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Abstract

LetF ⊂ 2[n] be a 3-wise 2-intersecting Sperner family. It is proved that

|F|�
{(

n−2
(n−2)/2

)
if n even,(

n−2
(n−1)/2

)
+ 2 if n odd

holds forn�n0. The unique extremal configuration is determined as well.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let n, r and t be positive integers. A familyF of subsets of[n] = {1,2, . . . , n} is
calledr-wise t-intersecting if|F1 ∩ · · · ∩ Fr |� t holds for allF1, . . . , Fr ∈ F . An r-wise
t-intersecting familyF is called trivial if |⋂F∈F F |� t holds. For a realw ∈ (0,1) let us
define the weighted sizeWw(F) of F by

Ww(F) :=
∑
F∈F

w|F |(1− w)n−|F |.

Some basic results concerning themaximumweighted size ofmultiply intersecting families
can be found in[6–8]. Among others, the following is proved in[7].
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Theorem 1. LetF be a3-wise2-intersecting family. ThenWw(F)�w2 if w < 0.5018.

Moreover ifWw(F)�0.999w2, thenF contains a certain configuration, which we will
explain later (see Theorem10in Section4). Using this result, the following variation of the
Erdős–Ko–Rado theorem[2,1] is deduced.

Theorem 2. Let F ⊂ ([n]
k

)
be a3-wise2-intersecting family withk/n�0.501,n > n0.

Then|F |�(
n−2
k−2

)
, and equality holds only ifF is trivial.

For the proof of the above result, we use the “random walk method.” The main tool is
Theorem6 described in the next section.
A family F ⊂ 2[n] is called a Sperner family ifF /⊂ G holds for all distinctF,G ∈ F .

As an application of Theorem2, we prove the following result.

Theorem 3. LetF ⊂ 2[n] be a3-wise2-intersecting Sperner family. Then,

|F |�
{ (

n−2
(n−2)/2

)
if n even,(

n−2
(n−1)/2

)+ 2 if n odd,

holds forn�n0. The extremal configurations are

F = {{1,2} ∪ F : F ∈ ( [3,n]
(n−2)/2

)} n even,

F = {{1,2} ∪ F : F ∈ ( [3,n]
(n−1)/2

)} ∪ {[n] − {1}} ∪ {[n] − {2}} n odd.

SinceF = ([8]
6

)
is 3-wise 2-intersecting Sperner and|F | = (8

6

)
>

(6
3

)
, the condition

n > n0 in the above theorem can not be omitted completely. It is an interesting but difficult
problem to determine how smalln0 can be.
Other results concerning the maximum size ofr-wiset-intersecting Sperner families can

be found in[16] for the caser = 2, and in[3,9–12]for the caser�3 andt = 1.

2. Tools

2.1. Shifting

For integers 1� i < j�n and a familyF ⊂ 2[n], define the(i, j)-shift Sij as follows.
Sij (F) := {Sij (F ) : F ∈ F},

where

Sij (F ) :=
{
(F − {j}) ∪ {i} if i /∈ F , j ∈ F , (F − {j}) ∪ {i} /∈ F,

F otherwise.

A family F ⊂ 2[n] is called shifted ifSij (F) = F for all 1� i < j�n. We callF a
co-complex ifG ⊃ F ∈ F impliesG ∈ F .
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Let us introduce a partial order in 2[n] by using shifting. LetA,B ⊂ [n]. DefineA � B

if there existsA′ ⊂ [n] such thatA ⊂ A′ andB is obtained by repeating a shifting toA′.
The following fact is trivial but useful.

Fact 4. LetF ⊂ 2[n] be a shifted co-complex. If A ∈ F andA � B, thenB ∈ F .

2.2. Random walk

Let w ∈ (0,2/3] be a fixed real number, and let� ∈ (0,1) be the root of the equation

(1− w)x3 − x + w = 0, more explicitly,� = 1
2(

√
1+3w
1−w − 1). Note that� = �(w) is an

increasing function ofw and�(0) = 0, �(2/3) = 1. Consider the infinite random walk,
starting from the origin, in which at each step we move one unit up with probabilityw or
move one unit right with probability 1− w. Then the probability that we ever hit the line
y = 2x + s is given by�s wheres is a non-negative integer. (See[4] for details.)
Let F ∈ F ⊂ 2[n]. We define the corresponding (finite) walk toF, denoted by walk(F ),

in the following way. If i ∈ F (resp.i /∈ F ) then we move one unit up (resp. one unit
right) at theith step. Note thatF � G means walk(G) is in the area to the upper left of
walk(F ). The following fact shows how to use random walks to estimate the weighted size
of a family.

Fact 5. LetF ⊂ 2[n],andsuppose that, for all F ∈ F , walk(F ) touches the liney = 2x+s.
ThenWw(F)��s .

Now we give a variation of the above fact for the size of a uniform family, which we will
use to prove Theorem2.

Theorem 6. Letw ∈ R, d ∈ Q, s ∈ N be fixed constants with0 < d�w�2/3, and set

� = 1
2(

√
1+3w
1−w − 1). LetF ⊂ ([n]

k

)
with d = k/n, k > s. Suppose that, for all F ∈ F ,

walk(F ) touches the liney = 2x + s. Then we have the following.

(i) For every� > 0, |F |/(n
k

)
�(1+ �)�s holds forn > n0(�).

(ii) If w�0.51 then|F |/(n
k

)
��s for n > n0.

Conjecture 7. Theorem6 (i) is true for� = 0 (or equivalently, (ii) is true for allw�2/3).

2.3. Shadow

For a familyF ⊂ 2[n] and a positive integer� < n, let us define the�-th shadow ofF ,
denoted by��(F), as follows.

��(F) := {G ∈
([n]

�

)
: G ⊂ ∃F ∈ F}.

We use the following version of the Kruskal–Katona theorems[15,14,5]:
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Proposition 8. Suppose thatF ⊂ ([n]
k

)
and|F |�(

m
k

)
. Then,

|��(F)|� |F |
(
m

�

)
/

(
m

k

)
.

Equality holds only ifF = (
Y
k

)
, |Y | = m.

We also use the following Katona’s shadow theorem fort-intersecting families[13].

Proposition 9. Suppose thatF ⊂ ([n]
k

)
is2-wise t-intersecting,andn�2k−t ,k > l�k−t .

Then,

|��(F)|� |F |
(
2k − t

�

)
/

(
2k − t

k

)
.

Equality holds only ifF = (
Y
k

)
, |Y | = 2k − t .

3. Proof of Theorem 6

If w = 2/3 then� = 1 and the theorem is trivial in this case. So we assume that
w < 2/3. Since the theorem clearly holds fors = 0 also, we may assume thats�1. For
eachi = 0,1, . . . , � k−s2 � let ai be the number of walks of length 3i + s, which attain the
line L: y = 2x + s at (i,2i + s) for the first time. Then the total number of walks from
(0,0) to (n− k, k) that attainL is

� k−s2 �∑
i=0

ai

(
n− 3i − s

k − 2i − s

)
. (1)

To obtain the probability that a walk attains the line, we have to divide (1) by
(
n
k

)
.

Next consider a walk where each step is chosen independently and randomly with prob-
ability w for one step up and probability 1− w for one step right. Then the probability for
this random walk to attain the line byn steps is

� k−s2 �∑
i=0

aiw
2i+s(1− w)i. (2)

Recall that the above probability is less than�s , where� = 1
2(

√
1+3w
1−w − 1).

Comparing (1) and (2), Theorem6(i) will be proved as soon aswe establish the following
inequality for all 0� i�� k−s2 �, n > n0(�):(

n− 3i − s

k − 2i − s

)
/

(
n

k

)
�(1+ �)ws {w2(1− w)}i .
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This is certainly true fori = 0 (even if� = 0) because(n−s
k−s

)
/
(
n
k

)
�(k/n)s �ws . Note that(

n−3i−s
k−2i−s

)
/(

(
n
k

)
ws) is a decreasing function ofs. So it suffices to prove the above inequality

for s = 1, that is,
k

n

i−1∏
j=0

(k − 2j − 1)(k − 2j − 2)(n− k − j)

(n− 3j − 1)(n− 3j − 2)(n− 3j − 3) �(1+ �)w {w2(1− w)}i

for 1� i�� k−s2 �, n > n0(�). Sinced�w andw2(1− w) is an increasing function ofw
for 0�w�2/3, we haved(d2(1− d))i �w(w2(1−w))i . Thus, it is sufficient to prove the
cased = w, that is

i−1∏
j=0

f (j)�(1+ �){d2(1− d)}i , (3)

where

f (j) = (dn− 2j − 1)(dn− 2j − 2)(n− dn− j)

(n− 3j − 1)(n− 3j − 2)(n− 3j − 3) .

Here let us check thatf (j) is a decreasing function ofj for 0�j� i−1� k−1
2 −1= dn−3

2 .
Setg(j) = f ′(j)(n−3j −1)2(n−3j −2)2(n−3j −3)2, andg′(j) = 2(n−3j −2)h(j).
Thenh(j) = −36j2 +O(j), h(0) = (2− 3d)2(1+ 3d)n3 +O(n2) > 0 andh(dn/2) =
(1/2)(2− 3d)3n3 + O(n2) > 0. Note thath(j) is a concave parabola as a function ofj,
and the both ends (j = 0, dn/2) have positive value. This meansh(j) > 0 andg′(j) > 0
for 0�j�dn/2. Theng(dn−32 ) = −3

8(2− 3d)4n4+O(n3) < 0 impliesg(j) < 0 and so
f ′(j) < 0 for 0�j� dn−3

2 .

Thus, we have
∏i−1

j=0 f (j)�f (0)i . If d�1/2 then one can checkf (0) < d2(1− d) for

n sufficiently large, and so
∏i−1

j=0 f (j) < (d2(1− d))i follows. This is stronger than (3).
Now we may assume thatd > 1/2.
If j�√n then forn > n0 we have

f (j)�d2(1− d). (4)

In fact, forj = √n, we have

d2(1− d)D −N = d(2− 3d)2n5/2+O(n2) > 0,

whereD andN stand for the denominator and the numerator off (j).
Since

lim
n→∞

(
f (0)

d2(1− d)

)√n

= 1,

we have
√
n−1∏
j=0

f (j)�f (0)
√
n < (1+ �){d2(1− d)}

√
n. (5)
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If i >
√
n then by (4) and (5) we have

i−1∏
j=0

f (j) =


√
n−1∏
j=0

f (j)





 i−1∏

j=√n

f (j)


 �(1+ �){d2(1− d)}i .

So wemay assume thati�√n. Sinced > 1/2 andn > n0, we havef (0) > d2(1−d) and

(
f (0)

d2(1− d)

)i

�
(

f (0)

d2(1− d)

)√n

< 1+ �.

Therefore,
∏i−1

j=0 f (j)�f (0)i < (1+ �)(d2(1− d))i follows. This completes the proof
of (i).
Now we prove (ii). Ford�1/2, we have provedf (0) < d2(1− d) and this implies the

desired inequality. So we assumed > 1/2. Thenf (0) > d2(1− d). However, forj�1
andd < 0.547, we still havef (j)�d2(1− d) because

d2(1− d)− f (1) = {d(15d2− 21d + 7)n2+O(n)}/{n3+O(n2)}.
In the same way, one can provef (0)f (1)�{d2(1− d)}2 for d < 0.529 because

{d2(1− d)}2− f (0)f (1) = d3(1− d)(21d2− 30d + 10)n5+O(n4)

n6+O(n5)
.

Therefore, we have

i−1∏
j=0

f (j)�{d2(1− d)}i (6)

for i�2. Our goal is to prove

� k−12 �∑
i=1

ai

i−1∏
j=0

f (j)�
� k−12 �∑
i=1

ai{d2(1− d)}i . (7)

To deal with the casei = 1, we show the following ford < 0.515:

a1f (0)+ a2f (0)f (1)�a1d
2(1− d)+ a2d

4(1− d)2. (8)

Sincea1 = 1, a2 = 3, the above inequality follows from the fact that RHS–LHS is
{3d(1− d)2(1− d + 9d2− 21d3)n5+O(n4)}/{n6+O(n5)}.

Finally (7) follows from (6) and (8). This completes the proof of (ii).
In principle, one can verify whether

p∑
i=1

ai

i−1∏
j=0

f (j)�
p∑

i=1
ai{d2(1− d)}i (9)
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is true or not for any concretep, and (8) is the casep = 2. The largerpwe take, the better
bound ford we can get if (9) is true. For example, takingp = 42 we can verify (9) (with
the aid of computer) ford�0.6, this shows that Conjecture7 is true ford�0.6.

4. Proof of Theorem 2

Let us define the following.

∗(i) := {i, i + 1, i + 3, i + 4, i + 6, i + 7, . . .} ∩ [n]
= [n] − ([i − 1] ∪ {i + 3j + 2 : 0�j��n− i − 2

3
�}),

Pi := {1,2} ∪ ∗(i + 4).
Note that∗(i)∩∗(i+1)∩∗(i+2) = ∅, andPi ∩Pi+1∩Pi+2 = {1,2}. In [7] the following
is proved (see the first paragraph of the proof of Proposition 4 on p. 111 in[7]).

Theorem 10. Let G ⊂ 2[n] be a3-wise non-trivial2-intersecting shifted co-complex. If
Ww(G)�0.999w2 andw�0.5015then, for somei�1,G containsP0, P1, . . . , Pi but does
not containPi+1.

Let F ⊂ ([n]
k

)
be a 3-wise 2-intersecting family. IfF fixes a 2-element set, then

|F |�(
n−2
k−2

)
. So we may assume thatF is non-trivial. We shall prove that|F | < (

n−2
k−2

)
.

Suppose that|F |�0.999(n−2
k−2

)
, and setw := 0.5015. DefineFc := {[n]−F : F ∈ F} and

G :=
n−k⋃
�=0

(��(Fc))c (⊂
n⋃

i=k

([n]
i

)
).

ClearlyG is a non-trivial 3-wise 2-intersecting family. Let us show thatWw(G) > 0.999w2

if n is sufficient large.
Choose� > 0 sufficiently small so that

0.9998(1− �)4 > 0.999, (10)

0.501< (1− �)w. (11)

Define an open intervalI := ((1−�)wn, (1+�)wn). Setv = 1−w and choosen0 = n0(�)
sufficiently large so that

∑
i∈I

(
n

i

)
wivn−i > 1− � for all n > n0, (12)

(((1− �)wn− 1)/n)2 > (1− �)3w2 for all n > n0. (13)

By our assumption onk/n and (11), we havek�0.501n < (1− �)wn, and

Ww(G) =
n∑

i=k
|�n−i (Fc)|wivn−i �

∑
i∈I
|�n−i (Fc)|wivn−i .
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It follows from theKruskal–Katona theorem that|�n−i (Fc)|�0.9998(n−2
n−i

)
for i ∈ I . (This

is Lemma 7 on p. 112 in[7].) Therefore,

Ww(G) � 0.9998
∑
i∈I

(
n− 2
n− i

)
wivn−i

= 0.9998
∑
i∈I

i

n
· i − 1
n− 1

(
n

i

)
wivn−i

> 0.9998(1− �)3w2
∑
i∈I

(
n

i

)
wivn−i (by (13))

> 0.9998(1− �)4w2 (by (12))

> 0.999w2 (by (10)).

This completes the proof ofWw(G) > 0.999w2.
So by Theorem10we may assume thatPi ∈ G, Pi+1 /∈ G, for somei�1. Let us define

the following.

Qi := {1,2, i + 4} ∪ ∗(i + 6),
F12 := {F ∈ F : {1,2} ⊂ F },
F12̄ := {F ∈ F : 1 ∈ F,2 /∈ F },
F1̄2 := {F ∈ F : 1 /∈ F,2 ∈ F },
F1̄2̄ := {F ∈ F : 1 /∈ F,2 /∈ F }.

By definition, it follows thatPi+1 � Qi � Pi , |F | = |F12| + |F12̄| + |F1̄2| + |F1̄2̄|. Set
d = k/n (d�0.501), and� = 1

2(

√
1+3d
1−d − 1). (Redefinew := d.)

Case1:Qi /∈ G.
If 4i+4�n thenwe haveR = [i+2]∪{i+3, i+6, i+9, . . .} ∈ G becauseG � Pi � R.

But this is impossible becausePi ∩R = {1,2} impliesG is trivial. So we may assume that
n�4i + 5.
Observe that walk(Qi) starts with “up, up,” andi + 1 “right,” then from(i + 1,2) this

walk is the maximal walk which does not touch the lineL: y = 2(x − (i + 1))+ 4.
Let F ∈ F12, then walk(F ) starts with “up, up.” If walk(F ) goes through the point

(i + 1,2), then this walk must meet the lineL after passing(i + 1,2). To apply Theorem
6, it is convenient to neglect the firsti + 3 moves (up, up, and theni + 1 times right)
from walk(F ), in other words, we shift the origin to(i + 1,2). Then the modified walk
corresponding toF − {1,2} ⊂ ([3,n]

k−2
)
, starting from the new origin, must touch the line

y = 2x + 2. Therefore, by Theorem6 (ii), the number of walks of this type is at most
�2

(
n−i−3
k−2

)
. Otherwise walk(F )must go through one of(0, i+3), (1, i+2), . . . , (i,3), and

the number of corresponding walks is
(
n−2
k−2

)− (
n−i−3
k−2

)
. Thus, we have

|F12| �
(
n− 2
k − 2

)
−

(
n− i − 3
k − 2

)
+ �2

(
n− i − 3
k − 2

)

=
(
n− 2
k − 2

)
{1−

(
n−i−3
k−2

)
(
n−2
k−2

) (1− �2)}.
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To obtain an upper bound for|F12̄|, let us set
F0 := [1, i + 3] ∪ {i + 6, i + 9, i + 12, . . . ,4i,4i + 3} ∪ ∗(4i + 5),
G := {1} ∪ [3,4i + 4] ∪ ∗(4i + 6).

SincePi ∈ G andPi = {1,2}∪∗(i+4) = {1,2}∪{i+4, i+5, i+7, i+8, . . . ,4i+1,4i+
2}∪∗(4i+4) � F0, we haveF0 ∈ G. Note thatPi∩F0∩G = {1}. ThusG /∈ G follows from
the assumption thatG is 3-wise 2-intersecting. Now let us look at walk(G). This walk starts
with “up, right,” then from(1,1) this is the maximal walk which does not touch the lineL:
y = 2(x−1)+(4i+4). SinceG /∈ G, for everyF ∈ F12̄, walk(F )must touch the lineL. To
apply Theorem6, we neglect the first two moves (up, right) from walk(F ), or equivalently,
we shift the origin to(1,1). Then the modified walk corresponding toF − {1} ⊂ ([3,n]

k−1
)
,

starting from the new origin, must touch the liney = 2x + (4i + 3). Then due to Theorem
6 (ii), we have

|F12̄|�
(
n− 2
k − 1

)
�4i+3 =

(
n− 2
k − 2

)
n− k

k − 1 �4i+3.

The same estimation is valid for|F1̄2|. From now on, we will use the above trick (shifting
the origin) without mentioning when we apply Theorem6.
Next, setH := [3,4i + 7] ∪ ∗(4i + 9). SincePi ∩ F0 ∩H = {4i + 5}, we haveH /∈ G,

which implies

|F1̄2̄|�
(
n− 2
k

)
�4i+6 =

(
n− 2
k − 2

)
(n− k)(n− k − 1)

k(k − 1) �4i+6.

Therefore,|F |�c
(
n−2
k−2

)
where

c = 1−
(
n−i−3
k−2

)
(
n−2
k−2

) (1− �2)+ 2(n− k)

k − 1 �4i+3 (n− k)(n− k − 1)
k(k − 1) �4i+6.

Let us checkc < 1 for n > n0. The target inequality can be rewritten as

2�3+ (1− d)n− 1
dn

�6 < (1− �2)
dn− 1
n− 2

i∏
j=1

(1− d)n− j

(n− j − 2)�4 . (14)

Sinced�0.501 andj� i� n−5
4 , we have

(1−d)n−j
(n−j−2)�4 > 1. So the RHS of (14) is minimal

wheni = 1, and to prove the inequality forn > n0 it suffices to show

2�3+ 1− d

d
�6 <

(1− �2) d (1− d)

�4

and this is true ford�0.528. (To verify this, reducef (d) := d�4(RHS–LHS) by using
(1− d)�3− �+ d = 0. Then one can check thatg(d) := f (d)(1− d)3 has two real zeros,
i.e.,d = 0 andd = 0.528. . ., and moreoverg(d) > 0 inside this interval.)

Case2:Qi ∈ G.
If 4i+6�n thenwehaveR = [i+3]∪{i+5, i+8, i+11, . . .} ∈ G becauseG � Qi � R.

But this is impossible becauseQi ∩R = {1,2} impliesG is trivial. So we may assume that
n�4i + 7.
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SincePi+1 /∈ G, we have

|F12| �
(
n− 2
k − 2

)
−

(
n− i − 3
k − 2

)
+ �

(
n− i − 3
k − 2

)

=
(
n− 2
k − 2

)
{1−

(
n−i−3
k−2

)
(
n−2
k−2

) (1− �)}.

Set

F := [1, i + 3] ∪ {i + 5, i + 8, i + 11, . . . ,4i + 5} ∪ ∗(4i + 7),
G := {1} ∪ [3,4i + 6] ∪ ∗(4i + 8).

SinceQi ∈ G andQi = {1,2} ∪ {i + 4, i + 6, i + 7, . . . ,4i + 3,4i + 4} ∪ ∗(4i + 6) � F ,
we haveF ∈ G. Note thatQi ∩ F ∩ G = {1}. ThusG /∈ G follows from the assumption
thatG is 3-wise 2-intersecting. Therefore,

|F12̄|�
(
n− 2
k − 1

)
�4i+5.

The sameestimation is valid for|F1̄2|. SetH := [3,4i+9]∪∗(4i+11). SinceQi∩F∩H =
{4i + 7}, we haveH /∈ G, which implies

|F1̄2̄|�
(
n− 2
k

)
�4i+8.

Therefore,|F |�c
(
n−2
k−2

)
where

c = 1−
(
n−i−3
k−2

)
(
n−2
k−2

) (1− �)+ 2(n− k)

k − 1 �4i+5 (n− k)(n− k − 1)
k(k − 1) �4i+8.

One can check thatc < 1 for n > n0. Indeed, this time it suffices to show

2�5+ 1− d

d
�8 <

(1− �) d (1− d)

�4
,

and this is true ford�0.536. This completes the proof of Theorem2.
In Cases 1 and 2, we provedc = |F |/(n−2

k−2
)
< 1. On the other hand, we can construct

a series of non-trivial 3-wise 2-intersectingk-uniform familiesF (n) on n vertices with
k = (12 + �)n which satisfies limn→∞ F (n)/

(
n−2
k−2

) = 1 as follows:
F (n)
12 =

{
{1,2} ∪G : |G ∩ [3, k + 2]|� k + 2

2

}
,

F (n)

12̄
= F (n)

1̄2
= ∅, F (n)

1̄2̄
= {[3, k + 2]}.

The maximali such thatPi ∈ F (n) is given byi = � k4� − 2 for k odd, andi = � k4� − 2 for
k even.
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5. Proof of Theorem 3

For a familyF ⊂ 2[n], setFi := F ∩ ([n]
i

)
. First we prove the following inequality.

Proposition 11. LetF ⊂ 2[n] be a3-wise2-intersecting Sperner family withk/n�0.501,
n > n0. Then

∑k
i=1 |Fi |/

(
n−2
i−2

)
�1.

Proof.We prove
∑k

i=1 |Fi |/
(
n−2
i−2

)
�1 for n > n0 by induction on the number of nonzero

|Fi |’s.
If this number is one then the inequality follows from Theorem2. If it is not the case

then letp be the smallest andr the second-smallest index for which|Fi | �= 0. SetFc
p :=

{[n] − F : F ∈ Fp} ⊂
( [n]
n−p

)
. SinceFp is 3-wise 2-intersecting, it follows from Theorem

2 that|Fp| = |Fc
p|�

(
n−2
p−2

) = (
n−2
n−p

)
. Then by Proposition8, we have

|�n−r (Fc
p)|

|Fc
p|

�
(
n−2
n−r

)
(
n−2
n−p

) =
(
n−2
r−2

)
(
n−2
p−2

) . (15)

SetGr := {G ∈ ([n]
r

) : G ⊃ ∃F ∈ Fp}. Due to (15) and the factGr = (�n−r (Fc
p))

c, we

have|Gr |/
(
n−2
r−2

)
� |Fp|/

(
n−2
p−2

)
. SinceF is Sperner,Fr ∩Gr = ∅ andH := (F−Fp)∪Gr is

a 3-wise 2-intersecting Sperner family. Moreover, the number of nonzero|Hi |’s is one less
than that of|Fi |’s. Therefore, by the induction hypothesis and the fact thatF H = Fp∪Gr ,
we have

k∑
i=1

|Fi |(
n−2
i−2

) �
k∑

i=1

|Hi |(
n−2
i−2

) �1,

which completes the proof of the proposition.�

By (15), we have|�n−r (Fc
p)|� |Fc

p| (and so|F |� |H|) if n�p + r − 2. ReplaceF by
H (and find newp andr) and continue the same procedure as long asn�p+ r − 2. In the
end, we have at most one indexp < �n+22 � such thatFp �= ∅. If we have suchp, then set
r := �n+22 � even thoughFr = ∅ may happen only in this last step, and replaceFp by Gr

and obtainH fromF . In this way, we can construct a 3-wise 2-intersecting Sperner family
H with |H|� |F | andHi = ∅ for all i < �n+22 �. In this process,|H| = |F | happens only
if n = p + r − 2 andFc

p =
(

Y
n−p

)
, |Y | = n− 2 (cf. Proposition8), that is,

Fp
∼=

{
{a, b} ∪G : G ∈

(
Y

p − 2
)}

.

But then we can findA,B ∈ Fp with A ∩ B = {a, b} because|Y | = n − 2 = (p − 2) +
(r − 2)�2(p − 2). In this case, all members inF must contain{a, b} and we can easily
verify Theorem3. Therefore, for the proof of Theorem3, we may assume thatFi = ∅ for
i < �n+22 � from the beginning (otherwise replaceF byH). This remark is needed because
we claim the uniqueness of the extremal configuration.
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Let us now prove Theorem3. Suppose thatF ⊂ 2[n] is a 3-wise 2-intersecting Sperner
family of maximal size. We may assume thatFi = ∅ for all i < �n+22 � =: m. Setk =
�0.501n� andri = |Fi |/

(
n−2
i−2

)
(r1 = · · · = rm−1 = 0).

Case1: n = 2m− 2.
By Proposition11, we have

∑
1� i�k ri =

∑
m� i�k ri �1. Thus,∑

m� i�k

|Fi | =
∑

m� i�k

ri

(
n− 2
i − 2

)
�rm

(
n− 2
m− 2

)
+ (1− rm)

(
n− 2
m− 1

)

=
(
n− 2
m− 2

) (
1− 1− rm

m− 1
)
.

On the other hand, by the LYM inequality, we have

1�
n∑

i=k+1

|Fi |(
n
i

) �
n∑

i=k+1

|Fi |(
n

k+1
) .

Therefore, we have

|F |�
(
n− 2
m− 2

)
− 1− rm

m− 1
(
n− 2
m− 2

)
+

(
n

�0.501n� + 1
)
. (16)

If Fm is 2-wise 3-intersecting, thenFc
m ⊂

([2m−2]
m−2

)
is 2-wise 1-intersecting. By Proposition

9, we have|�m−3(Fc
m)|� |Fc

m| = |Fm|. So we replaceF by (F − Fm) ∪ (�m−3(Fc
m))

c,
and we may assume thatFm = ∅, i.e.,rm = 0. Then it follows|F | <

(
n−2
m−2

)
from (16) for

n > n0.
If Fm is not 2-wise 3-intersecting, then there existF,F ′ with |F ∩ F ′| = 2. Then all

members inF containF ∩ F ′ and we are done.
Case2: n = 2m− 3.
By Proposition11, we have

∑
m� i�k ri �1. Thus,∑

m� i�k

|Fi | =
∑

m� i�k

ri

(
n− 2
i − 2

)
�rm

(
n− 2
m− 2

)
+ (1− rm)

(
n− 2
m− 1

)

=
(
n− 2
m− 2

)
(1− 2(1− rm)

m− 1 ).

ForFi , i > k, we use the LYM inequality. Then we have

|F |�
(
n− 2
m− 2

)
− 2(1− rm)

m− 1
(
n− 2
m− 2

)
+

(
n

�0.501n� + 1
)
. (17)

Now we look atFm in detail.

Lemma 12. If Fm is non-trivial, then|Fm| < 0.999
(
n−2
m−2

)
holds forn > n0.

Proof.Here we only assume thatFm ⊂
([2m−3]

m

)
is shifted, non-trivial 3-wise 2-intersecting

and we do not use the otherFi , i �= m. We follow the proof of Theorem2. Suppose that
|Fm|�0.999

(
n−2
m−2

)
and defineG as in the proof of Theorem2. Then, using Theorem10,
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we can conclude thatPi ∈ G andPi+1 /∈ G for somei�1. First we deal with the case
Qi /∈ G. We use the same estimation for the sizes ofF12̄,F1̄2,F1̄2̄ as in Case 1 of the proof
of Theorem2. Noting thatn = 2m− 3 andk = m, we have

|F12̄|, |F1̄2|�
(
n− 2
k − 2

)
n− k

k − 1 �4i+3 =
(
n− 2
m− 2

)
m− 3
m− 1�4i+3, (18)

|F1̄2̄|�
(
n− 2
k − 2

)
(n− k)(n− k − 1)

k(k − 1) �4i+6 =
(
n− 2
m− 2

)
(m− 3)(m− 4)

m(m− 1) �4i+6. (19)

LetA = {F ∩[3,m+1] : F ∈ F12}. SinceFm is shifted and non-trivial wemay assume that
{1}∪[3,m+1] ∈ F . SoA is 2-wise 1-intersecting. LetAi be thei-uniform subfamily ofA.
Clearly|Ai |�

(
m−1
i

)
and if 2i�m−1 then|Ai |�

(
m−2
i−1

)
follows from the Erd˝os–Ko–Rado

theorem[2]. Thus we have

|F12| �
m−2∑
i=1

|Ai |
(
n− (m+ 1)
m− i − 2

)

�
∑

i��m−12 �

(
m− 2
i − 1

)(
m− 4

m− i − 2
)
+

∑
i>�m−12 �

(
m− 1

i

)(
m− 4

m− i − 2
)
.

Setf (i) = (
m−1
i

)(
m−4

m−i−2
)
andh = �m−12 �. Then, using

(
m−2
i−1

) = i
m−1

(
m−1
i

)
� 1
2

(
m−1
i

)
for

i�h, we have|F12|� 1
2

∑
i�h f (i)+

∑
i>h f (i). Note also that

(
n−2
m−2

) = ∑m−2
i=0 f (i) =∑

i�h f (i) +
∑

h>i f (i), and limm→∞(
∑

i�h f (i))/(
∑

h>i f (i)) = 1. Therefore, we
have

|F12|�
(
3

4
+ �

) (
n− 2
m− 2

)
(20)

for any� > 0 if n > n0(�). By (18)–(20) we have|F |�0.76
(
n−2
m−2

)
for n sufficiently large.

This contradicts our assumption|Fm|�0.999
(
n−2
m−2

)
.

We have one more case, that is, the caseQi ∈ G. But in this case, compared to the
previous case, we can put better bounds forF12̄,F1̄2,F1̄2̄, and the same bound forF12.
This completes the proof of Lemma12. �

If rm < 0.999 then|F | < (
n−2
m−2

)
follows from (17). So wemay assume that|Fm|�0.999(

n−2
m−2

)
. Then Lemma12 implies thatFm is trivial, i.e., all members ofFm contain{1,2}.

Lemma 13. For every j(3�j�n) we can findF,F ′ ∈ Fm such thatF ∩ F ′ = {1,2, j}.

Proof. It suffices to prove the result forj = n. Suppose, on the contrary, thatC :=
{F − {1,2, n} : {1,2, n} ⊂ F ∈ Fm} is 2-wise 1-intersecting. There are

(2m−6
m−3

)
sets

in
([3,n−1]

m−3
)
and at most half of them can be inC. This implies|Fm|�

(
n−2
m−2

)− 1
2

(2m−6
m−3

) =
(1− m−2

2(2m−5) )
(
n−2
m−2

)
. But this is impossible because|Fm|�0.999

(
n−2
m−2

)
. �

Let i > m and supposeC ∈ Fi . If C /⊃ {1,2} then, by Lemma13, we have only
two choices ofC, that is,C1 = [n] − {1} or C2 = [n] − {2}. ExceptC1 andC2, all the
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other edges inF contain{1,2}. LetD := {D − {1,2} : {1,2} ⊂ D ∈ F} ⊂ ⋃n
j=m

([3,n]
j−2

)
.

Clearly,D is a Sperner family. By the Sperner theorem[17] we have|D|� |([3,n]
m−2

)|. Equality
holds only ifD = ([3,n]

m−2
)
orD = ([3,n]

m−3
)
, but the latter case is impossible because we have

assumedFj = ∅ for j < m. This proves that the unique maximal configuration in Case 2
isF = Fm ∪ {C1, C2} whereFm = {{1,2} ∪D : D ∈ ([3,n]

m−2
)}. This completes the proof of

Case 2 and so the proof of Theorem3.
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