Note

The game of n-times nim

Peter Frankl ${ }^{\text {a }}$, Norihide Tokushige ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ CNRS, ER 175 Combinatoire, 2 Place Jussieu, 75005 Paris, France
${ }^{\mathrm{b}}$ College of Education, Ryukyu University, 1 Nishihara, Okinawa 903-0213, Japan

Received 15 January 1999; received in revised form 28 May 2002; accepted 21 August 2002

Abstract

The following game is considered. The first player can take any number of stones, but not all the stones, from a single pile of stones. After that, each player can take at most n-times as many as the previous one. The player first unable to move loses and his opponent wins. Let f_{1}, f_{2}, \ldots be an initial sequence of stones in increasing order, such that the second player has a winning strategy when play begins from a pile of size f_{i}. It is proved that there exist constants $c=c(n)$ and $k_{0}=k_{0}(n)$ such that $f_{k+1}=f_{k}+f_{k-c}$ for all $k>k_{0}$, and $\lim _{n \rightarrow \infty} c(n) /(n \log n)=1$. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Fibonacci sequence; nim

Let us consider the following game which we call n-times nim. The first player can take any number of stones, but not all the stones, from a single pile of stones. After that, each player can take at most n-times as many as the previous one. The player first unable to move loses and his opponent wins. Usually this game is considered for a positive integer n, but throughout this paper we only assume that $n \geqslant 1$, i.e., n can be a real number.
Let $F(n):=\left\{f_{1}, f_{2}, \ldots\right\}$ be the sequence of initial numbers of stones in increasing order such that the second player has a winning strategy when the first player begins moving from a pile of size f_{i}. Clearly $f_{1}=1$, since the first player has no move, so the second wins. Then, obviously,

$$
\begin{equation*}
f_{i}=i \text { holds for } i \leqslant\lfloor n+1\rfloor, \tag{1}
\end{equation*}
$$

also $f_{\lfloor n+2\rfloor}=\lfloor n+3\rfloor$.

[^0]Whinihan (who ascribes "Fibonacci nim" to Gaskell, see [2]) found that 2-times nim satisfies $f_{k+1}=f_{k}+f_{k-1}$, that is, $F(2)$ is the Fibonacci sequence. Then Schwenk [1] proved that in n-times nim there exist constants $c=c(n)$ and $k_{0}=k_{0}(n)$ such that $f_{k+1}=f_{k}+f_{k-c}$ for all $k>k_{0}$. He asked to determine the behavior of $c=c(n)$. We are going to prove the result of Schwenk in a different way, and answer his question.

Theorem 1. Let n be a fixed positive real at least 1.
(i) For every $k \geqslant 1$ there exists an $r=r(k)$ such that $f_{k+1}=f_{k}+f_{r}$ holds.
(ii) $r(k)$ can be computed by $r(k)=\min \left\{r: n f_{r} \geqslant f_{k}\right\}$.
(iii) $((n+1) / n) f_{k} \leqslant f_{k+1}$ holds for all $k \geqslant 1$.
(iv) $r(k) \leqslant r(k+1) \leqslant r(k)+1$, i.e., the function $r(k)$ is continuous in the discrete sense.
(v) There is a constant $c=c(n)$ such that $r(k)=k-c$ holds for all $k>k_{0}$.

Proof. We prove all these statements simultaneously, applying induction on k. The cases $k \leqslant n$ are trivial, with $r(k)=1$.

Suppose now that all statements are proved for $k^{\prime}<k$ and consider k. Let $r(k)$ be defined via (ii). We first prove that the first player has a winning strategy for s stones as long as

$$
\begin{equation*}
f_{k}<s<f_{k}+f_{r(k)} . \tag{2}
\end{equation*}
$$

If $n\left(s-f_{k}\right)<f_{k}$ holds then the first player can remove $s-f_{k}$ stones and win, as f_{k} is a second player win. From now on, we suppose

$$
\begin{equation*}
n\left(s-f_{k}\right) \geqslant f_{k}, \quad \text { i.e., } \quad s \geqslant \frac{n+1}{n} f_{k} . \tag{3}
\end{equation*}
$$

Let us show that

$$
s-f_{k} \text { is a first player win. }
$$

Suppose the contrary, then $s-f_{k}=f_{q}$ holds for some q. Since $f_{q}=s-f_{k}<f_{r(k)}$ by (2), the definition of $r(k)$ implies $n f_{q}<f_{k}$, and $n\left(s-f_{k}\right)=n f_{q}<f_{k}$, contradicting (3).

Now let the first player play according to the winning strategy for $s-f_{k}$ stones. This will enable him a finite number of moves to reduce the number of remaining stones to exactly f_{k}.

For convenience, we make this strategy even more clear, by requiring him to remove all the "extra stones", i.e., reduce the number of remaining stones to f_{k} only if he has no other winning moves for his "mind game" of $s-f_{k}$ stones. This makes sure that when he reduces the number of stones to exactly f_{k}, the number of stones, say t, that he is taking is a second player win. That is

$$
\begin{equation*}
t=f_{l} \quad \text { for some } l<r(k), \tag{4}
\end{equation*}
$$

implying, by the definition of $r(k)$ that

$$
\begin{equation*}
n t<f_{k} \tag{5}
\end{equation*}
$$

and thus completing the proof that this is a winning strategy for the first player.
Now, to complete the proof of (i), we must show that
$f_{k}+f_{r(k)}$ is a second player win.
If the first player removes $f_{r(k)}$ or more stones, then the second can remove all the remaining and win. Otherwise let the second player play the "mind game" for $f_{r(k)}$ stones, by delaying his ultimate move (as above) as long as he can. Then, the number of stones (say t) which he removes finally to reduce the number of remaining stones to f_{k} will satisfy (4) and thus (5) too, proving that this is a correct winning strategy. This concludes the proof of (i) and (ii). Then (iii) follows directly from (i) and (ii).

The proof of (iv). From (ii), $r(k) \leqslant r(k+1)$ is clear. Using (i) and (ii), $n f_{r(k)+1} \geqslant n$ $\left(f_{r(k)}+f_{r(r(k))}\right) \geqslant f_{k}+f_{r(k)}=f_{k+1}$ follows, proving $r(k+1) \leqslant r(k)+1$.

Finally, we prove (v). From (iv) it follows that $k-r(k)$ is a monotone increasing, integer-valued function. Therefore, it is sufficient to prove that it is bounded from above. Actually, we shall see that

$$
\begin{equation*}
k-r(k)<(n+1) \log n \tag{6}
\end{equation*}
$$

To show (6), suppose the contrary. Then, using (iii), we have

$$
\begin{aligned}
f_{r(k)} & =f_{k} \cdot \frac{f_{k-1}}{f_{k}} \cdot \frac{f_{k-2}}{f_{k-1}} \cdots \frac{f_{r(k)}}{f_{r(k)+1}} \leqslant f_{k}\left(\frac{n}{n+1}\right)^{k-r(k)} \\
& \leqslant f_{k}\left(\left(1-\frac{1}{n+1}\right)^{n+1}\right)^{\log n}<f_{k} \mathrm{e}^{-\log n}=\frac{f_{k}}{n}
\end{aligned}
$$

contradicting the definition of $r(k)$.
Thus the proof is complete.
Theorem 2. Let n be a fixed positive real at least 1.
(vi) $(n /(n-1)) f_{k}>f_{k+1}$ holds for all $k>k_{0}$.
(vii) $\left\lfloor\frac{\log n}{\log n-\log (n-1)}\right\rfloor \leqslant c(n) \leqslant\left\lceil\frac{\log n}{\log (n+1)-\log n}\right\rceil$.
(viii) $\lim _{n \rightarrow \infty} \frac{c(n)}{n \log n}=1$.

Proof. By (i) and (v), we have

$$
\begin{equation*}
f_{k+1}=f_{k}+f_{k-c} \tag{7}
\end{equation*}
$$

for $k>k_{0}$. On the other hand, (ii) implies

$$
\begin{equation*}
n f_{(k+1)-c} \geqslant f_{k+1}>n f_{k-c} . \tag{8}
\end{equation*}
$$

Table 1

n	L	$c(n)$	U	$\lfloor n \log n\rfloor$	n	$c(n)$
2	1	1	1	1	$1 \leqslant n<2$	0
3	2	3	3	3		
4	4	5	6	5	$2 \leqslant n<\frac{5}{2}$	1
5	7	7	8	8		
6	9	10	11	10	$\frac{5}{2} \leqslant n<3$	2
7	12	13	14	13		
8	15	16	17	16	$3 \leqslant n<\frac{7}{2}$	3
9	18	19	20	19		
10	21	22	24	23	$\frac{7}{2} \leqslant n<\frac{43}{11}$	4
11	25	25	27	26		
12	28	29	31	29	$\frac{43}{11} \leqslant n<\frac{13}{3}$	5
13	32	32	34	33		
14	35	37	38	36	$\frac{13}{3} \leqslant n<\frac{14}{3}$	6
					$\frac{14}{3} \leqslant n<\frac{51}{10}$	7

By (7) and (8), we have $f_{k+1}>n f_{k-c}=n\left(f_{k+1}-f_{k}\right)$, i.e., $n f_{k}>(n-1) f_{k+1}$, which proves (vi).

Set $U:=\lceil\log n /(\log (n+1)-\log n)\rceil$, then $(n /(n+1))^{U} \leqslant 1 / n$. To show $c(n) \leqslant U$, suppose the contrary. Then using (iii), we have

$$
\begin{aligned}
f_{r(k)} & =f_{k} \cdot \frac{f_{k-1}}{f_{k}} \cdot \frac{f_{k-2}}{f_{k-1}} \cdots \frac{f_{r(k)}}{f_{r(k)+1}} \leqslant f_{k}\left(\frac{n}{n+1}\right)^{k-r(k)} \\
& =f_{k}\left(\frac{n}{n+1}\right)^{c(n)}<f_{k}\left(\frac{n}{n+1}\right)^{U} \leqslant \frac{f_{k}}{n},
\end{aligned}
$$

contradicting (ii).
Set

$$
L:=\left\lfloor\frac{\log n}{\log n-\log (n-1)}\right\rfloor, \quad \text { then }\left(\frac{n-1}{n}\right)^{L} \geqslant \frac{1}{n}
$$

To show $c(n) \geqslant L$, suppose on the contrary that $c(n)+1 \leqslant L$. Then using (vi), we have

$$
\begin{aligned}
f_{r(k)-1} & =f_{k} \cdot \frac{f_{k-1}}{f_{k}} \cdot \frac{f_{k-2}}{f_{k-1}} \cdots \frac{f_{r(k)-1}}{f_{r(k)}} \geqslant f_{k}\left(\frac{n-1}{n}\right)^{k-r(k)+1} \\
& =f_{k}\left(\frac{n}{n+1}\right)^{c(n)+1} \geqslant f_{k}\left(\frac{n-1}{n}\right)^{L} \geqslant \frac{f_{k}}{n}
\end{aligned}
$$

contradicting (ii).
Step (viii) follows immediately from (vii).
Table 1 provides the numerical data concerning $c(n)$.

It is worth noting that $c(n)=c\left(n^{\prime}\right)$ does not necessarily imply $F(n)=F\left(n^{\prime}\right)$. For example, $c(n)=4$ for $\frac{7}{2} \leqslant n<\frac{43}{11}$, but there are two winning sequences for the second player, that is,

$$
\begin{array}{ll}
F(n)=\{1,2,3,4,6,8,11,15,21,27,35,46, \ldots\} & \text { for } \frac{7}{2} \leqslant n<\frac{11}{3}, \\
F(n)=\{1,2,3,4,6,8,11,14,18,24,32,43, \ldots\} & \text { for } \frac{11}{3} \leqslant n<\frac{43}{11} .
\end{array}
$$

References

[1] A.J. Schwenk, Take-away games, Fibonacci Quart. 8 (1970) 225-234,241.
[2] M.J. Whinihan, Fibonacci nim, Fibonacci Quart. 1 (1963) 9.

[^0]: * Corresponding author. Tel.: +81-9-8895-8435; fax: +81-9-8895-8350.

 E-mail addresses: peter111f@aol.com (P. Frankl), hide@edu.u-ryukyu.ac.jp (N. Tokushige).
 URL: http://www.cc.u-ryukyu.ac.jp/~hide

