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Abstract
Let.# c 2"l be a 3-wise 2-intersecting Sperner family. It is proved that
n—2 ;
v if n even
71< { ((”n_z)z/z) |
(o'352)+2 ifnodd
holds forn > ng. The unique extremal configuration is determined as well.
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1. Introduction

Let n,r andt be positive integers. A familyF of subsets ofn] = {1,2,...,n} is
calledr-wiset-intersecting iffFy N --- N F.| >t holds for all F1, ..., F, € F. Anr-wise
t-intersecting familyF is called trivial if | () z. 7 F| >t holds. For a real € (0, 1) let us
define the weighted siz#,, (F) of F by

Wy (F) := Z w!fl@ — wy= 171,
FeF

Some basic results concerning the maximum weighted size of multiply intersecting families
can be found ij6—8]. Among others, the following is proved [].
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Theorem 1. Let F be a3-wise2-intersecting familyThenW,, (F) <w? if w < 0.5018.

Moreover if W,, (F) >0.999w?2, thenF contains a certain configuration, which we will
explain later (see Theoreh®in Sectiord). Using this result, the following variation of the
Erd6s—Ko—Rado theoref2,1] is deduced.

Theorem 2. Let F C ( ) be a3-wise 2-intersecting family withk/n <0.501,n > no.
Then|F| < (k_ ) and equality holds only iF is trivial.

For the proof of the above result, we use the “random walk method.” The main tool is
Theorem6 described in the next section.

A family F c 21"l is called a Sperner family i ¢ G holds for all distinctF, G € F.
As an application of Theore@ we prove the following result.

Theorem 3. Let F c 2" be a3-wise2-intersecting Sperner familffhen

( " 22 2) if n even,
IFIS ] Mt .
((n 1)/2) +2 if nodd,
holds forn >ng. The extremal configurations are
={{L2JUF:Fe( 3”)]{2 n even,
={{1,2JUF:F e ((n 12} Ulln]l = (L) Ufin] = (2}} 7 odd.

SinceF = (') is 3-wise 2-intersecting Sperner ad] = (B) > (§), the condition
n > ng in the above theorem can not be omitted completely. It is an interesting but difficult
problem to determine how smaidf can be.

Other results concerning the maximum size-@fiset-intersecting Sperner families can
be found in[16] for the case = 2, and in[3,9—-12]for the case >3 andr = 1.

2. Tools
2.1. Shifting
For integers Ki < j <n and a familyF c 2!"1, define the(i, j)-shift S;; as follows.
Sii(F) == {8;j(F): F € F},

where

S (F) = { (F—{jhuli} ifi¢F,jeF,(F—{jHuUli}é¢F,
SRR V3 otherwise.

A family F c 2"l is called shifted ifS;;(F) = F for all 1<i < j<n.We call F a
co-complex ifG D F € F impliesG € F.
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Let us introduce a partial order i’2 by using shifting. Letd, B C [n]. DefineA > B
if there existsA’ C [n] such thatA C A’ andB is obtained by repeating a shifting #0.
The following fact is trivial but useful.

Fact 4. Let F c 21"l be a shifted co-complek A € F andA > B, thenB € F.
2.2. Random walk

Letw € (0, 2/3] be a fixed real number, and lete (0, 1) be the root of the equation
(1 - w)x® — x +w = 0, more explicitly,« = 3(,/332 — 1). Note thatx = «(w) is an
increasing function ofv anda(0) = 0, «(2/3) = 1. Consider the infinite random walk,
starting from the origin, in which at each step we move one unit up with probatildy
move one unit right with probability + w. Then the probability that we ever hit the line
y = 2x + s is given byx® wheresis a non-negative integer. (SpH for details.)

Let F e F c 2"l We define the corresponding (finite) walkkpdenoted by walkF),
in the following way. Ifi € F (resp.i ¢ F) then we move one unit up (resp. one unit
right) at theith step. Note thaF > G means walkG) is in the area to the upper left of
walk(F). The following fact shows how to use random walks to estimate the weighted size
of a family.

Fact 5. LetF c 21"l and suppose thaforall F € F, walk(F) touches the ling = 2x+s.
ThenW,, (F) <o’

Now we give a variation of the above fact for the size of a uniform family, which we will
use to prove Theorei

Theorem 6. Letw € R, d € Q, s € N be fixed constants with < d <w <2/3, and set

o= 3(/53 — 1. LetF c () withd = k/n, k > s. Suppose thafor all F € F,

walk(F’) touches the lin@ = 2x + 5. Then we have the following

(i) Foreverye > 0,|F|/(}) < (14 &)a* holds forn > no(e).
(i) If w<0.51then|F|/(}) <o forn > no.

Conjecture 7. Theoren® (i) is true fore = 0 (or equivalently (i) is true for allw <2/3).
2.3. Shadow

For a familyF c 21"l and a positive integeft < n, let us define thé-th shadow ofF,
denoted by, (F), as follows.

Ay(F) = (G ¢ ([2’]> .G C 3F € F).

We use the following version of the Kruskal-Katona theor§hasl4,5]
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Proposition 8. Suppose thaf ¢ () and|F|< (}). Then

m m
IAe(f)I>IT|(£>/<k>-

Equality holds only itF = (}), |Y| = m.
We also use the following Katona’s shadow theorem-imtersecting familie$13].

Proposition 9. Supposethaf c ([Z]) is2-wise tintersectingandn >2k—t,k > [ >k—t.

Then
2k —t 2k —t
IAe(f)|>|f|< ¢ )/( i )

Equality holds only itF = (}), |Y| = 2k — 1.

3. Proof of Theorem 6

If w = 2/3 thena = 1 and the theorem is trivial in this case. So we assume that
w < 2/3. Since the theorem clearly holds foe= 0 also, we may assume that 1. For
eachi =0,1, ..., L’%‘J let a; be the number of walks of length 3- s, which attain the
lineL: y = 2x + s at (i, 2i + s) for the first time. Then the total number of walks from
(0, 0) to (n — k, k) that attainL is

L2 n—3i —s

i . 1
, al(k—Zi—s) @
i=0

To obtain the probability that a walk attains the line, we have to divijiby (’Z)

Next consider a walk where each step is chosen independently and randomly with prob-
ability w for one step up and probability-1 w for one step right. Then the probability for
this random walk to attain the line bysteps is

—

1435 ]

Z aiwzi“(l —w). 2

i=0

Recall that the above probability is less thanwherex = 3(,/ 332 — 1),
Comparing 1) and @), Theoren® (i) will be proved as soon as we establish the following

inequality for all 0<i < | 552 ], n > no(e):

n—3i—s n NI ;
<k_2i_s>/(k)<(l+b)w {w* @ —w)}.
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This is certainly true for = 0 (even ife = 0) becausé;})/(;) < (k/n)* <w*. Note that

(Z:gf:j)/((Z)wS) is a decreasing function ef So it suffices to prove the above inequality

fors = 1, that s,

_1
k—=2j—D(k—=2j—2)(n—k—j) 201 oy

U= D03 203 g o o

P
n

for 1<i< L’%J, n > no(e). Sinced <w andw?(1 — w) is an increasing function of
for 0< w < 2/3, we havel(d?(1—d))' <w(w?(1— w))’. Thus, itis sufficient to prove the
cased = w, thatis

i—1
[ rihH<@+oid*a-ay, ®)
j=0
where
(dn—2j—1)(dn—-2j—2)(n —dn — j)
(n—3j —D(n—3j —2)(n—3j —3)

FG) =

Here let us check that() is a decreasing function pfor 0< j <i — 1< 451 — 1= 423,
Setg(j) = f'(j)(n = 3j —D*(n —3j —2)*(n —3j — 3%, andg'(j) = 2(n —3j — 2)h()).
Thenh(j) = =362+ 0(j), h(0) = (2 — 3d)2(L+ 3d)n® + 0(n?) > 0 andh(dn/2) =
(1/2)(2 — 3d)%1% + 0(n? > 0. Note thati () is a concave parabola as a functiorj,of
and the both endsj (= 0, dn/2) have positive value. This meahéj) > 0 andg’(j) > 0
for 0< j <dn/2. Theng(¥:2) = —3(2 — 3d)*n* + 0(n®) < 0 impliesg(j) < 0 and so
f(j) < 0for0o< j <=3,

Thus, we have}"[;‘:% F()H < f(O). If d<1/2 then one can check(0) < d%(1— d) for
n sufficiently large, and sﬂ;‘:}) f(j) < (d?@ — d))" follows. This is stronger thars}.
Now we may assume thdt> 1/2.

If j > ./nthen forn > ng we have

F(H<d*1 - ad). @)
In fact, for j = /n, we have
d*(L—d)D — N =d(2—3d)’n°? + 0n® > 0,

whereD andN stand for the denominator and the numeratoy 6f).

Since
lim <&>ﬁ —1,
n—o0 \ d2(1 — d)
we have
-1
[T riH<r@Y" < @+ed®@—ay. ©)

j=0
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If i > \/n then by @) and 6) we have

i-1 Jn—1 i—1 _
[Tri= (1‘[ f(j)) ( I1 f(j)) <AL+ old*d - ).
j=0 j=0

j=vn
So we may assume thiak \/n. Sinced > 1/2 andn > no, we havef (0) > d%(1—d) and

JTONRY fO V"
<d2(1—d>> <<d2(1_d>> =ire

Therefore,]_[i;l0 F(H O < (L+ e)(d?(1 — d)) follows. This completes the proof
of (i).

Now we prove (ii). Ford <1/2, we have proved (0) < d%(1 — d) and this implies the
desired inequality. So we assumie> 1/2. Thenf(0) > d2(1 — d). However, forj >1
andd < 0.547, we still havef (j) <d?(1 — d) because

d’(1—d) — f(1) = {d(15d? — 21d + T)n? + O (n)}/{n° + O (n?)}.
In the same way, one can proy&0) f (1) <{d?(1 — d)}2 for d < 0.529 because

31 _ 2 . ,
(@21 )P — FO) (1) = TA= D@~ 30 + 100> + 0

n® + 0md)
Therefore, we have
i-1 .
[[rh<t@*a-ay (6)
j=0
fori >2. Our goal is to prove
554 i L551)
a [[rih< ). aitd®@—ay. 7
i=1  j=0 i=1

To deal with the case= 1, we show the following forl < 0.515:
a1f(0) + azf(0) f () <a1d*(1 - d) + apd* (1 — d)°. ®)
Sincea; = 1, ap = 3, the above inequality follows from the fact that RHS—-LHS is
(3d(1 — d)?(1 — d + 9d? — 21d°%n® + 0 (™)} /{n® + 0 (®)}.

Finally (7) follows from (6) and @). This completes the proof of (ii).
In principle, one can verify whether

i

P -1 P
Yoa[]riH< Y atd*a-ay ©)
i=1 =0

j i=1
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is true or not for any concretg and @) is the case = 2. The largep we take, the better
bound ford we can get if 9) is true. For example, taking = 42 we can verify ) (with
the aid of computer) foi < 0.6, this shows that Conjectur@s true ford < 0.6.

4. Proof of Theorem 2

Let us define the following.
*(@):={i,i+1,i+3,i+4,i+6i+7...}0[n]
—i=2
= )= (i = U (i +3j +2: 0 < [ ——
Pi:={1,2}Ux(i + 4.

Note that«(i) Nx(i +1) Nx({ +2) = ¥, andP; N P;11N Pw2 = {1, 2}. In[7] the following
is proved (see the first paragraph of the proof of Proposition 4 on p. 1[¥])in

1D,

Theorem 10. Let G ¢ 2" be a3-wise non-trivial2-intersecting shifted co-complel
W, (G) >0.999w2 andw < 0.5015then for some >1, G containsPo, Pi, ..., P; but does
not containP; ;1.

Let F ¢ (7)) be a 3-wise 2-intersecting family. IF fixes a 2-element set, then

|F| < (’,Z:g) So we may assume that is non-trivial. We shall prove thatF| < (’ng)

Suppose thatF| >0.999(; %), and sew := 0.5015. DefineF* := {[n] - F : F € F}and
n—k n (]
G = JeF)© (c U( l. )).
=0 i=k

ClearlyG is a non-trivial 3-wise 2-intersecting family. Let us show tHat(G) > 0.999w?
if nis sufficient large.
Choose: > 0 sufficiently small so that

0.99981 — ¢)* > 0.999 (10)
0501 < (1— &)w. (11)

Define an openintervdl := ((1—¢&)wn, (1+¢&)wn). Setv = 1—w and chooseg = ng(e)
sufficiently large so that

Z (") wv" ' >1—¢ foralln > no, (12)
iel !

((L=ewn —1)/n)? > (1—¢e)3w? foralln > no. (13)
By our assumption ok/n and (L1), we havek <0.50ln < (1 — ¢g)wn, and

W (@ =) 1 4u—i(FOw"™ 2 Y 1 4n—i (FOlw'o" .

i=k iel
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It follows from the Kruskal-Katona theorem thalt, _; (F€)| 20.9992{7;2) fori e I.(This
is Lemma 7 on p. 112 ifi7].) Therefore,

-2\ )
Wy (9) = 0.99982 <n ,>wl i
n—i

iel
i—1/n\ . .
) wlvnl
n—1\i

>~ 0.99981 — 8)3w2§ (’:) wi" (by (13)
> 0.99941 — &)*w? (by (12))
> 0.99%? (by (10)).

This completes the proof a¥,,(G) > 0.999w?.
So by TheoremlOwe may assume thd; € G, P;11 ¢ G, for somei > 1. Let us define
the following.

0;,:=1{1,2,i +4 Ux(i +6),
F12:={F € F:{1,2} C F},
Fi={FeF:1eF,2¢F},
Fio={FeF:1¢F,2¢cF}
Fiz={FeF:1¢F,2¢F}.
By definition, it follows thatP, .1 > Q; > Pi, |F| = |F12| + | Fi5| + |Fial + | Fi3l. Set
d =k/n (d<0.501), ando = 1(,/ 332 — 1). (Redefinew := d.)

Casel: Q; ¢ G.

If4i+4>nthenwe hav® = [i +2]U{i+3,i+6,i+9,...} € Gbecausg¢ > P; > R.
But this is impossible becaugg N R = {1, 2} impliesg is trivial. So we may assume that
n>4i +5.

Observe that walkQ);) starts with “up, up,” and + 1 “right,” then from( + 1, 2) this
walk is the maximal walk which does not touch the liney = 2(x — (i + 1)) + 4.

Let F € Fio, then wall F) starts with “up, up.” If walKF) goes through the point
(i + 1, 2), then this walk must meet the lineafter passindi + 1, 2). To apply Theorem
6, it is convenient to neglect the first+ 3 moves (up, up, and then+ 1 times right)
from walk(F), in other words, we shift the origin t@ + 1, 2). Then the modified walk
corresponding taF' — {1, 2} C ([1637"2]) starting from the new origin, must touch the line
y = 2x + 2. Therefore, by Theorer@ (ii), the number of walks of this type is at most
ocz("*‘*g’). Otherwise walkF) must go through one @b, i +3), (1,i +2), ..., (i, 3), and

k—2
the number of corresponding walks([s 3) — ("'3>)- Thus, we have

n—2 n—i—3 ofn—i—3
< —
Iflzl\(k_> (k—2>+(x(k—2>

n— 2) D),
= {1-—=5-1—-a")}
(k -2 (k—g)

- 0.99982 i .

iel
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To obtain an upper bound faf 5|, let us set
Fo:=[1,i +3|U{i +6,i +9,i +12,...,4i,4i +3}Ux(4i +5),
G:={1}U[3,4i + 4] Ux(4i + 6).
SinceP; € GandP; = {1, 2}Ux(i+4) = {1, 2}U{i+4,i+5,i+7,i+8,...,4i+1,4i +
2}Ux(di +4) = Fp, we haveFp € G. Note thatP; N FoNG = {1}. ThusG ¢ G follows from
the assumption th&t is 3-wise 2-intersecting. Now let us look at wadk). This walk starts
with “up, right,” then from(1, 1) this is the maximal walk which does not touch the line
y =2(x—1)+(4i+4).SinceG ¢ G, foreveryF e F,;5, walk(F) musttouch the link. To
apply Theorent, we neglect the first two moves (up, right) from wak, or equivalently,
we shift the origin to(1, 1). Then the modified walk corresponding fo— {1} C ([3 "])
starting from the new origin, must touch the line= 2x + (4i 4+ 3). Then due to Theorem
6 (ii), we have

2\ 4 n—2\n—k
< i+3 _ 4t+3
Fial < <k 1)“ <k - 2) K—1”

The same estimation is valid f@F7,|. From now on, we will use the above trick (shifting
the origin) without mentioning when we apply Theorém

Next, setH := [3,4i + 71U x(4i + 9). SinceP; N FoN H = {4i + 5}, we haveH ¢ G,
which implies

n—2\ 4 n—2\(n—ky(n—k—-1) 4
< 4i+6 _ ‘4l+6.
|f12|\< k )“ (k—Z) k-1

Therefore | F| < c(’,ﬁjé) where

Cil2) 1oy, 20 =K aiss (=0 k=D 4.
(2 k-1 k=1 '

c=1-—

Let us check < 1forn > ng. The target inequality can be rewritten as

L—dn—1 ¢ ,odn—1{ A—dn—j
208+ = 1-— ) 14
o + - o’ < ( OC)n—ZI:[l(n—j—Z)tx“ (14)

Sinced <0.501 and;j <i < ”45, we have% > 1. So the RHS of14) is minimal
wheni = 1, and to prove the inequality far > g it suffices to show

1-d ¢ (1—o®d(1-d)
o<
d at

and this is true foe/ <0.528. (To verify this, reduce (d) := da*(RHS-LHS) by using
(1—d)a® — 0+ d = 0. Then one can check thatd) := f(d)(1— d)2 has two real zeros,
i.e.,d = 0andd = 0.528. .., and moreoveg(d) > 0 inside this interval.)

Case2: Q; € G.

If4i+6>nthenwehavek = [i +3]U{i+5,i+8,i+11 ...} € Ghecaus€¢ > Q; > R.
But this is impossible becaug® N R = {1, 2} impliesg is trivial. SO we may assume that
n=4i + 7.

20° +
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SinceP;11 ¢ G, we have
n—2 n—i—3 n—i—3
< —
|f12|\<k—2> < k—2 )“‘( k—2 )
n—i—3
n— 2> (")
= {1-——=-1-au)}.
(k—Z (ké)
Set

F:=[Li+3]U{i+5i+8i+1L...,4i +5Ux(4i +7),
G :={1}U[3, 4i + 6] Ux*(4i +8).

SinceQ; e GandQ; ={1,2JU{i+4,i+6,i +7,...,4i +3,4i +4}Ux(4i +6) >~ F,
we haveF € G. Note thatQ; N F N G = {1}. ThusG ¢ G follows from the assumption
thatG is 3-wise 2-intersecting. Therefore,

n—2 .
f‘ g 4l+5-
1ol <k - 1)“

The same estimation is valid fF3,|. SetH := [3, 4i+9]Ux(4i+11). SinceQ;,NFNH =
{4i + 7}, we haveH ¢ G, which implies

n—2 .

Therefore|F| <c(}~5) where

("2 200 —K) giys(n =K1 —k—1) 4.q
c=1-— (2:3) 11— o) + 1 o Kk —1) o .

One can check that < 1 forn > ng. Indeed, this time it suffices to show

1-d g (1-wd@l-d)
o< ,
d ot
and this is true forl <0.536. This completes the proof of Theor@m
In Cases 1 and 2, we proved= |}'|/(Z:§) < 1. On the other hand, we can construct

a series of non-trivial 3-wise 2-intersectiteuniform families 7™ on n vertices with
k = (3 + e)n which satisfies lim_, .. 7™ /(;”3) = 1 as follows:

20° +

k+2
]—"{?:{{1,2}UG:|GO[3,I<-|-2]|>%},

(n) _ (n) _ (n) _
FO = FD =9, FY = (13.k +2]).
The maximal such that?; € F™ is given byi = | 4| — 2 forkodd, and = 47 — 2 for
k even.
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5. Proof of Theorem 3
For a familyF c 2", setF; .= Fn ([2‘]). First we prove the following inequality.

Proposition 11. LetF ¢ 2" be a3-wise2-intersecting Sperner family witty n < 0.501,
n > no. ThenY*_, |Fi1/("2) < 1.

Proof. We prover“:1 |}',~|/(’l?j§) <1 forn > ng by induction on the number of nonzero
|Fil's.

If this number is one then the inequality follows from Theor2nif it is not the case
then letp be the smallest andthe second-smallest index for whi¢h;| # 0. SetF), :=

{[nl—F:FeFyC ( [”]p). SinceF, is 3-wise 2-intersecting, it follows from Theorem

n—

2that|F,| = |F5| < (;:g) = (Z:,Z;) Then by Propositios, we have

An—r }—L) n—2 n—2
| IJ—'(c| Dol D (15)
p (n—p) (p—Z)

SetG, :={G € (") : G > 3F € F,}. Due to (15) and the facl, = (4,—,(F5))", we
havelG,|/("-5) > |]~',,|/(Z:§). SinceF is SpernerF, NG, = JandH = (F — F,) UG, is
a 3-wise 2-intersecting Sperner family. Moreover, the number of nonz&is is one less
than that of 7;|'s. Therefore, by the induction hypothesis and the factthat{ = F,UgG,,
we have

COFEL e -l
N R

i=1 \i-2

which completes the proof of the proposition.[]

By (15), we hav&A,,_,(}‘,C,N > |]~‘[C,| (and soF|<|H]|) if n>p +r — 2. ReplaceF by
‘H (and find newp andr) and continue the same procedure as long:ag + r — 2. In the
end, we have at most one indgx< {%1 such thatF, # @. If we have suclp, then set
r= (%1 even thoughF, = ¢ may happen only in this last step, and replé&Geby G,
and obtairf{ from F. In this way, we can construct a 3-wise 2-intersecting Sperner family
H with |H|>|F|andH,; = @ foralli < (%1. In this process|H| = |F| happens only
if n=p+r—2andF; = (nfp), |Y| = n — 2 (cf. Propositior), that is,

Y
f,,z{{a,b}UG:Ge<p_2>}.

But then we can findi, B € F, with AN B = {a, b} becauseY| =n—-2=(p —2) +

(r —2)=2(p — 2). In this case, all members i must contair{a, b} and we can easily
verify Theorem3. Therefore, for the proof of Theore8 we may assume thaf;, = ¢ for
i< (”—’521 from the beginning (otherwise replageby H). This remark is needed because
we claim the uniqueness of the extremal configuration.
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Let us now prove Theore® Suppose thaf c 21"l is a 3-wise 2-intersecting Sperner
family of maximal size. We may assume ttigt = ¢ for all i < (”—}“21 =: m. Setk =
10.501n] andr; = |F1/("23) (ry = - - - = rm—1 = O).

Casel:n = 2m — 2.

By Propositionll, we have} ) «; <, ri = Y, <; < i <1. Thus,

n—2 n—2 n—2
YolEI= Y r,-<l._2)<rm(m_2>+<1—rm)<m_1)

m<i<k m<i<k

~(2) (05)

On the other hand, by the LYM inequality, we have

1>y Vi |f|
i=k+1 (l) i= k+l
Therefore, we have
-2 1—r,(n—-2 n
< - = . 16
Fls ( —2) m—l(m—2>+<LO.501nJ+l) (16)

If F, is 2-wise 3-intersecting, thef;, C ([25:22]) is 2-wise 1-intersecting. By Proposition

9, we have|d,,—3(F:)| = 1F5| = |Fnl. So we replaceF by (F — Fp) U (4n—3(F5))C,
and we may assume tha}, = ¢, i.e.,r,, = 0. Then it follows|F| < (;’1:22) from (16) for
n > ng.

If F,, is not 2-wise 3-intersecting, then there extstF’ with |F N F’'| = 2. Then all
members inF containF N F’ and we are done.

Case2:n = 2m — 3.

By Propositionll, we have) , .; <, ri <1. Thus,

n—2 n—2 n—2
YoolEI= Y ri<i_2)<rm(m_2>+<1—rm><m_1)

m<i<k m<i<k

_(n-2 21 —ry)
_(m—2>(1_ m—1 )

For F;, i > k, we use the LYM inequality. Then we have
n—2 20—ry) (n—2 n
< - . 17
7 (m — 2) m—1 (m — 2> * (LO.SOJnJ + 1) (A7)
Now we look atF,, in detail.

Lemma 12. If 7, is non-trivial, then|F,,| < 0. 999(m 2) holds forn > ng.

Proof. Here we only assume tha, c (2" -3)) is shifted, non-trivial 3-wise 2-intersecting
and we do not use the oth&t, i # m. We follow the proof of Theoremn2. Suppose that
| Fn| >0.999(" ) and defineg as in the proof of Theorer®. Then, using TheorerhO,
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we can conclude thab; € G and P;1 ¢ G for somei > 1. First we deal with the case
0, ¢ G. We use the same estimation for the size&gf, F7,, 755 as in Case 1 of the proof
of Theorem2. Noting thatn = 2m — 3 andk = m, we have

n=2A\n—k aivs_ (n=2\m =3 aivs
|F 51, 1 Fiol < <k z)k—l‘“ _<m—2>m—l (18)
n—=2\(n—kn—k—1 4.5 (n—2\0m—3)(m—4 LAit6
17 |<<k—2) k(k — 1) * _(m 2) m(m — 1) (19)

LetA = {FN[3, m+1]: F € F12}. SinceF,, is shifted and non-trivial we may assume that
{LU[3, m+1] € F.SoA s 2-wise 1-intersecting. Led; be the-uniform subfamily ofA.
Clearly|A;| < ("71) and if 2 <m — 1 then|.A;| < (~7) follows from the Erdé—Ko-Rado
theorem[2]. Thus we have

1
P12l < Z|A,< _("7+2))

< X (OGN = (MG

i< LmTlJ 1>Lm—21J
Set /(i) = (";7)(,"; ") andh = | %51 |. Then, using(}"}) = 757 ("} ) <3(";") for

i <h,we havelF1o| <3 Y, ) f(D) + Y., £(). Note also thaf'~%) = -7 f(i) =
Doicn F@) + D £, and iMoo Qs < £@)/ Q- (@) = 1. Therefore, we
have

[F12l < <£§1 + 8> (Z :22> (20)

foranye > 0if n > no(¢). By (18)—(20) we have| F| <0.76(:"1:22) for n sufficiently large.

This contradicts our assumptig#,, | > 0.999(,’,’1:22).

We have one more case, that is, the c@eec G. But in this case, compared to the
previous case, we can put better bounds#gy, F7,, Fi5, and the same bound fdf,.
This completes the proof of Lemni2. [

If r,, < 0.999 thenF| < (r’fl:zz) follows from (17). So we may assume thi;, | > 0.999

(::;22) Then Lemmadl2 implies thatF,, is trivial, i.e., all members aof5,, contain{1, 2}.
Lemma 13. For every j(3<j <n) we can findF, F' € F,, suchthatF N F’ = {1, 2, j}.

Proof. It suffices to prove the result fof = n. Suppose, on the contrary, thé@t:=
{(F —{1,2,n} : {1,2,n} C F € F,} is 2-wise 1-intersecting. There a(é’" ) sets

in (- 31]) and at most half of them can bedh This implies|F,,| < (~3) — %(2;1"_36) =
(1— 52=25)(1:~5). But this is impossible becausg,, | >0.999(,"3). [

Leti > m and suppos&€ € F;. If C 2 {1, 2} then, by Lemmal3, we have only
two choices ofC, that is,C1 = [n] — {1} or C2 = [n] — {2}. ExceptC1 andCa, all the
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other edges it contain{1, 2}. LetD := {D — {12} : {1.2} ¢ D € F} c U, ([]3’”2])
Clearly,D is a Sperner family. By the Sperner theordi] we haveD| < |( 3. ”])| Equality

holds only ifD = (”? ”;) orD = (Ef ")), but the latter case is impossible because we have

assumedF; = ¢ for j < m. This proves that the unique maximal configuration in Case 2

isF = F, U{Cy, C2} whereF,, = {{1,2JuD : D e (3”])} This completes the proof of
Case 2 and so the proof of Theor@mn
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