Extremal k-edge-hamiltonian Hypergraphs

Péter Frankl

CNRS, 75006 Paris, France

Gyula Y. Katona

Department of Computer and Information Sciences, Technical Univ. of Budapest, Hungary, kiskat@cs.bme.hu

Abstract

An r-uniform hypergraph is k-edge-hamiltonian iff it still contains a hamiltonian chain after deleting any k edges of the hypergraph. What is the minimum number of edges in such a hypergraph? We give lower and upper bounds for this question for several values of r and k.

Key words: k-edge-hamiltonian, hamiltonian cycle, hypergraph

1 Introduction

Let \mathcal{H} be a r-uniform hypergraph on the vertex set $V(\mathcal{H}) = \{v_1, v_2, \dots, v_n\}$ where n > r. For simplicity of notation v_{n+x} with $x \geq 0$ denotes the same vertex as v_x (unless stated otherwise). The set of the edges, r-element subsets of V, is denoted by $\mathcal{E}(\mathcal{H}) = \{E_1, E_2, \dots, E_m\}$. We will write simply V for $V(\mathcal{H})$ and \mathcal{E} for $\mathcal{E}(\mathcal{H})$ if no confusion can arise.

In [1] the authors defined the notion of a hamiltonian-chain.

Definition 1 A cyclic ordering (v_1, v_2, \ldots, v_n) of the vertex set is called a hamiltonian chain iff for each $1 \leq i \leq n$ $\{v_i, v_{i+1}, \ldots, v_{i+r-1}\} =: E_j$ is an edge of \mathcal{H} . An ordering $(v_1, v_2, \ldots, v_{l+1})$ of a subset of the vertex set is called an open chain of length l between v_1 and v_{l+1} iff for each $1 \leq i \leq l-r+2$ there exists an edge E_j of \mathcal{H} such that $\{v_i, v_{i+1}, \ldots, v_{i+r-1}\} = E_j$. An open chain of length n-1 is an open hamiltonian chain. A cyclic ordering (v_1, v_2, \ldots, v_l) of a subset of the vertex set is called a chain of length l iff for every $1 \leq i \leq l$ there exists an edge E_j of \mathcal{H} such that $\{v_i, v_{i+1}, \ldots, v_{i+r-1}\} = E_j$. (Now v_{l+x} denotes the same vertex as v_x).

Definition 2 A hypergraph is hamiltonian if it contains a hamiltonian-chain and it is k-edge-hamiltonian if by the removal of any k edges a hamiltonian hypergraph is obtained.

The notion of the degree is also extended, it is defined below in full generality, however, only some special cases will be used.

Definition 3 The degree of a fixed l-tuple of distinct vertices, $\{v_1, v_2, \ldots, v_l\}$, in a r-uniform hypergraph is the number of edges of the hypergraph containing the set $\{v_1, v_2, \ldots, v_l\}$. It is denoted by $d_r(v_1, v_2, \ldots, v_l)$. Furthermore $\delta_r^{(l)}(\mathcal{H})$ denotes the minimum of $d_r(v_1, v_2, \ldots, v_l)$ over all l-tuples of vertices in \mathcal{H} . The neighbourhood of a vertex v is defined by

$$N_{\mathcal{H}}(v) := \{E - \{v\} \mid v \in E, E \in \mathcal{E}(\mathcal{H})\}.$$

The main aim of the present article is to investigate minimum size k-edge-hamiltonian hypergraphs. In [2,3] the authors settle this question for graphs.

Theorem 4 [2,3] The number of edges in a minimum k-edge-hamiltonian graph on $n \ge k + 3$ vertices is $\lceil n(k+2)/2 \rceil$.

Since the degree of any vertex in a r-uniform hamiltonian chain is r, the minimum degree in a k-edge-hamiltonian hypergraph is at least r+k, so the number of edges is at least $\lceil n(r+k)/r \rceil$. For r=2 this shows that the constructions in the above theorem are best possible. However, for r>2 this lower bound is not best possible.

2 3-uniform hypergraphs

If a hypergraph contains k+1 edge-disjoint hamiltonian chains, then it is clearly k-edge-hamiltonian. This observation leads to the trivial upper bound on the minimum number of edges: (k+1)n. If k=1 then the following slightly better upper bound is obtained.

Theorem 5 There exists a 1-edge-hamiltonian 3-uniform hypergraph $\mathcal H$ on n vertices with

$$|\mathcal{E}(\mathcal{H})| = \frac{11}{6}n + o(n).$$

PROOF: We present only the construction due to space limitation. Let $\mathcal{V}(\mathcal{H}) := \{w_1, \dots, w_p, v_1, \dots, v_q\}$ where $p = \lceil n/6 \rceil$ and q = n - p. There are

two types of edges in \mathcal{H} . The first kind of edges form a chain on $\{v_1, \ldots, v_q\}$,

$$\mathcal{E}_1(\mathcal{H}) := \{ \{ v_i, v_{i+1}, v_{i+2} \} \mid 1 \le i \le q \}.$$

The second kind connects the rest of the vertices to this chain:

$$\mathcal{E}_2(\mathcal{H}) := \left\{ \{ w_i, v_{5(i-1)+j}, v_{5(i-1)+j+1} \} \mid 1 \le i \le p, 1 \le j \le 6 \right\}.$$

This means that the neighbouhood of w_i is an ordinary graph, a path of length 6 formed by vertices $v_{5(i-1)+1}, \ldots, v_{5(i-1)+7}$. The neighbourhood of w_{i+1} is also a path of length 6, which begins at $v_{5(i-1)+6}$, so $v_{5(i-1)+6}, v_{5(i-1)+7} \in N(w_i) \cap N(w_{i+1})$ (except maybe for $N(w_1)$ and $N(w_p)$ where the overlap is larger if $6 \not| n$). Let $\mathcal{E}(\mathcal{H}) := \mathcal{E}_1(\mathcal{H}) \cup \mathcal{E}_2(\mathcal{H})$, then it is clear that $|\mathcal{E}(\mathcal{H})| = q + 6p = n + 5 \lceil n/6 \rceil = 11n/6 + o(n)$. (See Fig. 1.)

Fig. 1. 3-uniform 1-edge-hamiltonian hypergraph

It is not too difficult to show that this hypergraph is 1-edge-hamiltonian.

Theorem 6 For any 1-edge-hamiltonian 3-uniform hypergraph \mathcal{H} on n

$$|\mathcal{E}(\mathcal{H})| \ge \frac{14}{9}n$$

holds.

Theorem 7 There exists a 2-edge-hamiltonian 3-uniform hypergraph $\mathcal H$ on n vertices with

$$|\mathcal{E}(\mathcal{H})| = \frac{13}{5}n + o(n).$$

Conjecture 8 For any k-edge-hamiltonian 3-uniform hypergraph $\mathcal H$ on n vertices

$$|\mathcal{E}(\mathcal{H})| \ge \frac{k + 2\sqrt{k} + o(k)}{3}n.$$

holds.

The above conjecture is proved for k = 2, 3, 4, 5.

References

- [1] G. Y. Katona, H. A. Kierstead Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999), no. 3, pp. 205–212.
- [2] W. W. Wong, C. K. Wong Minimum k-Hamiltonian graphs, J. Graph Theory 8 (1984), no. 1, 155–165.
- [3] M. Paoli, W. W. Wong, C. K. Wong Minimum k-Hamiltonian graphs. II. J. Graph Theory 10 (1986), no. 1, 79–95.