The Maximum Size of 3-Wise Intersecting and 3-Wise Union Families

Peter Frankl ${ }^{1}$ and Norihide Tokushige ${ }^{2, \star}$

${ }^{1}$ CNRS, ER 175 Combinatoire, 2 Place Jussieu, 75005 Paris, France. e-mail: Peter111F@aol.com
${ }^{2}$ College of Education, Ryukyu University, Nishihara, Okinawa, 903-0213 Japan. e-mail: hide@edu.u-ryukyu.ac.jp

Abstract

Let \mathcal{F} be an n-uniform hypergraph on $2 n$ vertices. Suppose that $\left|F_{1} \cap F_{2} \cap F_{3}\right| \geq 1$ and $\left|F_{1} \cup F_{2} \cup F_{3}\right| \leq 2 n-1$ holds for all $F_{1}, F_{2}, F_{3} \in \mathcal{F}$. We prove that the size of \mathcal{F} is at $\operatorname{most}\binom{2 n-2}{n-1}$.

1. Introduction

A family $\mathcal{F} \subset 2^{X}$ is called r-wise intersecting if $F_{1} \cap \cdots \cap F_{r} \neq \emptyset$ holds for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$. A family $\mathcal{F} \subset 2^{X}$ is called r-wise union if $F_{1} \cup \cdots \cup F_{r} \neq X$ holds for all $F_{1}, \ldots, F_{r} \in \mathcal{F}$. The Erdős-Ko-Rado theorem [2] states that if $n \geq 2 k$ and $\mathcal{F} \subset\binom{n}{k}$ is 2-wise intersecting then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. By considering the complement, the theorem can be restated as follows: if $n \leq 2 k$ and $\mathcal{F} \subset\binom{n}{k}$ is 2-wise union then $|\mathcal{F}| \leq\binom{ n-1}{k}$.

We can extend the Erdős-Ko-Rado theorem for r-wise intersecting families as follows.

Theorem 1 [3]. If $\mathcal{F} \subset\binom{[n]}{k}$ is r-wise intersecting and $(r-1) n \geq r k$ then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. If $r \geq 3$ then equality holds iff $\mathcal{F}=\left\{F \in\binom{[n]}{k}: i \in F\right\}$ holds for some $i \in[n]$.

The equivalent complement version is the following. If $\mathcal{F} \subset\binom{[n]}{k}$ is r-wise union and $r k \geq n$ then $|\mathcal{F}| \leq\binom{ n-1}{k}$.

Gronau [6], and Engel and Gronau [1] proved the following.
Theorem 2. Let $r \geq 4, s \geq 4$ and $\mathcal{F} \subset\binom{[n]}{k}$. Suppose that \mathcal{F} is r-wise intersecting and s-wise union, and

$$
\frac{n-1}{s}+1 \leq k \leq \frac{r-1}{r}(n-1) .
$$

Then we have $|\mathcal{F}| \leq\binom{ n-2}{k-1}$.

* The second author was supported by MEXT Grant-in-Aid for Scientific Research (B) 16340027

In this note we prove the following.
Theorem 3. Let $\mathcal{F} \subset\binom{[2 n]}{n}$ be a 3-wise intersecting and 3-wise union family. Then we have $|\mathcal{F}| \leq\binom{ 2 n-2}{n-1}$. Equality holds iff $\mathcal{F}=\left\{F \in\binom{[2 n]-\{j\}}{n}: i \in F\right\}$ holds for some $i, j \in[2 n]$.

2. Proof of Theorem 3

We can prove the theorem for $n \leq 3$ easily, so we assume that $n \geq 4$. Let $\mathcal{F} \subset\binom{[2 n]}{n}$ be a 3-wise intersecting and 3-wise union family. If $\mathcal{F} \subset\binom{[2 n]-\{j\}}{n}$ holds for some $j \in[2 n]$ then Theorem 1 implies that $|\mathcal{F}| \leq\binom{ 2 n-2}{n-1}$ and equality holds iff there exists some $i \in[2 n]$ such that $i \in F$ holds for all $F \in \mathcal{F}$, which verifies the theorem. From now on we assume that there is no such j, in other words, we assume that

$$
\begin{equation*}
\bigcup_{F \in \mathcal{F}} F=[2 n] . \tag{1}
\end{equation*}
$$

Considering the complement, we may assume that

$$
\begin{equation*}
\bigcap_{F \in \mathcal{F}} F=\emptyset \tag{2}
\end{equation*}
$$

Now suppose that

$$
\begin{equation*}
|\mathcal{F}| \geq\binom{ 2 n-2}{n-1} \tag{3}
\end{equation*}
$$

and we shall prove that there is no such \mathcal{F}.
For $A \in\binom{[2 n]}{n}$, we define the corresponding walk on \mathbb{Z}^{2}, denoted by walk (A), in the following way. The walk is from $(0,0)$ to (n, n) with $2 n$ steps, and if $i \in A$ (resp. $i \notin A$) then we move one unit up (resp. one unit to the right) at the i-th step. Let us define

$$
\begin{aligned}
& \mathcal{A}_{i}:=\left\{A \in\binom{[2 n]}{n}:|A \cap[1+3 \ell]| \geq 1+2 \ell \text { first holds at } \ell=i\right\}, \\
& \mathcal{A}_{\bar{j}}:=\left\{A \in\binom{[2 n]}{n}:|A \cap[2 n-3 \ell, 2 n]| \leq \ell \text { first holds at } \ell=j\right\} .
\end{aligned}
$$

If $A \in \mathcal{A}_{i}$ then, after starting from the origin, $\operatorname{walk}(A)$ touches the line $y=2 x+1$ at $(i, 2 i+1)$ for the first time. If $A \in \mathcal{A}_{\bar{j}}$ then walk (A) touches the line $y=\frac{1}{2}(x-$ $(n-1))+n$ at $(n-2 j-1, n-j)$ and after passing this point this walk never touches the line again. Set $\mathcal{A}_{i \bar{j}}:=\mathcal{A}_{i} \cap \mathcal{A}_{\bar{j}}$, and

$$
a_{i}:=\left|\mathcal{A}_{i}\right| /\binom{2 n-2}{n-1}, \quad a_{\bar{j}}:=\left|\mathcal{A}_{\bar{j}}\right| /\binom{2 n-2}{n-1}, \quad a_{i \bar{j}}:=\left|\mathcal{A}_{i \bar{j}}\right| /\binom{2 n-2}{n-1} .
$$

Set also

$$
\mathcal{F}_{i}:=\mathcal{A}_{i} \cap \mathcal{F}, \quad \mathcal{F}_{\bar{j}}:=\mathcal{A}_{\bar{j}} \cap \mathcal{F}, \quad \mathcal{F}_{i \bar{j}}:=\mathcal{A}_{i \bar{j}} \cap \mathcal{F},
$$

$$
f_{i}:=\left|\mathcal{F}_{i}\right| /\binom{2 n-2}{n-1}, \quad f_{\bar{j}}:=\left|\mathcal{F}_{\bar{j}}\right| /\left(\begin{array}{c}
\binom{n-2}{n-1}, \quad f_{i \bar{j}}:=\left|\mathcal{F}_{i \bar{j}}\right| /\binom{2 n-2}{n-1}, ~
\end{array}\right.
$$

and

$$
\mathcal{G}_{i \bar{j}}:=\left\{F \cap[3 i+2,2 n-3 j-1]: F \in \mathcal{F}_{i \bar{j}}\right\} .
$$

Note that $\left|\mathcal{G}_{i \bar{j}}\right| \leq\left|\mathcal{F}_{i \bar{j}}\right|$ and equality holds if both of i and j are at most 1 .
We also use the following basic facts about shifting. (See e.g., $[8,4,5]$ for the details.) We may assume that $\mathcal{F} \subset\binom{[2 n]}{n}$ is shifted, i.e., for all $F \in \mathcal{F}$ and $1 \leq i<$ $j \leq 2 n$, if $i \notin F$ and $j \in F$ then $(F-\{j\}) \cup\{i\} \in \mathcal{F}$. It follows then for all $F \in \mathcal{F}$, walk (F) must touch the line $y=2 x+1$ because \mathcal{F} is a shifted 3-wise 1 -intersecting family. In the same way, walk (F) must touch the line $y=\frac{1}{2}(x-(n-1))+n$ because \mathcal{F} is a shifted 3-wise 1-union family.

Claim 1. $\mathcal{G}_{0 \overline{0}} \subset\left(\begin{array}{c}{\left[\begin{array}{c}2,2 n-1] \\ n-1\end{array}\right)}\end{array}\right)$ is 2-wise intersecting.
Proof. Otherwise we have $A, B \in \mathcal{F}_{0 \overline{0}}$ such that $A \cap B=\{1\}$. This forces $\bigcap_{F \in \mathcal{F}} F=$ $\{1\}$, contradicting (2).

By Claim 1 and the Erdős-Ko-Rado theorem, we have $\left|\mathcal{F}_{0 \overline{0}}\right|=\left|\mathcal{G}_{0 \overline{0}}\right| \leq\binom{ 2 n-3}{n-2}$ and

$$
\begin{equation*}
f_{0 \overline{0}} \leq\binom{ 2 n-3}{n-2} /\binom{2 n-2}{n-1}=\frac{1}{2} \tag{4}
\end{equation*}
$$

Claim 2. $\mathcal{G}_{1 \overline{0}} \subset\binom{[5,2 n-1]}{n-3}$ is 2-wise intersecting.
Proof. Suppose on the contrary that there exist $A, B \in \mathcal{G}_{10}$ such that $A \cap B=\emptyset$. Then $\{2,3,4\} \cup A,\{2,3,4\} \cup B \in \mathcal{F}_{1 \overline{0}}$. Since \mathcal{F} is shifted we also have $\{1,3,4\} \cup B \in$ \mathcal{F}_{10}. If there is $F \in \mathcal{F}$ such that $|F \cap[4]| \leq 2$ then we may assume that $F \cap[2]=\{1,2\}$ by the shiftedness of \mathcal{F}. But this is impossible because $(\{2,3,4\} \cup A) \cap(\{1,3,4\} \cup$ $B) \cap F=\emptyset$.

Thus we may assume that $|F \cap[4]| \geq 3$ holds for all $F \in \mathcal{F}$. Let

$$
\begin{aligned}
& \mathcal{F}(\overline{1} 234):=\{F \cap[5,2 n]: F \in \mathcal{F}, F \cap[4]=\{2,3,4\}\} \subset\binom{[5,2 n]}{n-3}, \\
& \mathcal{F}(1 \overline{2} 34):=\{F \cap[5,2 n]: F \in \mathcal{F}, F \cap[4]=\{1,3,4\}\} \subset\binom{[5,2 n]}{n-3}, \\
& \mathcal{F}(12 \overline{3} 4):=\{F \cap[5,2 n]: F \in \mathcal{F}, F \cap[4]=\{1,2,4\}\} \subset\binom{[5,2 n]}{n-3} .
\end{aligned}
$$

Then $|\mathcal{F}(\overline{1} 234)|+|\mathcal{F}(1 \overline{2} 34)|+|\mathcal{F}(12 \overline{3} 4)| \leq 3\binom{2 n-4}{n-3}$. Let

$$
\mathcal{F}(123):=\{F \cap[4,2 n]:\{1,2,3\} \subset F \in \mathcal{F}\} \subset\binom{[4,2 n]}{n-3} .
$$

Then $\mathcal{F}(123)$ is 3 -wise union and it follows from the complement version of Theorem 1 that $|\mathcal{F}(123)| \leq\binom{ 2 n-4}{n-3}$. Therefore we have
$|\mathcal{F}|=|\mathcal{F}(\overline{1} 234)|+|\mathcal{F}(1 \overline{2} 34)|+|\mathcal{F}(12 \overline{3} 4)|+|\mathcal{F}(123)| \leq 4\binom{2 n-4}{n-3}<\binom{2 n-2}{n-1}$,
which contradicts (3).

By Claim 2 and the Erdős-Ko-Rado theorem, we have $\left|\mathcal{F}_{10}\right|=\left|\mathcal{G}_{10}\right| \leq\binom{ 2 n-6}{n-4}$ and

$$
f_{1 \overline{0}} \leq\binom{ 2 n-6}{n-4} /\binom{2 n-2}{n-1}=\frac{(n-1)(n-3)}{4(2 n-3)(2 n-5)}
$$

Considering the complement, we have the same estimation for $f_{0 \overline{1}}$. Therefore we have

$$
\begin{equation*}
f_{1 \overline{0}}+f_{0 \overline{1}} \leq \frac{(n-1)(n-3)}{2(2 n-3)(2 n-5)} \tag{5}
\end{equation*}
$$

Claim 3. $\mathcal{G}_{1 \overline{1}} \subset\left(\begin{array}{c}{\left[\begin{array}{c}5,2 n-4] \\ n-4\end{array}\right)}\end{array}\right)$ is 2-wise intersecting.
Proof. Suppose that there are $A, B \in \mathcal{G}_{1 \overline{1}}$ such that $A \cap B=\emptyset$. Then we have $F_{1}:=\{2,3,4,2 n\} \cup A \in \mathcal{F}$. Since \mathcal{F} is shifted and $\{2,3,4,2 n\} \cup B \in \mathcal{F}$, we also have $F_{2}:=\{1,3,4,2 n-1\} \cup B \in \mathcal{F}$. If $|F \cap[4]| \geq 3$ holds for all $F \in \mathcal{F}$ then we are done as we saw in the proof of Claim 2. So there is $G \in \mathcal{F}$ such that $|G \cap[4]| \leq 2$ and by the shiftedness we may assume that $G \cap[4]=\{1,2\}$. Then $F_{1} \cap F_{2} \cap G=\emptyset$, which is a contradiction.

By Claim 3 and the Erdős-Ko-Rado theorem, we have $\left|\mathcal{F}_{1 \overline{1}}\right|=\left|\mathcal{G}_{1 \overline{1}}\right| \leq\binom{ 2 n-9}{n-5}$ and

$$
\begin{equation*}
f_{1 \overline{1}} \leq\binom{ 2 n-9}{n-5} /\binom{2 n-2}{n-1}=\frac{(n-1)(n-2)(n-3)}{16(2 n-3)(2 n-5)(2 n-7)} \tag{6}
\end{equation*}
$$

By (4), (5) and (6), we have the following.
Claim 4. $f_{0 \overline{0}}+f_{1 \overline{0}}+f_{0 \overline{1}}+f_{1 \overline{1}} \leq H_{1}$, where

$$
H_{1}:=\frac{1}{2}+\frac{(n-1)(n-3)}{2(2 n-3)(2 n-5)}+\frac{(n-1)(n-2)(n-3)}{16(2 n-3)(2 n-5)(2 n-7)} .
$$

Next we consider $f_{i \bar{j}}$ where $\max \{i, j\}=2$. Let c_{i} be the number of walks from $(0,0)$ to $(i, 2 i+1)$ which touch the line $y=2 x+1$ only at $(i, 2 i+1)$. Then it follows that $c_{i}=\frac{1}{3 i+1}\binom{3 i+1}{i}$ (see e.g. Fact 3 in [7]).

If $A \in \mathcal{A}_{i \bar{j}}$ then walk (A) goes through the two points $P=(i, 2 i+1)$ and $Q=(n-2 j-1, n-j)$. Since the number of walks from P to Q is $\binom{2 n-(3 i+3 j+2)}{n-(i+2 j+1)}$, we get the following simple estimation.

$$
f_{i \bar{j}} \leq a_{i \bar{j}}=c_{i} c_{j}\binom{2 n-(3 i+3 j+2)}{n-(i+2 j+1)} /\binom{2 n-2}{n-1}=: g(i, j) .
$$

Thus we have

$$
\begin{equation*}
\left(f_{2 \overline{0}}+f_{0 \overline{2}}\right)+\left(f_{2 \overline{1}}+f_{1 \overline{2}}\right)+f_{2 \overline{2}} \leq 2(g(2,0)+g(2,1))+g(2,2)=: H_{2} . \tag{7}
\end{equation*}
$$

Finally we consider $f_{i}, f_{\bar{i}}$ for $i \geq 3$. We use the following fact which we prove in the next section.

Lemma 1. We have

$$
\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left|\mathcal{A}_{i}\right| \leq \alpha\binom{2 n}{n}
$$

for all $n \geq 1$ where $\alpha=\frac{\sqrt{5}-1}{2}$.
We also use the following trivial estimation.

$$
\max \left\{f_{i}, f_{\bar{i}}\right\} \leq a_{i}=a_{\bar{i}}=c_{i}\binom{2 n-3 i-1}{n-i} /\binom{2 n-2}{n-1}
$$

Then this together with Lemma 1 implies

$$
\begin{equation*}
\sum_{i>2} f_{i} \leq \sum_{i>2} a_{i} \leq \alpha\binom{2 n}{n} /\binom{2 n-2}{n-1}-\sum_{i=0}^{2} a_{i}=: H_{3} \tag{8}
\end{equation*}
$$

By Claim 4, (7) and (8), we have
$|\mathcal{F}| /\binom{2 n-2}{n-1} \leq \sum_{0 \leq i \leq 2,0 \leq j \leq 2} f_{i \bar{j}}+\sum_{i>2} f_{i}+\sum_{j>2} f_{\bar{j}} \leq H_{1}+H_{2}+2 H_{3}=: H_{4}(n)$,
where

$$
\begin{aligned}
H_{4}(n)= & 4 \sqrt{5}-\frac{32551}{4096}-\frac{2(\sqrt{5}-2)}{n}+\frac{1}{2^{20}}\left(\frac{6237}{2 n-13}+\frac{2835}{2 n-11}\right. \\
& \left.+\frac{28770}{2 n-9}-\frac{156090}{2 n-7}+\frac{923313}{2 n-5}+\frac{298295}{2 n-3}\right)
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} H_{4}(n)=4 \sqrt{5}-\frac{32551}{4096}=0.997 \ldots$. In fact one can check that $H_{4}(n)<1$ for $n \geq 34$. For the remainder cases $4 \leq n \leq 33$, one can directly check that

$$
|\mathcal{F}| /\binom{2 n-2}{n-1} \leq H_{1}+H_{2}+2 \sum_{i=3}^{\left\lfloor\frac{n-1}{2}\right\rfloor} a_{i}<1
$$

Consequently we showed that $|\mathcal{F}|<\binom{2 n-2}{n-1}$ for all $n \geq 4$ and this contradicts (3). This completes the proof of Theorem 3.

3. Proof of Lemma 1

Since $\left|\mathcal{A}_{i}\right|=c_{i}\binom{2 n-3 i-1}{n-i}$ we need to prove that

$$
\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} c_{i}\binom{2 n-3 i-1}{n-i} /\binom{2 n}{n} \leq \alpha
$$

We use the following fact (cf. (6) in [7]):

$$
\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} c_{i}\left(\frac{1}{2}\right)^{3 i+1} \leq \sum_{i=0}^{\infty} c_{i}\left(\frac{1}{2}\right)^{3 i+1}=\alpha
$$

Thus to prove the lemma, it suffices to show that

$$
\begin{equation*}
\binom{2 n-3 i-1}{n-i} /\binom{2 n}{n} \leq\left(\frac{1}{2}\right)^{3 i+1} \tag{9}
\end{equation*}
$$

for $0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. We prove this inequality by induction on i. For the case $i=0$, one can check that the equality holds in (9). Now let $i>0$ and we assume (9) for i and we show the case $i+1$, that is,

$$
\binom{2 n-3 i-4}{n-i-1} /\binom{2 n}{n} \leq\left(\frac{1}{2}\right)^{3 i+4}
$$

or equivalently,

$$
\binom{2 n}{n} \geq 2^{3 i+4}\binom{2 n-3 i-4}{n-i-1}
$$

By the induction hypothesis, we have

$$
\binom{2 n}{n} \geq 2^{3 i+1}\binom{2 n-3 i-1}{n-i}
$$

and so it suffices to show that

$$
2^{3 i+1}\binom{2 n-3 i-1}{n-i} \geq 2^{3 i+4}\binom{2 n-3 i-4}{n-i-1}
$$

or equivalently,

$$
f(i):=5 i^{3}-(10 n+6) i^{2}+\left(4 n^{2}-17\right) i+6 n-6 \geq 0
$$

Since $f^{\prime \prime}(i)=-2(10 n-15 i+6)<0$, the function $f(i)$ is concave on the domain $0 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. Thus it suffices to check that $f(0) \geq 0$ and $f\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right) \geq 0$. Indeed, $f(0)=6(n-1) \geq 0$, and $f\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right) \geq \min \left\{f\left(\frac{n-1}{2}\right), f\left(\frac{n-2}{2}\right)\right\}=f\left(\frac{n-1}{2}\right)=\frac{1}{8}(n+$ 1) $(n-1)(n-3) \geq 0$ if $n \geq 3$. For the case $n \leq 2$, we only have $0 \leq i \leq\left\lfloor\frac{1}{2}\right\rfloor=0$, that is, $i=0$ and we already checked this case.

Acknowledgement. The authors would like to thank Professor Konrad Engel for telling them the problem and related references.

References

1. Engel, K., Gronau, H.-D.O.F.: An Erdős-Ko-Rado type theorem II. Acta Cybernet. 4, 405-411 (1986)
2. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12, 313-320 (1961)
3. Frankl, P.: On Sperner families satisfying an additional condition. J. Combin. Theory (A) 20, 1-11 (1976)
4. Frankl, P., Tokushige, N.: Weighted 3-wise 2-intersecting families. J. Combin. Theory (A) 100, 94-115 (2002)
5. Frankl, P., Tokushige, N.: Random walks and multiply intersecting families. J. Combin. Theory (A) 109, 121-134 (2005)
6. Gronau, H.-D.O.F.: An Erdős-Ko-Rado type theorem. Finite and infinite sets, Vol. I, II (Eger, 1981). Colloq Math Soc J Bolyai 37, 333-342 (1984)
7. Tokushige, N.: A frog's random jump and the Pólya identity. Ryukyu Math Journal 17, 89-103 (2004)
8. Tokushige, N.: The maximum size of 4 -wise 2 -intersecting and 4 -wise 2 -union families. European J. Combin (in press)

Received: October 20, 2004
Final Version received: August 2, 2005

