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Let 7 and r be positive integers. Suppose that a family % C 2" satisfies |F; N
FKNFs|=2 for all F,F,,F;€%. We prove that if w<0.5018, then
S pes W= w)" Fl<u?. @ 2002 Blsevier Science (USA)
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1. INTRODUCTION

Let n,r and ¢ be positive integers. A family % of subsets of [n] =
{1,2,...,n} is called r-wise t-intersecting if |Fy N---N F,|>¢ holds for all
Fi,...,F. € Z.Forareal w € (0,1), let us define the weighted size W,,(%)
of & by

W (F) = Z wifl(1 — w11

FeF
Note that W) ,,(F) = |#|/2". Further, define
Swri(n) = max{W,(F): Z# c 2" is r-wise r-intersecting}.
Let us check

Swra(m)=w'. (1)
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Set o := {F C [n]: [f] C F}. Then & is r-wise t-intersecting for every r, and

Ww(g;(]) =w' Z W‘F‘(l _ W)”_t_lFl
FC[t+1,n]

n—t
n—t . e
=w' g ( . )w’(l —w)"T T =
, i
i=0

PrOBLEM 1. Does f,,,,(n) = w' hold if w<w(r,f) and r<2" —r —1?
For l-intersecting families, the authors proved the following in [8].
THEOREM 1. fi.1(n)=wifw<(r—1)/r.

On the other hand, for all 7>1 one has

lim f,,,(n) =1 if w>(r—1)/r.
n—oo

To obtain an exact formula for f,,,»(n) seems to be much harder. In this
paper, we shall prove

THEOREM 2. f,,32(n) = w? if w<0.5018.

This implies f,,,2(n) = w? if r=3 and w<0.5018, since w' <frurtr1a(n) <
Swri(n). Using Theorem 2, the following variation of the Erdés—Ko—Rado
theorem is deduced.

THEOREM 3. Let & C ([Z]) be a 3-wise 2-intersecting family with k/n<

0.501. Then | F|<(1+0(1))((73).

A family # c 21" is called a Sperner family if F ¢ G holds for all distinct
F,G € #. The maximum size of 2-wise t-intersecting Sperner families was

determined by Milner [18], it is given by the simple formula ([(n +”t) /ﬂ)’ For

3-wise t-intersecting families, the situation becomes more complicated.
For 3-wise l-intersecting families, it was the subject of several papers of
Frankl [3] and Gronau [10, 11, 12, 13] and it is known that for n> 53 the only
optimal families are

- {FU {n}: F e ([”n;;})} u{[n - 1]}, n even,

. -1
{Fu{n}: Fe <(n—1)/2)}’ n odd.



96 FRANKL AND TOKUSHIGE
This motivates the following conjecture.

Conjecture 1. Let & C 2" be a 3-wise 2-intersecting Sperner family.

Then,
( n—2 "
1I n even
(n-2))2 |
) (”_2 +2  if nodd
I n O
(n—1)/2

holds for n>ngy. The corresponding families are

{FU {n—1,n}: Fe <(n[n_—2)2]/2> }, n even,

. [n—2]
{FU {n—1,n}: F € ((nl)/Z) } U{ln—=13}U{n] — {n—1}},

N
Il

n odd.

Since F = (@) is 3-wise 2-intersecting Sperner and |#| = (§) > (§), we

need the condition n > ny in the above conjecture.
As an application of Theorem 3, we prove the following weaker result,
conjectured in [3].

THEOREM 4. Let F C 21" be a 3-wise 2-intersecting Sperner family. Then,
F1<(1+0() (1,32

Using the same technique, we can remove the above o(1) term for 4-wise
case as follows:

THEOREM 5. Let 7 C 2V be a 4-wise 2-intersecting Sperner family. Then,

|7 | < (((;1'1_2)2/20 holds for n > ny.

Note that the same upper bound is valid for r-wise 2-intersecting Sperner
families if r>4.
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2. TOOLS

2.1. Shifting

For integers 1<i<j<n and a family & C 2", define the (i, j)-shift Sj; as
follows:

Sj(F) = {Sy(F): Fe 7},
where

5(F) :{w—{j})u{i} if i¢g F, jeF, (F-{})U{i}¢ 7,

F otherwise.

A family # c 2" is called shifted if Si(F) = for all 1<i<j<n. We call
& co-complex if G D F €  implies G € Z. It is not difficult to check that
Suwra(n) (the maximal weighted size of r-wise r-intersecting families) is
attained by a shifted co-complex. See [6] for details.

Let us introduce a partial order in 2" by using shifting. Let 4, B C [n].
Define A > B if there exists 4’ C [n] such that A C 4’ and B is obtained by
repeating a shifting to 4’. The following fact is trivial but useful.

Fact 1. Let # C 21 be a shifted co-complex. If A € F and A> B, then
Be 7.

Let us see how to apply the above fact.

Fact 2. Let 7 C 2" be a 3-wise 2-intersecting shifted co-complex. Set
Go =1{1,3,4,6,7,...,30,3i+ 1,...} N [n]. Then, Gy & F.

Proof. Let us define G| and G, from Gy by applying a shifting, i.e.,
G, ={1,2,4,5,7,...,3i— 1,3i+1,...} n[n, and G, :={1,2,3,5/6,...,
3i—1,3i,...} N [n]. More visually,

Go={1-34-67-9...},
Gy ={12-45-78 - ...},
G, ={123-56-89-...}.
Then, Go NG NGy = {1} and Gy > G >G,. If Gy € #, then G|,G, € F

must hold by Fact 1. But this is impossible because % is 3-wise
2-intersecting. 1

In the same reason, an r-wise t-intersecting shifted co-complex cannot
contain the set [n] — {#,t+r, 1+ 2r,...}.
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2.2. Random Walk

Let w € (0,2/3) be a fixed real number, and let « € (0,1) be the root of
the equation (1 —w)x® —x+w =0, more explicitly, o =4(,/{=2x—1).

Consider the infinite random walk, starting from the origin, in which at each
step we move one unit up with probability w or move one unit right with
probability 1 — w. Then, the probability that we ever hit the line y = 2x + s
is given by o (see [4] or [6] for details).

Let F € # C 2. We define the corresponding (finite) walk to F, denoted
by walk(F), in the following way. If i € F (resp. i ¢ F), then we move
one unit up (resp. one unit right) at the ith step. Note that F>G means
walk(G) is in the upper left area than walk(F). (Draw walks corresponding
to Gy,G1,G, in Fact 2 then one may see the situation visually. This
visualization will be helpful to understand the computations in the proof of
Theorem 2.)

The following example shows how to use the random walk to bound the
weighted size of families.

FacT 3. Let # C 21" be 3-wise 2-intersecting shifted co-complex. Then,
W (F) <o

Proof. Set Go:=1{1,3,4,6,7,...,3i,3i+1,...} Nn[n]. Note that
walk(Gp) is the maximal walk which does not touch the line
£y =2x+2. We know that Gy ¢ Z by Fact 2. Thus, if G> Gy then G ¢
Z by Fact 1. In other words, for every F € &, walk(F) must touch the line
{. Therefore,

W,.(#)<Prob(a random walk of n-steps touches the line £)<o?. &

For an r-wise t-intersecting family, we consider the equation (1 —w)
X" —x+w=0, its root a, € (0,1), and the line y = (r — 1)x + ¢. Then the
weight of the family is at most a!.

2.3. Shadow

For a family # c 2" and a positive integer £<n, let us define the /th
shadow of #, denoted by 4,(F), as follows:

N(F) = {Ge (T); GcaFeff}.

Suppose that # C g’] and |7|=(})+(,*,) where meN, x€R,
t

k
x<m — 1. Then, by the Kruskal-Katona theorem [15, 16] and its Lovasz
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version [17], it follows that

|AM>|><’Z>+</1).

We shall use the above inequality to prove Theorem 3.
Let # C ([Z]) be a 2-wise r-intersecting family. Katona [14] found the
following bound for the ¢th shadow (1</<k):

4 ()

(G

We need the above inequality to prove Theorem 4. See [6] or [7] for the
detail of inequalities concerning the size of shadows.

3. PROOF OF THEOREM 2

Let # C 2/ be 3-wise 2-intersecting. Further, we assume that . is shifted
co-complex. Fix a constant w, 0 <w<0.5018. In this section, we write W ()

instead of W,,(7). Set o0 := (/1L — 1), v:=1 —w.
Let us define the following:

w(i) = {ii+ 1+ 3,440 +6,i+7,..} N[
In] — ([i1]u{i+3j+2:o<j<r_;_2”>,

P ={1,2} U *(i+4),

0; ={1,2,i+4} U=(i+06),

N

12 = {FEQ%I {1,2} CF},

5
Il
s
Mm
N

1 eF,2¢ F},

N
|
>
m
N

:1¢ F,2¢F},

N
!

={Fe7: 1¢F2¢F)}
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By definition, it follows that Py, > Q;>P;, |7 | = |F 12| + |7 5] + | F 1| +
‘g;ii' If {1,2}=P, 3%, then gz:{FC[l’l}Z {1,2} Cc F} and
W(#)=w?. From now on, we assume P, 3¢ % and we shall prove
W(F)<w?.

Case 1: Py ¢ 7. Note that walk(Py) is the maximal walk which does not
touch the line ¢: y = 2x + 3, because

Po=x(1)={12-45-78 .. .}.

Since Py ¢ 7, walk(F) must meet the line ¢ if F € #.
If F € 7, walk(F) starts with “up, up,” and then from (0,2) the walk
must meet the line /. Thus,

W (F12) <w? Prob(a random walk of n — 2 steps starting from

the origin, which touches the line y =2x+ 1)

2
< woa.

Since {1,3} U %(4) > =(1), we have {1,3} U % (4) ¢ & . The corresponding
walk to this set starts with “up, right,” then from (1, 1) this is the maximal
walk which does not touch the line ¢. So if F € 75, walk(F) starts with
“up, right,” then from (1, 1) the walk must meet £. Thus, W (% 5) <wve.

In the same way, since {2,3} U *(4) > =(1), we have {2,3} U x(4) ¢ 7
and W(Z1,) <vwo’. For the last case, we have {3,4,5,6} U =(7) ¢ # and
W(’g;ii) < V2o,

Therefore,

W(F) =W(F )+ W(F;5) + W(Fi) + W(F13)

< w4 2wve® + 7o <w?.

Case2: P,eF, P ¢F,i=1.

Case2.1: Q; ¢ F. Observe that walk(Q;) starts with “up, up,” and i + 1
“right,” then from (i + 1,2) this walk is the maximal walk which does not
touch the line £:y =2(x — (i + 1)) + 4.

Let F € 75, then walk(F) starts with “up, up.” If walk(F) passes the
point (i + 1,2), then this walk must meet the line ¢ after passing (i + 1,2).
This happens with probability at most w?v*!o?. Otherwise walk(F) must go
through one of (0,7 + 3),(1,i+2),...,(i,3). This happens with probability
w2 (1 — v*1). Thus, we have

W(gylz) <W2(Vi+1062 + (1 _ Vi+1))

= w1 — v (1 —o?)).
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Set
F=[1Li+3JU{i+6,i+9,i+12,...,4i,4i+ 3} U =(4i +5),
G:={1}U[3,4i +4]U =(4i +6).

Since P; € # and P;={l1,2} U *(i+4)>F, we have F € #. Note that

P,NFNG={1}. Thus, G¢ Z follows from the assumption that & is 3-
wise 2-intersecting. Therefore,

W(F 3) <wva ™3,
In the same way, we have W(Fi,)<wva**3. Next, set H := [3,4i+ 7] U
*(4i+9). Since P,NFN H = {4i+ 5}, we have H ¢ 7, which implies
W(/ ii)<v2a4i+6.
Therefore,

W(F)<w (1 — v — o)) + 2wve™ 4200 <2, (2)

s . ot i v(1—a?)
(This is equivalent to (‘) <SS O /W>2a3).)

Case 2.2: Q; € F. Since P;1 ¢ #, we have
W(F 1) <w? (Vo + (1 = v = w? (1 =1 —a)).

Set
F=[1i+3JU{i+5i+8i+11,...,4i+5}U=(4i+7),
G:={1}U[3,4i+ 6] U =(4i + 8).

Since Q; € # and Q;>F, we have F € #. Note that ;N FNG = {1}.

Thus, G ¢ & follows from the assumption that & is 3-wise 2-intersecting.
Therefore,

W (F 5) <wvoi,
In the same way, we have W(Zy,)<wva*5. Set H :=[3,4i+9]U =
(4i +11). Since ;N F N H = {4i+ 7}, we have H ¢ &, which implies
W(,/" Ii)<v2a4i+8'
Therefore,

W(F)<w (1 — v (1 = a)) + 2wvae®™ 4y 8 <2, (3)

(This is equivalent to (%)’<WW)

Now we may assume that Py € & and P, ¢ & .
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Case3: P ¢ F,Q0€ F.Set F:={1,2,3,5}U=(7), G:={1,3,4,5,6}
Ux(8). Since Qo € # and Qy > F, we have F € #. Note that Qo N F NG =
{1}. Thus, G ¢ #, and

W(F 5) <wva’.

In the same way, we have W(F;,)<wvo’. Next set H = {3,4,5,6,7} U
#(8). Since Qo N F N H = {7}, we have H ¢ %, which implies

W(F ) <viod.
Case 3.1: S :={1,2,5} U *(6) ¢ Z. Since S| ¢ 7, we have
W (T 12) W (W + 2wy + v?ot) =: Wy,
Therefore, we have
W(F)< W31 + 2wve® + e <w?,
Case 3.2: S, :=1{1,2,5,6,8,9} U %(10) ¢ #. Since S, ¢ #, we have
W(F 12) <w>(w° + 5wty 4+ 10w + wh (7 + 30°)
+ w24 368 + vl = .
Therefore, we have
W(F)< Wiy 4 2wve® + e <w?.

This is the hardest case and the above inequality fails if w>0.5019.

Case 3.3: 81,8, € Z. Set F:={1,2,3,4,8,9}U %(10), G :={1,3,4,5,
6,7,8} U *(11). Since S» € # and S, > F, we have F € . Note that S| N
FNG={l}and G¢ 7.

A walk corresponding to an edge in #; passes one of (1,8),
(2,7),...,(8,1). If the walk passes (i,9—1i) (2<i<8), then it must
meet the line y =2x+4 after passing (i,9 —i) because G ¢ . Thus,
we have

;
W(F 5) <wv <w7 + Z vi1¢’7ioc3i2>

i=1

7 7,21
vo(w! —v'a

=wy w7—|—<73> =: Wis.
w— vo.

In the same way, we have W (% 1,) < W33. Next set H := {3,4,5,6,7,8,9} U
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#(11). Since S; N FN H = {9}, we have H ¢ Z, which implies
W(F 35) <viod.
Finally, P, ¢ & implies
W(F 12) W (W + 2wy + v*o).
Therefore, we have

W(F)<wH(W? 4 2wy + o) + 2W33 + v2od <w?

Now we may assume Py € # and Qo ¢ .

Case 4 PyeF, Q¢ 7, R:={1,2,3}U=(6)€ #. First, Qo ¢ F
implies

W (F 12) <w? (w4 vo?).

Set G:={1,3,4}U=*(5), H:=1{3,4,5,6,7} U =(8). Since P)NRNG =
{1}, we have G ¢ #, which implies

W(F 5) <wva.

In the same way, we have W (F,) <wvo’. Since Py N RN H = {7}, we have
H ¢ 7 and

W(F i) <viod.
Therefore, we have

W(F)<w(w+ve®) 4 2wvee + v2o® <w?.

At this point, let us summarize what we have proved.

PROPOSITION 1.  Theorem 2 is true if Py ¢ F or Qo € F or {1,2,3} U
*(6) € F.

In order to prove the remaining cases, we need some preparations. For a
subset S C [5], let us define

F(S)={F—-S: FeZ Fn[5 =S8} c2e
F(S) = W(F(S)).
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If S>>, the shiftedness of # implies Z (S) C Z(S') (and f(S)<f(S")).
For simplicity, we write # (123), f(123) instead of # ({1,2,3}), f({1,2,3}).

LEmMMA 1. Let SC[5], |S|=3, and F:={1,3}U=(4). If F € F, then
f(8) <.

Proof. Set G :={1,2,4} U %(5), H :={1,2,3} U %(6). Since F € # and
F>G, we have G € #. Note that FNGN H = {1}. Thus, we have H ¢ #
and f(123)<o’. If Sc|[5 and |S|=3, then S>{1,2,3}. Thus,
f(8)</(123) <. 1

LEmMmaA 2. Let SC[5], |S|<3 and F:={1,3}U=(4). If F € Z, then
£(S) <a@-18D,

Proof. Similar as proof of Lemma 1. Use the fact that F € & implies
{1,2,6,7,8} U =(9)¢ 7, {1}U[6,11]U = (12) ¢ 7, [6,14]U =(15)¢ F. 1

LEMMA 3. Let SC[5] and |S|=3. If 2] ¢ S, then F(S) is 3-wise 3-
intersecting (on [6,n)).

Proof. By the shiftedness of &, it is sufficient to consider the case
S ={1,3,4}. Suppose, on the contrary, that Z(S) is not 3-wise
3-intersecting. Then, there exist T, 7>, T3 € Z(S) such that T/ N T, N T3 =
{x,»}. Set

Fio=1{1,3,4)UT,
Fy ={1,2,4,5} U (T, — {x}),
F; = {1727375}U(T3_{y})
Since SUT»,>F, and SU T3 > F3, we have F|,F,,F; € &, but FiNF,N

F; ={1}. This contradicts our assumption that & is 3-wise 2-inter-
secting. 1

Using the same approach, we can extend the above lemma as follows.

LemMMA 4. If 2] ¢ S C [5] and |S|<3, then F(S) is 3-wise 3(4 —|S|)-
intersecting (on [6,n]).

Now, let us leave the proof of Theorem 2 aside for a while, and
concentrate on the following stronger proposition.

PROPOSITION 2. Let % C 2" t>2 and w<0.5018. If 4 is 3-wise
t-intersecting, then W (%) <w?a'=2.
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Note that the case t = 2 in Proposition 2 is exactly Theorem 2. We prove
Proposition 2 by double induction on n and .

First, let us check the cases t<n<t+2.Set 9y :={G C [n]: [¢] C G}. Itis
easy to verify that if r<n<t+ 2, then

W(G)<W (%)) = w <w?a' 2,

Another initial step of the induction is the case 1 = 2, i.e., Theorem 2. But we
postpone this essential case, and check, in advance, that Theorem 2 actually
implies the induction step.

Assume that Proposition 2 is true for r=2. Let 4 C 2l be 3-wise
t-intersecting and 7>3. (We also assume that ¢ is shifted co-complex.)
Define %, %7 C 22" as follows:

g ={G-{1}:1€Geg},
4 ={Ge% 1¢9).

Note that %, is 3-wise (¢ — 1)-intersecting, and since ¥ is shifted, ¥; is 3-wise
(¢ + 2)-intersecting. Using the induction hypothesis, we have

W(9) =wW (%)) +vW(%;) <wa' > + o
= w3 (v + w) = wa' 2.

(Remember that « is a root of the equation vx* — x +w = 0.) This completes
the induction step for the proof of Proposition 2.

Consequently, all we have to do is to prove the case ¢t = 2 (Theorem 2) by
induction on n. So let us return to the proof of Theorem 2 again. But this
time, we can use the induction hypothesis of Proposition 2, i.e., we assume
that Proposition 2 is true for all (#/,¢) if /' <n' <n.

Lemma 5. If[2] ¢ S C [5] and |S| <3, then f(S) <w?a!073IS|,

Proof. By Lemma 4, 7 (S) C 21 is 3-wise 3(4 — |S|)-intersecting.
Using the induction hypothesis, we have W(Z(S))<w?ed@150-2 =
w2o 103181 g

Case 5: {1,3}U x(4) € 7. Let S C [5]. Define
F(S)={FeZ: FN[5] =58} c2l.

For S ={1,2,3},{1,2,4},{1,2,5}, we apply Lemma 1 and obtain f(S)<

o’. For the remaining seven 3-sets S, we use Lemma 5 and obtain
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f(S)<w?a. Thus, we have

Z W(F(S))< (30> + Twa) - wiv?.
ISI=3

Similarly,

(8)) < (a® 4+ 9w?a*) - w3,

g
X
§

In this way, we have

Z W(Z(S)) <3 + Tw?a) - w? + (o + 9nw?at) - w?y?
[S]<3
+ 5wla - wrt + w20y = Ws.

Case 5.1:  {2,3}U=(4) ¢ 7. Since f(2345)<o, we have Z‘S‘ _W(F(9))
< (4 +a)why. We also use £(12345)<1, i.e., W(F(S))<w’. Therefore, we
have

W(F) = Z W(F(S))<Ws + (4 + a)why + wd <w?.
Scls)

Case 5.2: {2,3}Ux(4) € # and {1,3,4,5 U x(8) ¢ Z. Set F¢:={H

€ ,/'(1345) 6€F}, Fg:={H c 7(1345): 6 ¢ F}. Then, we have W (Z¢)
<w’v and W(F ) <w*v?a. Thus, we have

W (F (1345)) <w*v (w + var).

We can apply the same thing to % (2345), because {2,3,4,5} U #(8) ¢ 7
follows from the shiftedness of #. Thus,

Z<2w w+voc)+3w v =: Ws,.
[S|=4

(The former corresponds to 1345, 2345, and the latter corresponds to 1234,
1235, 1245.) Therefore, we have

W(F)SWs+ Ws, + W < w?.

Case 5.3: {2,3}U=«(4) € # and {1,3,4,5} U %(8) € #. Since {2,3} U
#(4)>[2,7]U *(10) and

({1,3,4,5} U =(8)) N ([2,7]U =(10)) N ({1,2,3,6,7,8} U %(9)) = {3},
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we have {1,2,3,6,7,8} U %(9) ¢ #. This implies that f(S) <o if | S| = 3. If
|S| =2 and S#{1,2}, then we have f(S) <w?a* by Lemma 5. Thus, we have
W(F) <w?a® v+ 5w wvt 4+ (OwPat 4 of)w?y?
+ 1008 - wv? 4 Swhy + w’ <u?.

Case 6: {1,3}U =(4) ¢ . By using Proposition 1, we may assume that
R:=1{1,2,3} U %(6) ¢ #. This implies that

£(123), f(124), f(125) <.

Since {1,2,6,7,8} U %(9) > R, we have {1,2,6,7,8} U %(9) ¢ &, and thus,
f(12) <a®. Therefore, (using Lemma 5) we have

W(F) <w?a'® v 4+ 5wl - wvt + (9wt + of)w?y?

+ (w4 302 ) w3 + (4 + a)wy + w’ <w?.

This completes the proof of Proposition 2 and Theorem 2 at the same
time.

4. PROOF OF THEOREM 3

Let # C ([Z]) be a 3-wise 2-intersecting family. This family is clearly 2-wise
2-intersecting, too. Therefore, by the Erdos—Ko-Rado theorem (cf.
[1,2,5,19]) it follows that |97|<(Z:§) if n=3(k—1). So we may assume
that n<3k.

Let 6 > 0 be given. We shall prove | 7| < (1 + §)(}3) for sufficiently large
n. Set w := 0.5017 and v := 1 — w. By Theorem 2, we must have W,,(%) <w?
for any 3-wise 2-intersecting family ¢ c 2. Choose ¢ > 0 sufficiently small
so that

(1406/2)(1—¢)* > 1, (4)
0.501 < (1 — &)w. (5)

Define an open interval 7 := ((1 —¢)wn, (1 + ¢)wn). Choose ny = ny(0, ¢)
sufficiently large so that

Z(é)w"v”"> l—c¢ for all n > ny, (6)
i

icl

e>2/((1 —¢)wn) for all n > ny. (7)
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Let # C [”] be a 3-wise 2-intersecting family with 1/3<k/n<0.501.
Suppose that 7| =(140)(_ %) We shall derive a contradiction by
constructing a 3-wise 2-intersecting family ¢ C 2V with W, (%) > w?. Set

F¢:={[n] - F: F e Z}. Define
n—k n n
4= (7)) <c U <[i]>).
=0 i=k

n—k

Wu(9) =D |4u(F) w5

=0

_Z‘A"’ ‘w,l Ill

Then,

Since k<0.501n< (1 — &)wn by (5) and I C [k, n], we have

G) = Ay i(F) W

icl

LEMMA 6. [4,(F)|=(1+9)("3) fori e I.

Proof. Let x (x<n—3) be a real sa‘usfylng (,+ 1) =0("7)- Then,
7| =|F|=(1+0)(}3) = (= lzc) +( ) By the Kruskal-Katona
theorem, we have |4,_;(7)| = ("%) + (n * ). To prove (, % ) =3("73), it
is sufficient to show

or equivalently,

(i—2)--(k—1) >n—k
(x—n+i+1l)--(x—n+k+2)"2(n—i)

Let us check that LHS > 1 > RHS. Since LHS > (m)’ “*and x<n - 3,
we have LHS > 1. On the other hand, 1> RHS is equivalent to
(n+k)/2=i. Using n<3k and (5), we certainly have (n+k)/2>(n+
n/3)/2 =2n/3=(1 + ¢)wn>=i. This completes the proof of the lemma. 1
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By the lemma, we have

-3 (3 (f)er

ii—1 ><i— 1)22((1 —&)wn — 1)22(1 _8)2W2_2(1 —&)w

- =
nn—1 n n? n

= (1 —¢)*w? <1 ﬁ) > (1—¢)’w? (by (7).

Note that

Therefore,

W (%) = <1+5> — 3 2;( )w -

> (1 +g> (1—¢)*w?>  (by (6))
>w? o (by (4)),

which is a contradiction. This completes the proof of Theorem 3.

5. PROOF OF THEOREM 4

For a family # c 2V, set 7, = 7 N ([’i’]). First, we prove the following
version of the Erdés—Ko—Rado theorem (see [3] for 3-wise l-intersecting
families).

PrOPOSITION 3. Let /, c 2 be a 3 wise 2-intersecting Sperner family
with k/n<0.501. Then, Y5 |7:|(""3) " <1+ o(1).

Proof. Let 6 >0 be given. We prove Zf;l |9'*i|(’}:§)71 <1+ for n>
no(0) by induction on the number of non-zero |Z|’s.

If this number is one, then the inequality follows from Theorem 3. If it is
not the case, then let p be the smallest and r the second-smallest index for
which | 7,|#0. Set 7 := {[n] — F: F € #,}. Then, 7, C (")) is (2-wise)
(n — 2p + 2)-intersecting. By the Katona’s shadow theorem for intersecting
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family (see Section 2.3), we have

| I G i) W
‘97;| (2(71*P);£71p*2p+2)) (Z:g)

Set. 4 :={G € ("Y: G >3F € 7,}. Since ¥ = (An,,.(gr;;))", we have |9
(”72) =70 ﬁ)71. Note that # :=(F —F,)U% is also 3-wise 2-
intersecting Sperner family, and the number of non-zero |#|’s is one less.

Therefore, by the induction hypothesis we have

S s

i=1

which completes the proof of the proposition. 1

Let us now prove Theorem 4. Let 6 > 0 be given. Suppose that # C 2" is

a 3-wise 2-intersecting Sperner family. We show |#|< (1 + 5)( n” 22/2]) for

n > ny(0). Set k := 0.501xn]. By Proposition 3, we have

On the other hand, by the LYM inequality, we have

|7 |7 |
=Y (4)>Z Ty
i i=, k+1

i=k+1

Therefore, we have

g 0 n—2 n n—2
|‘/|<<1+2><[(n_2)/2]> * <L0.501nj+1><(1+5)<[(n—2)/2]>

for sufficiently large n.

6. PROOF OF THEOREM 5

An r-wise t-intersecting family # C 2" is called non-trivial if |(\pcs F|
<t. Define

Guri(n) = max{W,(7): # c 21" is non-trivial r-wisez-intersecting}.

PROPOSITION 4. g,,42(n) <0.999w? if w<0.5015.
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Proof. Let # C 2l be a 3-wise 2-intersecting family. In the proof of
Theorem 2, we checked the inequality W, (%) <w?. In exactly the same way,
we can check

W, (7)<0.999w*  for w<0.5015

in all cases but Case 2.

Now let # C 21" be a non-trivial 4-wise 2-intersecting family. We follow
the proof of Theorem 2 and all we have to deal with is only Case 2. Suppose
that there exist Fy, F>, F» such that F; N F, N F3 = {1,2}. Then every F € #
must contain {1,2}, which is not possible because # is non-trivial. Thus, we
may assume that {F\{1,2}:{1,2} C F € #} is 3-wise l-intersecting. Then,
by Theorem 1, we have

I/VW(?IZ)<W3 for w<2/3.

For % 5,%1,, %13, we use the same estimation in Case 2 of proof of
Theorem 2, but this time we redefine « € (0,1) as the unique root (in the
interval) of the equation (I —w)x* —x+w=0. (cf. = 0.543689 if
w = 1/2.) Then, one can check in inequalities (2) and (3) that

W, (7)<093w?  for w<2/3.

This completes the proof. (Note that one can construct (see [9]) a non-
trivial 4-wise 2-intersecting family . c 20" with lim, . W,(%) = if
w>2/3) 1

PROPOSITION 5. Let # C ( ) be a 4-wise 2-intersecting family with k/n
<0.501, n > ng. Then, |F|< (]~ 2) Moreover, if F is non-trivial, then |7 | <
0. 9999(" 2

Proof. The proof is s1m1lar to the proof of Theorem 3, and we give a
sketch here. Let 7 C ( )) be a 4-wise 2-intersecting family. If .7 fixes 2-
element set, then |/|<(Z %) So we may assume that # is non-trivial.
Suppose that [#]>0.9999(}73), and set w:=0.501, v:=1—w. We shall
derive a contradiction by constructing a non-trivial 4-wise 2-intersecting
family ¥ c 21 with W,,(%9) > 0.999n?.

Choose ¢ > 0 sufficiently small so that

0.9998(1 — £)* > 0.999, (8)

0.501 < (1 —¢&)w. 9)

Define an open interval 7 := ((1 —¢&)wn, (1 +¢)wn). Choose ny = ny(0, ¢)
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sufficiently large so that

iel

n . .
Z ( _>WIV”_[ > 1 —¢ fOI' all n> Ny, (10)
1

e>2/((1 —¢)wn) for all n > ny. (11)

Set 7€ :={[n] — F: F € #} and define

n—k
4= (7)) <c

Then ¥ is a non-trivial 4-wise 2-intersecting family, and since k£ <0.501n<
(1 —&)wn by (9), we have

IC-
/
-~
N——
\./

Z [Ap—i( |w’ i

iel

LEMMA 7. [4,—(F€)|>0.9998 (") for i € I.

Proof. Let x (x<n—2) be a real satisfying |#]>0.9999(;73) = (,*,)-

n—k

Then, by the Kruskal-Katona theorem, we have |4,_(7°)|=(,",). To
prove (,*)>0.9998(""%), it is sufficient to show

(,0)  0-9998(, )
(0~ 0.9999("2)’

or equivalently,

(i—=2)---(k—1) _0.9998
(x—n+i)---(x—n+k+1)"0.9999

This is true, because LHS > (< =¥ > 1 > RHS. This completes the proof

of the lemma. 1

X— n+1)
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Therefore,

-2\ .
W (%) >20.9998 Z <n >w’v”_’ (by the lemma)

iel n—i

wipt=i
iel

>0.9998(1 — ¢)° 22( >w - (by (11))

iel

>0.9998(1 —¢)*w?  (by (1
> 099>  (by (8)),

which is a contradiction. This completes the proof of Proposition 5.

For a family # c 2V, set 7, = 7 N [” . One can prove the next
proposition in the same way we proved Theorem 4. (The only difference is to
use Proposition 5 instead of Theorem 3.)

PROPOSITION 6. Let 7 C 2! be a 4-wise % intersecting Sperner family
with k/n<0.501, n > ny. Then Z, Zil(023) <1. Moreover, if F is non-
trivial, then Z_l |71 (173) " <0.9999.

Let us now prove Theorem 5. Let # C 2" be a 4-wise 2-inter-

secting Sperner family. First suppose that # fixes 2-element set, say
{1,2}. Then % :={F\{1,2}:F € #} c 2B/ is a Sperner family. Thus,

we have
F=1e<(, "2
-\ [e=2)/21 )

Next suppose that # is non-trivial. Set k := |0.501#n]. By Proposition 6,
we have

k |e?7!| k z
0.9999 > Z Z —
=00 T ()

NN

—~
NS

On the other hand, by the LYM inequality, we have

n

>3 67 2

i=k+1 i=k+1 \k+1
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Therefore, we have

for

n—2

Fl<oo9 " )4+ . <
[(n—2)/2] 10.501n] + 1 [(n—2)/2]

sufficiently large n. This completes the proof of Theorem 5.

As for 3-wise case, compared to Proposition 6, we have a following
difficulty.

EXAMPLE 1. Let w=14+¢, k= |wn], and set 4 = [3,k+ 2]. Define a
non-trivial 3-wise 2-intersecting family %, C ([Z]) as follows:

k+2 [3,7]

F= {12 UG GnAI>= = Ge | T | ruid)

Then one has lim,_, \9*’,4/(,’1:%) =1.

If we take all superset of F € &, thatis, 4, := {G C [n]: G D Ir € F,},
then this family is clearly non-trivial 3-wise 2-intersecting. One can check

tha

t lim, .o W,,(%,) = w? for fixed w = % + &. Thus, Proposition 4 fails for

3-wise 2-intersecting family. However, we may still expect to refine Theorem
3 as follows:

Conjecture 2. Let F C (Z) be a 3-wise 2-intersecting family with
k/n<0.501, n > ny. Then |Z|<(}73).

1.
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