and {2, 3, 4, 2n} ∪ B ∈ F , we also
have F2 := {1, 3, 4, 2n− 1}∪B ∈ F . If |F ∩ [4]| ≥ 3 holds for all F ∈ F then we are
done as we saw in the proof of Claim 2. So there is G ∈ F such that |G ∩ [4]| ≤ 2
and by the shiftedness we may assume that G ∩ [4] = {1, 2}. Then F1 ∩ F2 ∩ G = ∅,
which is a contradiction. �

By Claim 3 and the Erdős–Ko–Rado theorem, we have |F11̄| = |G11̄| ≤ (2n−9
n−5

)

and

f11̄ ≤
(

2n − 9
n − 5

)/(
2n − 2
n − 1

)
= (n − 1)(n − 2)(n − 3)

16(2n − 3)(2n − 5)(2n − 7)
. (6)

By (4), (5) and (6), we have the following.

Claim 4. f00̄ + f10̄ + f01̄ + f11̄ ≤ H1, where

H1 := 1
2

+ (n − 1)(n − 3)

2(2n − 3)(2n − 5)
+ (n − 1)(n − 2)(n − 3)

16(2n − 3)(2n − 5)(2n − 7)
.

Next we consider fij̄ where max{i, j} = 2. Let ci be the number of walks from
(0, 0) to (i, 2i +1) which touch the line y = 2x +1 only at (i, 2i +1). Then it follows
that ci = 1

3i+1

(3i+1
i

)
(see e.g. Fact 3 in [7]).

If A ∈ Aij̄ then walk(A) goes through the two points P = (i, 2i + 1) and

Q = (n − 2j − 1, n − j). Since the number of walks from P to Q is
(2n−(3i+3j+2)

n−(i+2j+1)

)
,

we get the following simple estimation.

fij̄ ≤ aij̄ = cicj

(
2n − (3i + 3j + 2)

n − (i + 2j + 1)

)/(
2n − 2
n − 1

)
=: g(i, j).

Thus we have

(f20̄ + f02̄) + (f21̄ + f12̄) + f22̄ ≤ 2(g(2, 0) + g(2, 1)) + g(2, 2) =: H2. (7)

Finally we consider fi, fī for i ≥ 3. We use the following fact which we prove in
the next section.
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Lemma 1. We have

	 n−1
2 
∑

i=0

|Ai | ≤ α

(
2n

n

)

for all n ≥ 1 where α =
√

5−1
2 .

We also use the following trivial estimation.

max{fi, fī} ≤ ai = aī = ci

(
2n − 3i − 1

n − i

)/(
2n − 2
n − 1

)
.

Then this together with Lemma 1 implies

∑

i>2

fi ≤
∑

i>2

ai ≤ α

(
2n

n

)/(
2n − 2
n − 1

)
−

2∑

i=0

ai =: H3. (8)

By Claim 4, (7) and (8), we have

|F |
/(

2n − 2
n − 1

)
≤

∑

0≤i≤2, 0≤j≤2

fij̄ +
∑

i>2

fi +
∑

j>2

fj̄ ≤ H1 + H2 + 2H3 =: H4(n),

where

H4(n) = 4
√

5 − 32551
4096

− 2(
√

5 − 2)

n
+ 1

220

(
6237

2n − 13
+ 2835

2n − 11

+ 28770
2n − 9

− 156090
2n − 7

+ 923313
2n − 5

+ 298295
2n − 3

)
.

Note that limn→∞ H4(n) = 4
√

5 − 32551
4096 = 0.997 . . .. In fact one can check that

H4(n) < 1 for n ≥ 34. For the remainder cases 4 ≤ n ≤ 33, one can directly check
that

|F |
/(

2n − 2
n − 1

)
≤ H1 + H2 + 2

	 n−1
2 
∑

i=3

ai < 1.

Consequently we showed that |F | <
(2n−2

n−1

)
for all n ≥ 4 and this contradicts (3).

This completes the proof of Theorem 3. �
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3. Proof of Lemma 1

Since |Ai | = ci

(2n−3i−1
n−i

)
we need to prove that

	 n−1
2 
∑

i=0

ci

(
2n − 3i − 1

n − i

)/(
2n

n

)
≤ α.

We use the following fact (cf. (6) in [7]):

	 n−1
2 
∑

i=0

ci

(
1
2

)3i+1

≤
∞∑

i=0

ci

(
1
2

)3i+1

= α.

Thus to prove the lemma, it suffices to show that
(

2n − 3i − 1
n − i

)/(
2n

n

)
≤

(
1
2

)3i+1

(9)

for 0 ≤ i ≤ 	n−1
2 
. We prove this inequality by induction on i. For the case i = 0,

one can check that the equality holds in (9). Now let i > 0 and we assume (9) for i

and we show the case i + 1, that is,
(

2n − 3i − 4
n − i − 1

)/(
2n

n

)
≤

(
1
2

)3i+4

,

or equivalently,
(

2n

n

)
≥ 23i+4

(
2n − 3i − 4
n − i − 1

)
.

By the induction hypothesis, we have
(

2n

n

)
≥ 23i+1

(
2n − 3i − 1

n − i

)
,

and so it suffices to show that

23i+1
(

2n − 3i − 1
n − i

)
≥ 23i+4

(
2n − 3i − 4
n − i − 1

)
,

or equivalently,

f (i) := 5i3 − (10n + 6)i2 + (4n2 − 17)i + 6n − 6 ≥ 0.

Since f ′′(i) = −2(10n − 15i + 6) < 0, the function f (i) is concave on the domain
0 ≤ i ≤ 	n−1

2 
. Thus it suffices to check that f (0) ≥ 0 and f (	n−1
2 
) ≥ 0. Indeed,

f (0) = 6(n − 1) ≥ 0, and f (	n−1
2 
) ≥ min{f (n−1

2 ), f (n−2
2 )} = f (n−1

2 ) = 1
8 (n +

1)(n − 1)(n − 3) ≥ 0 if n ≥ 3. For the case n ≤ 2, we only have 0 ≤ i ≤ 	 1
2
 = 0,

that is, i = 0 and we already checked this case. �
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