Extremal k-edge-hamiltonian Hypergraphs

Péter Frankl, ${ }^{\text {a }}$ Gyula Y. Katona ${ }^{\text {b }}{ }^{1}$
${ }^{\text {a }}$ CNRS, 75006 Paris, France
${ }^{\mathrm{b}}$ Department of Computer and Information Sciences, Technical University of Budapest, 1521, P. O. B.: 91, Hungary

Abstract

An r-uniform hypergraph is k-edge-hamiltonian iff it still contains a hamiltonian chain after deleting any k edges of the hypergraph. What is the minimum number of edges in such a hypergraph? We give lower and upper bounds for this question for several values of r and k.

Key words: k-edge-hamiltonian, hamiltonian cycle, hypergraph

1 Introduction

Let \mathcal{H} be a r-uniform hypergraph on the vertex set $V(\mathcal{H})=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $n>r$. For simplicity of notation v_{n+x} with $x \geq 0$ denotes the same vertex as v_{x} (unless stated otherwise). The set of the edges, r-element subsets of V, is denoted by $\mathcal{E}(\mathcal{H})=\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$. We will write simply V for $V(\mathcal{H})$ and \mathcal{E} for $\mathcal{E}(\mathcal{H})$ if no confusion can arise.

In [1] the authors defined the notion of a hamiltonian-chain.
Definition 1 A cyclic ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of the vertex set is called a hamiltonian chain iff for each $1 \leq i \leq n \quad\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}=: E_{j}$ is an edge of \mathcal{H}. An ordering $\left(v_{1}, v_{2}, \ldots, v_{l+1}\right)$ of a subset of the vertex set is called an open chain of length l between v_{1} and v_{l+1} iff for each $1 \leq i \leq l-r+2$ there exists an edge E_{j} of \mathcal{H} such that $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}=E_{j}$. An open chain of length $n-1$ is an open hamiltonian chain. A cyclic ordering $\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ of a subset of the vertex set is called a chain of length l iff for every $1 \leq i \leq l$

[^0]there exists an edge E_{j} of \mathcal{H} such that $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\}=E_{j}$. (Now v_{l+x} denotes the same vertex as v_{x}).

Definition 2 A hypergraph is hamiltonian if it contains a hamiltonian-chain and it is k-edge-hamiltonian if by the removal of any k edges a hamiltonian hypergraph is obtained.

The notion of the degree is also extended, it is defined below in full generality, however, only some special cases will be used.

Definition 3 The degree of a fixed l-tuple of distinct vertices, $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$, in a r-uniform hypergraph is the number of edges of the hypergraph containing the set $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. It is denoted by $d_{r}\left(v_{1}, v_{2}, \ldots, v_{l}\right)$. Furthermore $\delta_{r}^{(l)}(\mathcal{H})$ denotes the minimum of $d_{r}\left(v_{1}, v_{2}, \ldots, v_{l}\right)$ over all l-tuples of vertices in \mathcal{H}. The neighbourhood of a vertex v is defined by

$$
N_{\mathcal{H}}(v):=\{E-\{v\} \mid v \in E, E \in \mathcal{E}(\mathcal{H})\} .
$$

The main aim of the present article is to investigate minimum size k-edgehamiltonian hypergraphs. In $[2,3]$ the authors settle this question for graphs.

Theorem 4 [2,3] The number of edges in a minimum k-edge-hamiltonian graph on $n \geq k+3$ vertices is $\lceil n(k+2) / 2\rceil$.

Since the degree of any vertex in a r-uniform hamiltonian chain is r, the minimum degree in a k-edge-hamiltonian hypergraph is at least $r+k$, so the number of edges is at least $\lceil n(r+k) / r\rceil$. For $r=2$ this shows that the constructions in the above theorem are best possible. However, for $r>2$ this lower bound is not best possible.

2 3-uniform hypergraphs

If a hypergraph contains $k+1$ edge-disjoint hamiltonian chains, then it is clearly k-edge-hamiltonian. This observation leads to the trivial upper bound on the minimum number of edges: $(k+1) n$. If $k=1$ then the following slightly better upper bound is obtained.

Theorem 5 There exists a 1-edge-hamiltonian 3-uniform hypergraph \mathcal{H} on n vertices with

$$
|\mathcal{E}(\mathcal{H})|=\frac{11}{6} n+o(n) .
$$

PROOF. We present only the construction due to space limitation. Let $\mathcal{V}(\mathcal{H}):=\left\{w_{1}, \ldots, w_{p}, v_{1}, \ldots, v_{q}\right\}$ where $p=\lceil n / 6\rceil$ and $q=n-p$. There are two types of edges in \mathcal{H}. The first kind of edges form a chain on $\left\{v_{1}, \ldots, v_{q}\right\}$,

$$
\mathcal{E}_{1}(\mathcal{H}):=\left\{\left\{v_{i}, v_{i+1}, v_{i+2}\right\} \mid 1 \leq i \leq q\right\} .
$$

The second kind connects the rest of the vertices to this chain:

$$
\mathcal{E}_{2}(\mathcal{H}):=\left\{\left\{w_{i}, v_{5(i-1)+j}, v_{5(i-1)+j+1}\right\} \mid 1 \leq i \leq p, 1 \leq j \leq 6\right\} .
$$

This means that the neighbouhood of w_{i} is an ordinary graph, a path of length 6 formed by vertices $v_{5(i-1)+1}, \ldots, v_{5(i-1)+7}$. The neighbourhood of w_{i+1} is also a path of length 6 , which begins at $v_{5(i-1)+6}$, so $v_{5(i-1)+6}, v_{5(i-1)+7} \in$ $N\left(w_{i}\right) \cap N\left(w_{i+1}\right)$ (except maybe for $N\left(w_{1}\right)$ and $N\left(w_{p}\right)$ where the overlap is larger if $6 \nmid n)$. Let $\mathcal{E}(\mathcal{H}):=\mathcal{E}_{1}(\mathcal{H}) \cup \mathcal{E}_{2}(\mathcal{H})$, then it is clear that $|\mathcal{E}(\mathcal{H})|=$ $q+6 p=n+5\lceil n / 6\rceil=11 n / 6+o(n)$. (See Fig. 1.)

Fig. 1. 3-uniform 1-edge-hamiltonian hypergraph
It is not too difficult to show that this hypergraph is 1-edge-hamiltonian.

Theorem 6 For any 1-edge-hamiltonian 3-uniform hypergraph \mathcal{H} on n vertices

$$
|\mathcal{E}(\mathcal{H})| \geq \frac{14}{9} n
$$

holds.
Theorem 7 There exists a 2-edge-hamiltonian 3-uniform hypergraph \mathcal{H} on n vertices with

$$
|\mathcal{E}(\mathcal{H})|=\frac{13}{5} n+o(n) .
$$

Conjecture 8 For any k-edge-hamiltonian 3-uniform hypergraph \mathcal{H} on n vertices

$$
|\mathcal{E}(\mathcal{H})| \geq \frac{k+2 \sqrt{k}+o(k)}{3} n .
$$

holds.
The above conjecture is proved for $k=2,3,4,5$.

3 1-edge-hamiltonian hypergraphs

Theorem 9 There exists a 1-edge-hamiltonian r-uniform hypergraph \mathcal{H} on n vertices with

$$
|\mathcal{E}(\mathcal{H})|=\frac{4 r-1}{2 r} n+o(n) .
$$

Theorem 10 For any 1-edge-hamiltonian 4-uniform hypergraph \mathcal{H} on n vertices

$$
|\mathcal{E}(\mathcal{H})| \geq \frac{3}{2} n
$$

holds.

4 An application

Theorem 11 If a 3-uniform hypergraph \mathcal{H} on n vertices has no hamiltonian chain then

$$
|\mathcal{E}(\mathcal{H})| \leq\binom{ n}{3}\left(1-\frac{12}{11 n}\right)
$$

holds.

References

[1] G. Y. Katona, H. A. Kierstead - Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999), no. 3, pp. 205-212.
[2] W. W. Wong, C. K. Wong - Minimum k-Hamiltonian graphs, J. Graph Theory 8 (1984), no. 1, 155-165.
[3] M. Paoli, W. W. Wong, C. K. Wong - Minimum k-Hamiltonian graphs. II. J. Graph Theory 10 (1986), no. 1, 79-95.

[^0]: ${ }^{1}$ Supported by the Japan Society for the Promotion of Science and by Hungarian National Foundation for Scientific Research, OTKA Grant Number T 030059.

