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Abstract

The following game is considered. The 0rst player can take any number of stones, but not
all the stones, from a single pile of stones. After that, each player can take at most n-times as
many as the previous one. The player 0rst unable to move loses and his opponent wins. Let
f1; f2; : : : be an initial sequence of stones in increasing order, such that the second player has a
winning strategy when play begins from a pile of size fi. It is proved that there exist constants
c= c(n) and k0 = k0(n) such that fk+1 =fk +fk−c for all k ¿k0, and limn→∞ c(n)=(nlogn)=1.
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Let us consider the following game which we call n-times nim. The 0rst player can
take any number of stones, but not all the stones, from a single pile of stones. After
that, each player can take at most n-times as many as the previous one. The player
0rst unable to move loses and his opponent wins. Usually this game is considered for
a positive integer n, but throughout this paper we only assume that n¿1, i.e., n can
be a real number.

Let F(n) := {f1; f2; : : :} be the sequence of initial numbers of stones in increasing
order such that the second player has a winning strategy when the 0rst player begins
moving from a pile of size fi. Clearly f1 = 1, since the 0rst player has no move, so
the second wins. Then, obviously,

fi = i holds for i6�n+ 1�; (1)

also f�n+2� = �n+ 3�.

∗ Corresponding author. Tel.: +81-9-8895-8435; fax: +81-9-8895-8350.
E-mail addresses: peter111f@aol.com (P. Frankl), hide@edu.u-ryukyu.ac.jp (N. Tokushige).
URL: http://www.cc.u-ryukyu.ac.jp/∼hide

0012-365X/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(02)00667 -2

mailto:peter111f@aol.com
mailto:hide@edu.u-ryukyu.ac.jp
http://www.cc.u-ryukyu.ac.jp/~hide


206 P. Frankl, N. Tokushige /Discrete Mathematics 260 (2003) 205–209

Whinihan (who ascribes “Fibonacci nim” to Gaskell, see [2]) found that 2-times
nim satis0es fk+1 =fk + fk−1, that is, F(2) is the Fibonacci sequence. Then Schwenk
[1] proved that in n-times nim there exist constants c= c(n) and k0 = k0(n) such that
fk+1 =fk +fk−c for all k¿k0. He asked to determine the behavior of c= c(n). We are
going to prove the result of Schwenk in a diLerent way, and answer his question.

Theorem 1. Let n be a 6xed positive real at least 1.

(i) For every k¿1 there exists an r= r(k) such that fk+1 =fk + fr holds.
(ii) r(k) can be computed by r(k) = min{r: nfr¿fk}.
(iii) ((n+ 1)=n)fk6fk+1 holds for all k¿1.
(iv) r(k)6r(k + 1)6r(k) + 1, i.e., the function r(k) is continuous in the discrete

sense.
(v) There is a constant c= c(n) such that r(k) = k − c holds for all k¿k0.

Proof. We prove all these statements simultaneously, applying induction on k. The
cases k6n are trivial, with r(k) = 1.

Suppose now that all statements are proved for k ′¡k and consider k. Let r(k) be
de0ned via (ii). We 0rst prove that the 0rst player has a winning strategy for s stones
as long as

fk¡s¡fk + fr(k): (2)

If n(s−fk)¡fk holds then the 0rst player can remove s−fk stones and win, as fk is
a second player win. From now on, we suppose

n(s− fk)¿fk; i:e:; s¿
n+ 1
n

fk : (3)

Let us show that

s− fk is a 0rst player win:

Suppose the contrary, then s − fk =fq holds for some q. Since fq = s − fk¡fr(k) by
(2), the de0nition of r(k) implies nfq¡fk , and n(s−fk) = nfq¡fk , contradicting (3).

Now let the 0rst player play according to the winning strategy for s−fk stones. This
will enable him a 0nite number of moves to reduce the number of remaining stones
to exactly fk .

For convenience, we make this strategy even more clear, by requiring him to remove
all the “extra stones”, i.e., reduce the number of remaining stones to fk only if he has
no other winning moves for his “mind game” of s − fk stones. This makes sure that
when he reduces the number of stones to exactly fk , the number of stones, say t, that
he is taking is a second player win. That is

t=fl for some l¡r(k); (4)
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implying, by the de0nition of r(k) that

nt¡fk (5)

and thus completing the proof that this is a winning strategy for the 0rst player.
Now, to complete the proof of (i), we must show that

fk + fr(k) is a second player win:

If the 0rst player removes fr(k) or more stones, then the second can remove all the
remaining and win. Otherwise let the second player play the “mind game” for fr(k)
stones, by delaying his ultimate move (as above) as long as he can. Then, the number
of stones (say t) which he removes 0nally to reduce the number of remaining stones
to fk will satisfy (4) and thus (5) too, proving that this is a correct winning strategy.
This concludes the proof of (i) and (ii). Then (iii) follows directly from (i) and (ii).

The proof of (iv). From (ii), r(k)6r(k + 1) is clear. Using (i) and (ii), nfr(k)+1¿n
(fr(k) + fr(r(k)))¿fk + fr(k) =fk+1 follows, proving r(k + 1)6r(k) + 1.

Finally, we prove (v). From (iv) it follows that k − r(k) is a monotone increasing,
integer-valued function. Therefore, it is suNcient to prove that it is bounded from
above. Actually, we shall see that

k − r(k)¡(n+ 1) log n: (6)

To show (6), suppose the contrary. Then, using (iii), we have

fr(k) = fk · fk−1

fk
· fk−2

fk−1
· · · fr(k)
fr(k)+1

6fk

(
n

n+ 1

)k−r(k)

6fk

((
1 − 1

n+ 1

)n+1
)log n

¡fke− log n =
fk
n
;

contradicting the de0nition of r(k).
Thus the proof is complete.

Theorem 2. Let n be a 6xed positive real at least 1.

(vi) (n=(n− 1))fk¿fk+1 holds for all k¿k0.
(vii)

⌊
log n

log n−log(n−1)

⌋
6c(n)6

⌈
log n

log(n+1)−log n

⌉
.

(viii) limn→∞
c(n)
n log n = 1.

Proof. By (i) and (v), we have

fk+1 =fk + fk−c (7)

for k¿k0. On the other hand, (ii) implies

nf(k+1)−c¿fk+1¿nfk−c: (8)
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Table 1

n L c(n) U �n log n�

2 1 1 1 1
3 2 3 3 3
4 4 5 6 5
5 7 7 8 8
6 9 10 11 10
7 12 13 14 13
8 15 16 17 16
9 18 19 20 19

10 21 22 24 23
11 25 25 27 26
12 28 29 31 29
13 32 32 34 33
14 35 37 38 36

n c(n)

16n¡2 0

26n¡ 5
2 1

5
26n¡3 2

36n¡ 7
2 3

7
26n¡

43
11 4

43
116n¡

13
3 5

13
3 6n¡

14
3 6

14
3 6n¡

51
10 7

By (7) and (8), we have fk+1¿nfk−c = n(fk+1 − fk), i.e., nfk¿(n − 1)fk+1, which
proves (vi).

Set U := �log n=(log(n + 1) − log n)�, then (n=(n + 1))U61=n. To show c(n)6U ,
suppose the contrary. Then using (iii), we have

fr(k) =fk · fk−1

fk
· fk−2

fk−1
· · · fr(k)
fr(k)+1

6fk

(
n

n+ 1

)k−r(k)

=fk

(
n

n+ 1

)c(n)
¡fk

(
n

n+ 1

)U
6
fk
n
;

contradicting (ii).
Set

L :=
⌊

log n
log n− log(n− 1)

⌋
; then

(
n− 1
n

)L
¿

1
n
:

To show c(n)¿L, suppose on the contrary that c(n)+16L. Then using (vi), we have

fr(k)−1 =fk · fk−1

fk
· fk−2

fk−1
· · · fr(k)−1

fr(k)
¿fk

(
n− 1
n

)k−r(k)+1

=fk

(
n

n+ 1

)c(n)+1

¿fk

(
n− 1
n

)L
¿
fk
n
;

contradicting (ii).
Step (viii) follows immediately from (vii).

Table 1 provides the numerical data concerning c(n).
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It is worth noting that c(n) = c(n′) does not necessarily imply F(n) =F(n′). For
example, c(n) = 4 for 7

26n¡
43
11 , but there are two winning sequences for the second

player, that is,

F(n) = {1; 2; 3; 4; 6; 8; 11; 15; 21; 27; 35; 46; : : :} for 7
26n¡

11
3 ;

F(n) = {1; 2; 3; 4; 6; 8; 11; 14; 18; 24; 32; 43; : : :} for 11
3 6n¡

43
11 :
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