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Let n and r be positive integers. Suppose that a family F � 2½n� satisfies jF1 \
F2 \ F3j52 for all F1;F2;F3 2 F: We prove that if w50:5018; thenP

F2F wjF jð1 � wÞn�jF j4w2: # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let n; r and t be positive integers. A family F of subsets of ½n� ¼
f1; 2; . . . ; ng is called r-wise t-intersecting if jF1 \    \ Frj5t holds for all
F1; . . . ;Fr 2 F: For a real w 2 ð0; 1Þ; let us define the weighted size WwðFÞ
of F by

WwðFÞ :¼
X
F2F

wjF jð1 � wÞn�jF j:

Note that W1=2ðFÞ ¼ jFj=2n: Further, define

fw;r;tðnÞ :¼ maxfWwðFÞ: F � 2½n� is r-wise t-intersectingg:

Let us check

fw;r;tðnÞ5wt: ð1Þ
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Set F0 :¼ fF � ½n�: ½t� � Fg: Then F0 is r-wise t-intersecting for every r; and

WwðF0Þ ¼wt
X

F�½tþ1;n�
wjF jð1 � wÞn�t�jF j

¼wt
Xn�t

i¼0

n� t

i

 !
wið1 � wÞn�t�i ¼ wt:

Problem 1. Does fw;r;tðnÞ ¼ wt hold if w4wðr; tÞ and t42r � r� 1?

For 1-intersecting families, the authors proved the following in [8].

Theorem 1. fw;r;1ðnÞ ¼ w if w4ðr� 1Þ=r:

On the other hand, for all t51 one has

lim
n!1

fw;r;tðnÞ ¼ 1 if w > ðr� 1Þ=r:

To obtain an exact formula for fw;r;2ðnÞ seems to be much harder. In this
paper, we shall prove

Theorem 2. fw;3;2ðnÞ ¼ w2 if w50:5018:

This implies fw;r;2ðnÞ ¼ w2 if r53 and w50:5018; since wt4fw;rþ1;tðnÞ4
fw;r;tðnÞ: Using Theorem 2, the following variation of the Erd +oos–Ko–Rado
theorem is deduced.

Theorem 3. Let F � ½n�
k

� �
be a 3-wise 2-intersecting family with k=n5

0:501: Then jFj4ð1 þ oð1ÞÞ n�2
k�2

� �
:

A family F � 2½n� is called a Sperner family if F 6� G holds for all distinct
F ;G 2 F: The maximum size of 2-wise t-intersecting Sperner families was

determined by Milner [18], it is given by the simple formula n
dðnþtÞ=2e

� �
: For

3-wise t-intersecting families, the situation becomes more complicated.
For 3-wise 1-intersecting families, it was the subject of several papers of
Frankl [3] and Gronau [10, 11, 12, 13] and it is known that for n553 the only
optimal families are

F ¼

(
F [ fng: F 2

½n� 1�
n=2

 !)
[ f½n� 1�g; n even;

(
F [ fng: F 2

½n� 1�
ðn� 1Þ=2

 !)
; n odd:

8>>>>><
>>>>>:
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This motivates the following conjecture.

Conjecture 1. Let F � 2½n� be a 3-wise 2-intersecting Sperner family.
Then,

jFj4

n� 2

ðn� 2Þ=2

 !
if n even;

n� 2

ðn� 1Þ=2

 !
þ 2 if n odd

8>>>>><
>>>>>:

holds for n5n0: The corresponding families are

F ¼

(
F [ fn� 1; ng: F 2

½n� 2�
ðn� 2Þ=2

 !)
; n even;

(
F [ fn�1; ng: F 2

½n�2�
ðn�1Þ=2

 !)
[ f½n� 1�g [ f½n� � fn� 1gg;

n odd:

8>>>>>>><
>>>>>>>:

Since F ¼ ½8�
6

� �
is 3-wise 2-intersecting Sperner and jFj ¼ 8

6

� �
> 6

3

� �
; we

need the condition n > n0 in the above conjecture.
As an application of Theorem 3, we prove the following weaker result,

conjectured in [3].

Theorem 4. Let F � 2½n� be a 3-wise 2-intersecting Sperner family. Then,

jFj4ð1 þ oð1ÞÞ n�2
dðn�2Þ=2e

� �
:

Using the same technique, we can remove the above oð1Þ term for 4-wise
case as follows:

Theorem 5. Let F � 2½n� be a 4-wise 2-intersecting Sperner family. Then,

jFj4 n�2
dðn�2Þ=2e

� �
holds for n > n0:

Note that the same upper bound is valid for r-wise 2-intersecting Sperner
families if r54:
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2. TOOLS

2.1. Shifting

For integers 14i5j4n and a family F � 2½n�; define the ði; jÞ-shift Sij as
follows:

SijðFÞ :¼ fSijðFÞ: F 2 Fg;

where

SijðFÞ :¼
ðF � fjgÞ [ fig if i =2 F ; j 2 F ; ðF � fjgÞ [ fig =2 F;

F otherwise:

(

A family F � 2½n� is called shifted if SijðFÞ ¼ F for all 14i5j4n: We call
F co-complex if G � F 2 F implies G 2 F: It is not difficult to check that
fw;r;tðnÞ (the maximal weighted size of r-wise t-intersecting families) is
attained by a shifted co-complex. See [6] for details.

Let us introduce a partial order in 2½n� by using shifting. Let A;B � ½n�:
Define AgB if there exists A0 � ½n� such that A � A0 and B is obtained by
repeating a shifting to A0: The following fact is trivial but useful.

Fact 1. Let F � 2½n� be a shifted co-complex. If A 2 F and AgB; then

B 2 F:

Let us see how to apply the above fact.

Fact 2. Let F � 2½n� be a 3-wise 2-intersecting shifted co-complex. Set

G0 :¼ f1; 3; 4; 6; 7; . . . ; 3i; 3i þ 1; . . .g \ ½n�: Then, G0 =2 F:

Proof. Let us define G1 and G2 from G0 by applying a shifting, i.e.,
G1 :¼ f1; 2; 4; 5; 7; . . . ; 3i � 1; 3i þ 1; . . .g \ ½n�; and G2 :¼ f1; 2; 3; 5; 6; . . . ;
3i � 1; 3i; . . .g \ ½n�: More visually,

G0 ¼ f1  34  67  9 . . .g;
G1 ¼ f12  45  78  . . .g;
G2 ¼ f123  56  89  . . .g:

Then, G0 \ G1 \ G2 ¼ f1g and G0gG1gG2: If G0 2 F; then G1;G2 2 F
must hold by Fact 1. But this is impossible because F is 3-wise
2-intersecting. ]

In the same reason, an r-wise t-intersecting shifted co-complex cannot
contain the set ½n� � ft; tþ r; tþ 2r; . . .g:



FRANKL AND TOKUSHIGE98
2.2. Random Walk

Let w 2 ð0; 2=3Þ be a fixed real number, and let a 2 ð0; 1Þ be the root of

the equation ð1 � wÞx3 � xþ w ¼ 0; more explicitly, a ¼ 1
2
ð
ffiffiffiffiffiffiffiffiffi
1þ3w
1�w

q
� 1Þ:

Consider the infinite random walk, starting from the origin, in which at each
step we move one unit up with probability w or move one unit right with
probability 1 � w: Then, the probability that we ever hit the line y ¼ 2xþ s
is given by as (see [4] or [6] for details).

Let F 2 F � 2½n�: We define the corresponding (finite) walk to F ; denoted
by walkðFÞ; in the following way. If i 2 F (resp. i =2 F), then we move
one unit up (resp. one unit right) at the ith step. Note that FgG means
walkðGÞ is in the upper left area than walkðFÞ: (Draw walks corresponding
to G0;G1;G2 in Fact 2 then one may see the situation visually. This
visualization will be helpful to understand the computations in the proof of
Theorem 2.)

The following example shows how to use the random walk to bound the
weighted size of families.

Fact 3. Let F � 2½n� be 3-wise 2-intersecting shifted co-complex. Then,
WwðFÞ4a2:

Proof. Set G0 :¼ f1; 3; 4; 6; 7; . . . ; 3i; 3i þ 1; . . .g \ ½n�: Note that
walkðG0Þ is the maximal walk which does not touch the line
‘: y ¼ 2xþ 2: We know that G0 =2 F by Fact 2. Thus, if GgG0 then G =2
F by Fact 1. In other words, for every F 2 F; walkðFÞ must touch the line
‘: Therefore,

WwðFÞ4Probða random walk of n-steps touches the line ‘Þ4a2: ]

For an r-wise t-intersecting family, we consider the equation ð1 � wÞ
xr � xþ w ¼ 0; its root ar 2 ð0; 1Þ; and the line y ¼ ðr� 1Þxþ t: Then the
weight of the family is at most atr:

2.3. Shadow

For a family F � 2½n� and a positive integer ‘5n; let us define the ‘th
shadow of F; denoted by D‘ðFÞ; as follows:

D‘ðFÞ :¼ G 2
½n�
‘

 !
: G � 9F 2 F

( )
:

Suppose that F � ½n�
k

� �
and jFj ¼ m

k

� �
þ x

k�1

� �
where m 2 N; x 2 R;

x4m� 1: Then, by the Kruskal–Katona theorem [15, 16] and its Lov!aasz
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version [17], it follows that

jD‘ðFÞj5
m

‘

 !
þ

x

‘� 1

 !
:

We shall use the above inequality to prove Theorem 3.
Let F � ð½n�

k
Þ be a 2-wise t-intersecting family. Katona [14] found the

following bound for the ‘th shadow ðt4‘5kÞ:

jD‘ðFÞj
jFj 5

2k�t
‘

� �
2k�t
k

� �:
We need the above inequality to prove Theorem 4. See [6] or [7] for the
detail of inequalities concerning the size of shadows.

3. PROOF OF THEOREM 2

Let F � 2½n� be 3-wise 2-intersecting. Further, we assume that F is shifted
co-complex. Fix a constant w; 05w50:5018: In this section, we write WðFÞ
instead of WwðFÞ: Set a :¼ 1

2
ð
ffiffiffiffiffiffiffiffiffi
1þ3w
1�w

q
� 1Þ; v :¼ 1 � w:

Let us define the following:

*ðiÞ :¼ fi; i þ 1; i þ 3; i þ 4; i þ 6; i þ 7; . . .g \ ½n�

¼ ½n� � ½i � 1� [ i þ 3j þ 2 : 04j4
n� i � 2

3

� �� �� �
;

Pi :¼ f1; 2g [ *ði þ 4Þ;

Qi :¼ f1; 2; i þ 4g [ *ði þ 6Þ;

F12 :¼ fF 2 F: f1; 2g � Fg;

F1%22 :¼ fF 2 F: 1 2 F ; 2 =2 Fg;

F%112 :¼ fF 2 F: 1 =2 F ; 2 2 Fg;

F%11%22 :¼ fF 2 F: 1 =2 F ; 2 =2 Fg:
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By definition, it follows that Piþ1gQigPi; jFj ¼ jF12j þ jF1%22j þ jF%112j þ
jF%11%22j: If f1; 2g ¼ Pn�3 2 F; then F ¼ fF � ½n�: f1; 2g � Fg and
WðFÞ ¼ w2: From now on, we assume Pn�3 =2 F and we shall prove
WðFÞ5w2:

Case 1: P0 =2 F: Note that walkðP0Þ is the maximal walk which does not
touch the line ‘ : y ¼ 2xþ 3; because

P0 ¼ *ð1Þ ¼ f12  45  78  . . .g:

Since P0 =2 F; walkðFÞ must meet the line ‘ if F 2 F:
If F 2 F12; walkðFÞ starts with ‘‘up, up,’’ and then from ð0; 2Þ the walk

must meet the line ‘: Thus,

WwðF12Þ4w2 Probða random walk of n� 2 steps starting from

the origin; which touches the line y ¼ 2xþ 1Þ
4w2a:

Since f1; 3g [ *ð4Þg*ð1Þ; we have f1; 3g [ *ð4Þ =2 F: The corresponding
walk to this set starts with ‘‘up, right,’’ then from ð1; 1Þ this is the maximal
walk which does not touch the line ‘: So if F 2 F1%22; walkðFÞ starts with
‘‘up, right,’’ then from ð1; 1Þ the walk must meet ‘: Thus, WðF1%22Þ4wva4:

In the same way, since f2; 3g [ *ð4Þg*ð1Þ; we have f2; 3g [ *ð4Þ =2 F
and WðF%112Þ4vwa4: For the last case, we have f3; 4; 5; 6g [ *ð7Þ =2 F and
WðF%11%22Þ4v2a7:

Therefore,

WðFÞ ¼WðF12Þ þWðF1%22Þ þWðF%112Þ þWðF%11%22Þ
4w2aþ 2wva4 þ v2a75w2:

Case 2: Pi 2 F; Piþ1 =2 F; i51:

Case 2.1: Qi =2 F: Observe that walkðQiÞ starts with ‘‘up, up,’’ and i þ 1
‘‘right,’’ then from ði þ 1; 2Þ this walk is the maximal walk which does not
touch the line ‘ : y ¼ 2ðx� ði þ 1ÞÞ þ 4:

Let F 2 F12; then walkðFÞ starts with ‘‘up, up.’’ If walkðFÞ passes the
point ði þ 1; 2Þ; then this walk must meet the line ‘ after passing ði þ 1; 2Þ:
This happens with probability at most w2viþ1a2: Otherwise walkðFÞ must go
through one of ð0; i þ 3Þ; ð1; i þ 2Þ; . . . ; ði; 3Þ: This happens with probability
w2ð1 � viþ1Þ: Thus, we have

WðF12Þ4w2ðviþ1a2 þ ð1 � viþ1ÞÞ
¼ w2ð1 � viþ1ð1 � a2ÞÞ:
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Set

F :¼ ½1; i þ 3� [ fi þ 6; i þ 9; i þ 12; . . . ; 4i; 4i þ 3g [ *ð4i þ 5Þ;
G :¼ f1g [ ½3; 4i þ 4� [ *ð4i þ 6Þ:

Since Pi 2 F and Pi ¼ f1; 2g [ *ði þ 4ÞgF ; we have F 2 F: Note that
Pi \ F \ G ¼ f1g: Thus, G =2 F follows from the assumption that F is 3-
wise 2-intersecting. Therefore,

WðF1%22Þ4wva4iþ3:

In the same way, we have WðF%112Þ4wva4iþ3: Next, set H :¼ ½3; 4i þ 7� [
*ð4i þ 9Þ: Since Pi \ F \H ¼ f4i þ 5g; we have H =2 F; which implies

WðF%11%22Þ4v2a4iþ6:

Therefore,

WðFÞ4w2ð1 � viþ1ð1 � a2ÞÞ þ 2wva4iþ3 þ v2a4iþ65w2: ð2Þ

(This is equivalent to a4

v

� �i
5 vð1�a2Þ

a3ð2ðv=wÞþðv=wÞ2a3Þ:)

Case 2.2: Qi 2 F: Since Piþ1 =2 F; we have

WðF12Þ4w2ðviþ1aþ ð1 � viþ1ÞÞ ¼ w2ð1 � viþ1ð1 � aÞÞ:

Set

F :¼ ½1; i þ 3� [ fi þ 5; i þ 8; i þ 11; . . . ; 4i þ 5g [ *ð4i þ 7Þ;
G :¼ f1g [ ½3; 4i þ 6� [ *ð4i þ 8Þ:

Since Qi 2 F and QigF ; we have F 2 F: Note that Qi \ F \ G ¼ f1g:
Thus, G =2 F follows from the assumption that F is 3-wise 2-intersecting.
Therefore,

WðF1%22Þ4wva4iþ5:

In the same way, we have WðF%112Þ4wva4iþ5: Set H :¼ ½3; 4i þ 9� [ *
ð4i þ 11Þ: Since Qi \ F \H ¼ f4i þ 7g; we have H =2 F; which implies

WðF%11%22Þ4v2a4iþ8:

Therefore,

WðFÞ4w2ð1 � viþ1ð1 � aÞÞ þ 2wva4iþ5 þ v2a4iþ85w2: ð3Þ

(This is equivalent to ða4

v
Þi5 vð1�aÞ

a5ð2ðv=wÞþðv=wÞ2a3Þ:)

Now we may assume that P0 2 F and P1 =2 F:
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Case 3: P1 =2 F; Q0 2 F: Set F :¼ f1; 2; 3; 5g [ *ð7Þ; G :¼ f1; 3; 4; 5; 6g
[*ð8Þ: Since Q0 2 F and Q0gF ; we have F 2 F: Note that Q0 \ F \ G ¼
f1g: Thus, G =2 F; and

WðF1%22Þ4wva5:

In the same way, we have WðF%112Þ4wva5: Next set H :¼ f3; 4; 5; 6; 7g [
*ð8Þ: Since Q0 \ F \H ¼ f7g; we have H =2 F; which implies

WðF%11%22Þ4v2a8:

Case 3.1: S1 :¼ f1; 2; 5g [ *ð6Þ =2 F: Since S1 =2 F; we have

WðF12Þ4w2ðw2 þ 2wvþ v2a4Þ ¼: W31:

Therefore, we have

WðFÞ4W31 þ 2wva5 þ v2a85w2:

Case 3.2: S2 :¼ f1; 2; 5; 6; 8; 9g [ *ð10Þ =2 F: Since S2 =2 F; we have

WðF12Þ4w2ðw5 þ 5w4vþ 10w3v2 þ w2v3ð7 þ 3a5Þ
þ wv4ð2 þ 3a8Þ þ v5a11Þ :¼ W32:

Therefore, we have

WðFÞ4W32 þ 2wva5 þ v2a85w2:

This is the hardest case and the above inequality fails if w50:5019:

Case 3.3: S1;S2 2 F: Set F :¼ f1; 2; 3; 4; 8; 9g [ *ð10Þ; G :¼ f1; 3; 4; 5;
6; 7; 8g [ *ð11Þ: Since S2 2 F and S2gF ; we have F 2 F: Note that S1 \
F \ G ¼ f1g and G =2 F:

A walk corresponding to an edge in F1%22 passes one of ð1; 8Þ;
ð2; 7Þ; . . . ; ð8; 1Þ: If the walk passes ði; 9 � iÞ ð24i48Þ; then it must
meet the line y ¼ 2xþ 4 after passing ði; 9 � iÞ because G =2 F: Thus,
we have

WðF1%22Þ4wv w7 þ
X7

i¼1

viw7�ia3i�2

 !

¼wv w7 þ vaðw7 � v7a21Þ
w� va3

� �
¼: W33:

In the same way, we have WðF%112Þ4W33: Next set H :¼ f3; 4; 5; 6; 7; 8; 9g [
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*ð11Þ: Since S1 \ F \H ¼ f9g; we have H =2 F; which implies

WðF%11%22Þ4v2a8:

Finally, P1 =2 F implies

WðF12Þ4w2ðw2 þ 2wvþ v2a3Þ:

Therefore, we have

WðFÞ4w2ðw2 þ 2wvþ v2a3Þ þ 2W33 þ v2a85w2:

Now we may assume P0 2 F and Q0 =2 F:

Case 4: P0 2 F; Q0 =2 F; R :¼ f1; 2; 3g [ *ð6Þ 2 F: First, Q0 =2 F
implies

WðF12Þ4w2ðwþ va2Þ:

Set G :¼ f1; 3; 4g [ *ð5Þ; H :¼ f3; 4; 5; 6; 7g [ *ð8Þ: Since P0 \ R \ G ¼
f1g; we have G =2 F; which implies

WðF1%22Þ4wva5:

In the same way, we have WðF%112Þ4wva5: Since P0 \ R \H ¼ f7g; we have
H =2 F and

WðF%11%22Þ4v2a8:

Therefore, we have

WðFÞ4w2ðwþ va2Þ þ 2wva5 þ v2a85w2:

At this point, let us summarize what we have proved.

Proposition 1. Theorem 2 is true if P0 =2 F or Q0 2 F or f1; 2; 3g [
*ð6Þ 2 F:

In order to prove the remaining cases, we need some preparations. For a
subset S � ½5�; let us define

FðSÞ :¼ fF � S: F 2 F;F \ ½5� ¼ Sg � 2½6;n�;

f ðSÞ :¼ WðFðSÞÞ:
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If SgS0; the shiftedness of F implies FðSÞ � FðS0Þ (and f ðSÞ4f ðS0Þ).
For simplicity, we write Fð123Þ; f ð123Þ instead of Fðf1; 2; 3gÞ; f ðf1; 2; 3gÞ:

Lemma 1. Let S � ½5�; jSj ¼ 3; and F :¼ f1; 3g [ *ð4Þ: If F 2 F; then

f ðSÞ4a3:

Proof. Set G :¼ f1; 2; 4g [ *ð5Þ; H :¼ f1; 2; 3g [ *ð6Þ: Since F 2 F and
FgG; we have G 2 F: Note that F \ G \H ¼ f1g: Thus, we have H =2 F
and f ð123Þ4a3: If S � ½5� and jSj ¼ 3; then Sgf1; 2; 3g: Thus,
f ðSÞ4f ð123Þ4a3: ]

Lemma 2. Let S � ½5�; jSj43 and F :¼ f1; 3g [ *ð4Þ: If F 2 F; then

f ðSÞ4a3ð4�jSjÞ:

Proof. Similar as proof of Lemma 1. Use the fact that F 2 F implies
f1; 2; 6; 7; 8g [ *ð9Þ =2 F; f1g [ ½6; 11� [ *ð12Þ =2 F; ½6; 14� [ *ð15Þ =2 F: ]

Lemma 3. Let S � ½5� and jSj ¼ 3: If ½2� 6� S; then FðSÞ is 3-wise 3-

intersecting (on ½6; n�).

Proof. By the shiftedness of F; it is sufficient to consider the case
S ¼ f1; 3; 4g: Suppose, on the contrary, that FðSÞ is not 3-wise
3-intersecting. Then, there exist T1;T2;T3 2 FðSÞ such that T1 \ T2 \ T3 ¼
fx; yg: Set

F1 :¼ f1; 3; 4g [ T1;

F2 :¼ f1; 2; 4; 5g [ ðT2 � fxgÞ;
F3 :¼ f1; 2; 3; 5g [ ðT3 � fygÞ:

Since S [ T2gF2 and S [ T3gF3; we have F1;F2;F3 2 F; but F1 \ F2 \
F3 ¼ f1g: This contradicts our assumption that F is 3-wise 2-inter-
secting. ]

Using the same approach, we can extend the above lemma as follows.

Lemma 4. If ½2� 6� S � ½5� and jSj43; then FðSÞ is 3-wise 3ð4 � jSjÞ-
intersecting (on ½6; n�).

Now, let us leave the proof of Theorem 2 aside for a while, and
concentrate on the following stronger proposition.

Proposition 2. Let G � 2½n�; t52; and w50:5018: If G is 3-wise

t-intersecting, then WðGÞ4w2at�2:
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Note that the case t ¼ 2 in Proposition 2 is exactly Theorem 2. We prove
Proposition 2 by double induction on n and t:

First, let us check the cases t4n4tþ 2: Set G0 :¼ fG � ½n� : ½t� � Gg: It is
easy to verify that if t4n4tþ 2; then

WðGÞ4WðG0Þ ¼ wt4w2at�2:

Another initial step of the induction is the case t ¼ 2; i.e., Theorem 2. But we
postpone this essential case, and check, in advance, that Theorem 2 actually
implies the induction step.

Assume that Proposition 2 is true for t ¼ 2: Let G � 2½n� be 3-wise
t-intersecting and t53: (We also assume that G is shifted co-complex.)
Define G1;G%11 � 2½2;n� as follows:

G1 :¼ fG� f1g: 1 2 G 2 Gg;
G%11 :¼ fG 2 G: 1 =2 Gg:

Note that G1 is 3-wise ðt� 1Þ-intersecting, and since G is shifted, G%11 is 3-wise
ðtþ 2Þ-intersecting. Using the induction hypothesis, we have

WðGÞ ¼wWðG1Þ þ vWðG%11Þ4w3at�3 þ vw2at

¼w2at�3ðva3 þ wÞ ¼ w2at�2:

(Remember that a is a root of the equation vx3 � xþ w ¼ 0:) This completes
the induction step for the proof of Proposition 2.

Consequently, all we have to do is to prove the case t ¼ 2 (Theorem 2) by
induction on n: So let us return to the proof of Theorem 2 again. But this
time, we can use the induction hypothesis of Proposition 2, i.e., we assume
that Proposition 2 is true for all ðn0; t0Þ if t04n05n:

Lemma 5. If ½2� 6� S � ½5� and jSj43; then f ðSÞ4w2a10�3jSj:

Proof. By Lemma 4, FðSÞ � 2½6;n� is 3-wise 3ð4 � jSjÞ-intersecting.
Using the induction hypothesis, we have WðFðSÞÞ4w2a3ð4�jSjÞ�2 ¼
w2a10�3jSj: ]

Case 5: f1; 3g [ *ð4Þ 2 F: Let S � ½5�: Define

*FFðSÞ :¼ fF 2 F: F \ ½5� ¼ Sg � 2½n�:

For S ¼ f1; 2; 3g; f1; 2; 4g; f1; 2; 5g; we apply Lemma 1 and obtain f ðSÞ4
a3: For the remaining seven 3-sets S; we use Lemma 5 and obtain
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f ðSÞ4w2a: Thus, we haveX
jSj¼3

Wð *FFðSÞÞ4ð3a3 þ 7w2aÞ  w3v2:

Similarly, X
jSj¼2

Wð *FFðSÞÞ4ða6 þ 9w2a4Þ  w2v3:

In this way, we haveX
jSj43

Wð *FFðSÞÞ4ð3a3 þ 7w2aÞ  w3v2 þ ða6 þ 9w2a4Þ  w2v3

þ 5w2a7  wv4 þ w2a10  v5 ¼: W5:

Case 5.1: f2; 3g[*ð4Þ =2 F: Since f ð2345Þ4a; we have
P

jSj¼4 Wð *FFðSÞÞ
4ð4 þ aÞw4v: We also use f ð12345Þ41; i.e., Wð *FFðSÞÞ4w5: Therefore, we
have

WðFÞ ¼
X
S�½5�

Wð *FFðSÞÞ4W5 þ ð4 þ aÞw4vþ w55w2:

Case 5.2: f2; 3g [ *ð4Þ 2 F and f1; 3; 4; 5g [ *ð8Þ =2 F: Set F6 :¼ fH
2 Fð1345Þ: 6 2 Fg; F%66 :¼ fH 2 Fð1345Þ: 6 =2 Fg: Then, we have WðF6Þ
4w5v and WðF%66Þ4w4v2a: Thus, we have

Wð *FFð1345ÞÞ4w4v2ðwþ vaÞ:

We can apply the same thing to *FFð2345Þ; because f2; 3; 4; 5g [ *ð8Þ =2 F
follows from the shiftedness of F: Thus,X

jSj¼4

42w4v2ðwþ vaÞ þ 3w4v ¼: W52:

(The former corresponds to 1345; 2345; and the latter corresponds to 1234;
1235; 1245:) Therefore, we have

WðFÞ4W5 þW52 þ w55w2:

Case 5.3: f2; 3g [ *ð4Þ 2 F and f1; 3; 4; 5g [ *ð8Þ 2 F: Since f2; 3g [
*ð4Þg½2; 7� [ *ð10Þ and

ðf1; 3; 4; 5g [ *ð8ÞÞ \ ð½2; 7� [ *ð10ÞÞ \ ðf1; 2; 3; 6; 7; 8g [ *ð9ÞÞ ¼ f3g;
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we have f1; 2; 3; 6; 7; 8g [ *ð9Þ =2 F: This implies that f ðSÞ4a6 if jSj ¼ 3: If
jSj ¼ 2 and S=f1; 2g; then we have f ðSÞ4w2a4 by Lemma 5. Thus, we have

WðFÞ4w2a10  v5 þ 5w2a7  wv4 þ ð9w2a4 þ a6Þw2v3

þ 10a6  w3v2 þ 5w4vþ w55w2:

Case 6: f1; 3g [ *ð4Þ =2 F: By using Proposition 1, we may assume that
R :¼ f1; 2; 3g [ *ð6Þ =2 F: This implies that

f ð123Þ; f ð124Þ; f ð125Þ4a3:

Since f1; 2; 6; 7; 8g [ *ð9ÞgR; we have f1; 2; 6; 7; 8g [ *ð9Þ =2 F; and thus,
f ð12Þ4a6: Therefore, (using Lemma 5) we have

WðFÞ4w2a10  v5 þ 5w2a7  wv4 þ ð9w2a4 þ a6Þw2v3

þ ð7w2aþ 3a3Þw3v2 þ ð4 þ aÞw4vþ w55w2:

This completes the proof of Proposition 2 and Theorem 2 at the same
time.

4. PROOF OF THEOREM 3

Let F � ð½n�
k
Þ be a 3-wise 2-intersecting family. This family is clearly 2-wise

2-intersecting, too. Therefore, by the Erd +oos–Ko–Rado theorem (cf.
[1, 2, 5, 19]) it follows that jFj4ðn�2

k�2
Þ if n53ðk� 1Þ: So we may assume

that n53k:
Let d > 0 be given. We shall prove jFj5ð1 þ dÞ n�2

k�2

� �
for sufficiently large

n: Set w :¼ 0:5017 and v :¼ 1 � w: By Theorem 2, we must have WwðGÞ4w2

for any 3-wise 2-intersecting family G � 2½n�: Choose e > 0 sufficiently small
so that

ð1 þ d=2Þð1 � eÞ4 > 1; ð4Þ

0:5015ð1 � eÞw: ð5Þ

Define an open interval I :¼ ðð1 � eÞwn; ð1 þ eÞwnÞ: Choose n0 ¼ n0ðd; eÞ
sufficiently large so thatX

i2I

n

i

 !
wivn�i > 1 � e for all n > n0; ð6Þ

e > 2=ðð1 � eÞwnÞ for all n > n0: ð7Þ
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Let F � ½n�
k

� �
be a 3-wise 2-intersecting family with 1=35k=n50:501:

Suppose that jFj ¼ ð1 þ dÞðn�2
k�2

Þ: We shall derive a contradiction by
constructing a 3-wise 2-intersecting family G � 2½n� with WwðGÞ > w2: Set
Fc :¼ f½n� � F : F 2 Fg: Define

G :¼
[n�k

‘¼0

ðD‘ðFcÞÞc �
[n
i¼k

½n�
i

 ! !
:

Then,

WwðGÞ ¼
Xn�k

‘¼0

jD‘ðFcÞjwn�‘v‘

¼
Xn
i¼k

jDn�iðFcÞjwivn�i:

Since k50:501n5ð1 � eÞwn by (5) and I � ½k; n�; we have

WwðGÞ5
X
i2I

jDn�iðFcÞjwivn�i:

Lemma 6. jDn�iðFcÞj5ð1 þ d
2
Þðn�2

n�i
Þ for i 2 I :

Proof. Let x ðx4n� 3Þ be a real satisfying x
n�k�1

� �
¼ d n�2

n�k

� �
: Then,

jFcj ¼ jFj ¼ ð1 þ dÞ n�2
k�2

� �
¼ n�2

n�k

� �
þ x

n�k�1

� �
: By the Kruskal–Katona

theorem, we have jDn�iðFcÞj5 n�2
n�i

� �
þ x

n�i�1

� �
: To prove x

n�i�1

� �
5d

2
n�2
n�i

� �
; it

is sufficient to show

x
n�i�1

� �
x

n�k�1

� �5d
2

n�2
n�i

� �
d n�2

n�k

� �;
or equivalently,

ði � 2Þ    ðk� 1Þ
ðx� nþ i þ 1Þ    ðx� nþ kþ 2Þ5

n� k

2ðn� iÞ:

Let us check that LHS > 1 > RHS: Since LHS5ð i�2
x�nþiþ1

Þi�k and x4n� 3;
we have LHS > 1: On the other hand, 1 > RHS is equivalent to
ðnþ kÞ=25i: Using n53k and (5), we certainly have ðnþ kÞ=25ðnþ
n=3Þ=2 ¼ 2n=35ð1 þ eÞwn5i: This completes the proof of the lemma. ]
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By the lemma, we have

WwðGÞ5
X
i2I

1 þ d
2

� �
n� 2

n� i

 !
wivn�i

¼
X
i2I

1 þ d
2

� �
i

n

i � 1

n� 1

n

i

 !
wivn�i:

Note that

i

n

i � 1

n� 1
5

i � 1

n

� �2

5
ðð1 � eÞwn� 1Þ2

n2
5ð1 � eÞ2w2 � 2ð1 � eÞw

n

¼ð1 � eÞ2w2 1 � 2

ð1 � eÞwn

� �
> ð1 � eÞ3w2 ðby ð7ÞÞ:

Therefore,

WwðGÞ5 1 þ d
2

� �
ð1 � eÞ3w2

X
i2I

n

i

 !
wivn�i

> 1 þ d
2

� �
ð1 � eÞ4w2 ðby ð6ÞÞ

>w2 ðby ð4ÞÞ;

which is a contradiction. This completes the proof of Theorem 3.

5. PROOF OF THEOREM 4

For a family F � 2½n�; set Fi :¼ F \ ð½n�
i
Þ: First, we prove the following

version of the Erd +oos–Ko–Rado theorem (see [3] for 3-wise 1-intersecting
families).

Proposition 3. Let F � 2½n� be a 3-wise 2-intersecting Sperner family

with k=n50:501: Then,
Pk

i¼1 jFijðn�2
i�2

Þ�141 þ oð1Þ:

Proof. Let d > 0 be given. We prove
Pk

i¼1 jFijðn�2
i�2

Þ�141 þ d for n >
n0ðdÞ by induction on the number of non-zero jFij’s.

If this number is one, then the inequality follows from Theorem 3. If it is
not the case, then let p be the smallest and r the second-smallest index for
which jFij=0: Set Fc

p :¼ f½n� � F : F 2 Fpg: Then, Fc
p � ð ½n�

n�p
Þ is (2-wise)

ðn� 2pþ 2Þ-intersecting. By the Katona’s shadow theorem for intersecting
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family (see Section 2.3), we have

jDn�rðFc
pÞj

jFc
pj

5
ð2ðn�pÞ�ðn�2pþ2Þ

n�r
Þ

ð2ðn�pÞ�ðn�2pþ2Þ
n�p

Þ
¼

ðn�2
r�2

Þ
ðn�2
p�2

Þ
:

Set G :¼ fG 2 ð½n�
r
Þ: G � 9F 2 Fpg: Since G ¼ ðDn�rðFc

pÞÞ
c; we have jGj

ðn�2
r�2

Þ�15jFpjðn�2
p�2

Þ�1: Note that H :¼ ðF�FpÞ [ G is also 3-wise 2-
intersecting Sperner family, and the number of non-zero jHij’s is one less.
Therefore, by the induction hypothesis we have

Xk
i¼1

jFij
ðn�2
i�2

Þ
4
Xk
i¼1

jHij
ðn�2
i�2

Þ
41 þ d;

which completes the proof of the proposition. ]

Let us now prove Theorem 4. Let d > 0 be given. Suppose that F � 2½n� is
a 3-wise 2-intersecting Sperner family. We show jFj5ð1 þ dÞð n�2

dðn�2Þ=2eÞ for
n > n0ðdÞ: Set k :¼ b0:501nc: By Proposition 3, we have

1 þ d
2
>
Xk
i¼1

jFij
ðn�2
i�2

Þ
5
Xk
i¼1

jFij
ð n�2
dðn�2Þ=2eÞ

:

On the other hand, by the LYM inequality, we have

15
Xn
i¼kþ1

jFij
ðn
i
Þ 5

Xn
i¼kþ1

jFij
ð n
kþ1

Þ:

Therefore, we have

jFj4 1 þ d
2

� �
n� 2

dðn� 2Þ=2e

 !
þ

n

b0:501nc þ 1

 !
5ð1 þ dÞ

n� 2

dðn� 2Þ=2e

 !

for sufficiently large n:

6. PROOF OF THEOREM 5

An r-wise t-intersecting family F � 2½n� is called non-trivial if j
T

F2F F j
5t: Define

gw;r;tðnÞ :¼ maxfWwðFÞ: F � 2½n� is non-trivial r-wiset-intersectingg:

Proposition 4. gw;4;2ðnÞ40:999w2 if w40:5015:
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Proof. Let F � 2½n� be a 3-wise 2-intersecting family. In the proof of
Theorem 2, we checked the inequality WwðFÞ4w2: In exactly the same way,
we can check

WwðFÞ50:999w2 for w40:5015

in all cases but Case 2.
Now let F � 2½n� be a non-trivial 4-wise 2-intersecting family. We follow

the proof of Theorem 2 and all we have to deal with is only Case 2. Suppose
that there exist F1;F2;F2 such that F1 \ F2 \ F3 ¼ f1; 2g: Then every F 2 F
must contain f1; 2g; which is not possible because F is non-trivial. Thus, we
may assume that fF =f1; 2g : f1; 2g � F 2 Fg is 3-wise 1-intersecting. Then,
by Theorem 1, we have

WwðF12Þ4w3 for w42=3:

For F1%22;F%112;F%11%22; we use the same estimation in Case 2 of proof of
Theorem 2, but this time we redefine a 2 ð0; 1Þ as the unique root (in the
interval) of the equation ð1 � wÞx4 � xþ w ¼ 0: (cf. a � 0:543689 if
w ¼ 1=2:) Then, one can check in inequalities (2) and (3) that

WwðFÞ50:93w2 for w42=3:

This completes the proof. (Note that one can construct (see [9]) a non-
trivial 4-wise 2-intersecting family F � 2½n� with limn!1 WwðFÞ ¼ w2 if
w > 2=3:) ]

Proposition 5. Let F � ð½n�
k
Þ be a 4-wise 2-intersecting family with k=n

50:501; n > n0: Then, jFj4ðn�2
k�2

Þ: Moreover, if F is non-trivial, then jFj5
0:9999ðn�2

k�2
Þ:

Proof. The proof is similar to the proof of Theorem 3, and we give a
sketch here. Let F � ð½n�

k
Þ be a 4-wise 2-intersecting family. If F fixes 2-

element set, then jFj4ðn�2
k�2

Þ: So we may assume that F is non-trivial.
Suppose that jFj50:9999ðn�2

k�2
Þ; and set w :¼ 0:501; v :¼ 1 � w: We shall

derive a contradiction by constructing a non-trivial 4-wise 2-intersecting
family G � 2½n� with WwðGÞ > 0:999w2:

Choose e > 0 sufficiently small so that

0:9998ð1 � eÞ4 > 0:999; ð8Þ

0:5015ð1 � eÞw: ð9Þ

Define an open interval I :¼ ðð1 � eÞwn; ð1 þ eÞwnÞ: Choose n0 ¼ n0ðd; eÞ
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sufficiently large so that

X
i2I

n

i

 !
wivn�i > 1 � e for all n > n0; ð10Þ

e > 2=ðð1 � eÞwnÞ for all n > n0: ð11Þ

Set Fc :¼ f½n� � F : F 2 Fg and define

G :¼
[n�k

‘¼0

ðD‘ðFcÞÞc �
[n
i¼k

½n�
i

 ! !
:

Then G is a non-trivial 4-wise 2-intersecting family, and since k50:501n5
ð1 � eÞwn by (9), we have

WwðGÞ5
X
i2I

jDn�iðFcÞjwivn�i:

Lemma 7. jDn�iðFcÞj50:9998 n�2
n�i

� �
for i 2 I :

Proof. Let x ðx5n� 2Þ be a real satisfying jFj50:9999 n�2
k�2

� �
¼ x

n�k

� �
:

Then, by the Kruskal–Katona theorem, we have jDn�iðFcÞj5 x
n�i

� �
: To

prove x
n�i

� �
50:9998 n�2

n�i

� �
; it is sufficient to show

ð x
n�i

Þ
ð x
n�k

Þ5
0:9998ðn�2

n�i
Þ

0:9999ðn�2
n�k

Þ
;

or equivalently,

ði � 2Þ    ðk� 1Þ
ðx� nþ iÞ    ðx� nþ kþ 1Þ5

0:9998

0:9999
:

This is true, because LHS5ð i�2
x�nþi

Þi�k > 1 > RHS: This completes the proof
of the lemma. ]
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Therefore,

WwðGÞ50:9998
X
i2I

n� 2

n� i

 !
wivn�i ðby the lemmaÞ

¼ 0:9998
X
i2I

i

n
 i � 1

n� 1

n

i

 !
wivn�i

50:9998ð1 � eÞ3w2
X
i2I

n

i

 !
wivn�i ðby ð11ÞÞ

> 0:9998ð1 � eÞ4w2 ðby ð10ÞÞ

> 0:999w2 ðby ð8ÞÞ;

which is a contradiction. This completes the proof of Proposition 5.

For a family F � 2½n�; set Fi :¼ F \ ½n�
i

� �
: One can prove the next

proposition in the same way we proved Theorem 4. (The only difference is to
use Proposition 5 instead of Theorem 3.)

Proposition 6. Let F � 2½n� be a 4-wise 2-intersecting Sperner family

with k=n50:501; n > n0: Then
Pk

i¼1 jFij n�2
i�2

� ��1
41: Moreover, if F is non-

trivial, then
Pk

i¼1 jFij n�2
i�2

� ��1
50:9999:

Let us now prove Theorem 5. Let F � 2½n� be a 4-wise 2-inter-
secting Sperner family. First suppose that F fixes 2-element set, say
f1; 2g: Then G :¼ fF =f1; 2g : F 2 Fg � 2½3;n� is a Sperner family. Thus,
we have

jFj ¼ jGj4
n� 2

dðn� 2Þ=2e

 !
:

Next suppose that F is non-trivial. Set k :¼ b0:501nc: By Proposition 6,
we have

0:9999 >
Xk
i¼1

jFij
ðn�2
i�2

Þ
5
Xk
i¼1

jFij
ð n�2
dðn�2Þ=2eÞ

:

On the other hand, by the LYM inequality, we have

15
Xn
i¼kþ1

jFij
ðn
i
Þ 5

Xn
i¼kþ1

jFij
ð n
kþ1

Þ:
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Therefore, we have

jFj40:9999
n� 2

dðn� 2Þ=2e

 !
þ

n

b0:501nc þ 1

 !
5

n� 2

dðn� 2Þ=2e

 !

for sufficiently large n: This completes the proof of Theorem 5.
As for 3-wise case, compared to Proposition 6, we have a following

difficulty.

Example 1. Let w ¼ 1
2
þ e; k ¼ bwnc; and set A ¼ ½3; kþ 2�: Define a

non-trivial 3-wise 2-intersecting family Fn � ð½n�
k
Þ as follows:

Fn :¼ f1; 2g [ G : jG \ Aj5kþ 2

2
;G 2

½3; n�
k� 2

 !( )
[ fAg:

Then one has limn!1 jFnj=ðn�2
k�2

Þ ¼ 1:

If we take all superset of F 2 Fn; that is, Gn :¼ fG � ½n�: G � 9F 2 Fng;
then this family is clearly non-trivial 3-wise 2-intersecting. One can check
that limn!1 WwðGnÞ ¼ w2 for fixed w ¼ 1

2
þ e: Thus, Proposition 4 fails for

3-wise 2-intersecting family. However, we may still expect to refine Theorem
3 as follows:

Conjecture 2. Let F � ð½n�
k
Þ be a 3-wise 2-intersecting family with

k=n50:501; n > n0: Then jFj4ðn�2
k�2Þ:
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