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THE ERDŐS–KO–RADO THEOREM FOR INTEGER SEQUENCES

PETER FRANKL AND NORIHIDE TOKUSHIGE

Received January 26, 1998

For positive integers n,q, t we determine the maximum number of integer sequences
(a1, . . .,an) which satisfy 1 ≤ ai ≤ q for 1 ≤ i ≤ n, and any two sequences agree in at least t
positions. The result gives an affirmative answer to a conjecture of Frankl and Füredi.

1. Introduction

Let n,q,t be positive integers with q ≥ 2, n ≥ t, and let [q] := {1,2, . . . ,q}. Then
H ⊂ [q]n is a set of integer sequences (a1, . . . ,an), 1 ≤ ai ≤ q. We say that H is
t-intersecting if any two sequences intersect in at least t positions, more precisely,
|{i : ai = a′i}| ≥ t holds for all (a1, . . . ,an), (a′1, . . . ,a

′
n) ∈ H. In this paper, we

determine the exact value of the following function.

f(n, q, t) := max{|H| : H ⊂ [q]n, H is t-intersecting}.

A family A⊂2[n] is called t-intersecting if |A∩A′|≥ t holds for all A,A′∈A. Define
a weighted size of A by w(A) :=

∑
A∈A(q−1)n−|A|. Using a shifting technique, it

is not difficult to check the following:

Lemma 1. (Proposition 2 in [5].) f(n,q,t) = maxAw(A), where A⊂2[n] runs over
all t-intersecting families.

If q = 2 then w(A) = |A|. Thus, f(n,2, t) is simply the maximal size of t-
intersecting family A⊂2[n], which is given by the Katona Theorem. This case was
solved by Kleitman [7].

Let us define a t-intersecting family Ar⊂2[n] by

Ar := {A ⊂ [n] : |A ∩ [t+ 2r]| ≥ t+ r}.
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In [5], Frankl and Füredi conjectured f(n,q,t)=maxr≥0w(Ar). If q≥ t+1 then the
conjecture claims f(n,q,t)=qn−t. They showed that this is true if t≥15.

Now we introduce the full Erdős–Ko–Rado theorem, which was conjectured by
Frankl in [4], and proved by Ahlswede and Khachatrian in [1]. Set

AK(n, k, t, r) := |{B ∈
(

[n]
k

)
: |B ∩ [t+ 2r]| ≥ t+ r}|.

Theorem 1. ([1]) Let 1≤ t≤k≤n and B⊂
([n]
k

)
be t-intersecting. If

(k − t+ 1)
(

2 +
t− 1
r + 1

)
≤ n ≤ (k − t+ 1)

(
2 +

t− 1
r

)
for some r∈N, then |B|≤AK(n,k,t,r).

Using the above result, we prove the following in section 2.

Theorem 2. Let q≥3 and set r :=
⌊
t−1
q−2

⌋
. Then f(n,q,t)=w(Ar) for n≥ t+2r.

Note that

w(Ar) =
n−t−2r∑
j=0

t+2r∑
i=t+r

(
t+ 2r
i

)(
n− t− 2r

j

)
(q − 1)n−i−j

=
n−t−2r∑
j=0

(
n− t− 2r

j

)
(q − 1)n−t−2r−j

t+2r∑
i=t+r

(
t+ 2r
i

)
(q − 1)t+2r−i

= qn−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i.(1)

In section 3, we prove the case q≥ t+1 (and t≥1) directly.
Independently, Ahlswede and Khachatrian [2] obtained Theorem 2 as a dia-

metric theorem in Hamming spaces. They used a different method. See [6] or [2]
for the history of the problem.

2. Proof of the theorem

Throughout this section, we fix q and t and set

r :=
⌊
t− 1
q − 2

⌋
=
t− 1
q − 2

− δ.

Let us recall the following easy probabilistic result.
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Lemma 2. (Proposition 3 in [5].) For every ε > 0 the number of sequences
(a1, . . . ,an)∈ [q]n which contain more than (1+ε)(n/q) 1’s or less than (1−ε)(n/q)
1’s is less than εqn for n>n0(ε).

Choose any sufficiently small positive ε, i.e., 0< ε< ε0(q,t), and set an open
interval I :=((1−ε)(n/q),(1+ε)(n/q)). In view of Lemma 1, f(n,q,t)q−n=w(A)q−n
for some t-intersecting family A. Moreover Lemma 2 gives that

f(n, q, t)q−n < w(B)q−n + ε

where B :={B∈A : |B|∈I}. Set B(k) :={B∈B : |B|=k}.
Case I. 0<δ<1.
Note that δ depends only on t and q.

Lemma 3. For k∈I and sufficiently large n,

(2) (k − t+ 1)
(

2 +
t− 1
r + 1

)
≤ n ≤ (k − t+ 1)

(
2 +

t− 1
r

)

Proof. (2) is equivalent to

(3) (2 + (t− 1)/r)−1n+ t− 1 ≤ k ≤ (2 + (t− 1)/(r + 1))−1n+ t− 1

Let us show the right half. Since k<(1+ε)(n/q), it is sufficient to show

(1 + ε)(n/q) ≤ (2 + (t− 1)/(r + 1))−1n+ t− 1

or
(1 + ε)(2 + (t− 1)/(r + 1)) < q.

This follows from q=2+(t−1)/(r+δ)>2+(t−1)/(r+1) and ε<ε0(q,t). One can
prove the left half of (3) similarly.

Thus, by the Ahlswede–Khachatrian theorem we have |B(k)| ≤ AK(n,k,t,r).
Therefore,

f(n, q, t)q−n < q−n
∑
k∈I

w(B(k)) + ε

≤ q−n
∑
k∈I

AK(n, k, t, r)(q − 1)n−k + ε

= q−n
∑
k∈I

t+2r∑
j=t+r

(
t+ 2r
j

)(
n− t− 2r
k − j

)
(q − 1)n−k + ε

< q−n
t+2r∑
j=t+r

(
t+ 2r
j

) n−t−2r+j∑
k=j

(
n− t− 2r
k − j

)
(q − 1)n−k + ε
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= q−n
t+2r∑
j=t+r

(
t+ 2r
j

) n−t−2r∑
i=0

(
n− t− 2r

i

)
(q − 1)(n−t−2r)−i(q − 1)t+2r−j + ε

= q−n
t+2r∑
j=t+r

(
t+ 2r
j

)
qn−t−2r(q − 1)t+2r−j + ε

= q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i + ε.

Hence we have

(4) g(q, t) := lim
n→∞

f(n, q, t)q−n ≤ q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i.

On the other hand, (1) implies

(5) g(q, t) ≥ q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i.

By (4) and (5), we finally have

g(q, t) = q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i.

Now suppose that for some t-intersecting family A ⊂ 2[n] we have w(A) ≥
qng(q,t)+1. Since f(n+1,q, t)≥qf(n,q,t) we have

f(n′, q, t) ≥ qn′−nf(n, q, t) ≥ qn′−nw(A) ≥ qn′(g(q, t) + q−n),

which implies limn′→∞ f(n′,q, t)q−n
′≥g(q,t)+q−n>g(q,t), a contradiction. Thus

we must have w(A)≤qng(q,t), and actually w(Ar)=qng(q,t). (We need n≥ t+2r
here.) This completes the proof of Case I.

Case II. δ=0.
In this case, we have q=2+ t−1

r .

Lemma 4. For k∈I and sufficiently large n,

(k − t+ 1)
(

2 +
t− 1
r + 1

)
≤ n ≤ (k − t+ 1)

(
2 +

t− 1
r − 1

)
.

In fact, one can prove(
2 +

t− 1
r − 1

)−1

n+ t− 1 ≤ (1− ε)n
q

<
n

q
+ t− 1 < (1 + ε)

n

q
≤
(

2 +
t− 1
r + 1

)−1

n+ t− 1.
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The proof is similar to the proof of Lemma 3 and we omit it. By this lemma, we
have

|B(k)| ≤ max{AK(n, k, t, r),AK(n, k, t, r − 1)}.

If n=q(k− t+1) then AK(n,k,t,r)=AK(n,k,t,r−1). Since

AK(n, k, t, r) =
r∑
j=0

(
t+ 2r
t+ r + j

)(
n− t− 2r
k − t− r − j

)

=
(
n− t− 2r
k − t− r

) r∑
j=0

(
t+ 2r
t+ r + j

) j∏
i=1

k − t− r − i+ 1
n− k − r + i

,

we have

1 =
AK(n, k, t, r − 1)

AK(n, k, t, r)

=
(n− t− 2r + 2)(n− t− 2r + 1)
(k − t− r + 1)(n− k − r + 1)

r−1∑
j=0

( t+2r−2
t+r+j−1

) j∏
i=1

k−t−r−i+2
n−k−r+i+1

r∑
j=0

( t+2r
t+r+j

) j∏
i=1

k−t−r−i+1
n−k−r+i

.

The above ratio tends to

q2

(q − 1)

r−1∑
j=0

( t+2r−2
t+r+j−1

)
(q − 1)−j

r∑
j=0

( t+2r
t+r+j

)
(q − 1)−j

=
q2

(q − 1)

r∑
i=1

(t+2r−2
i−1

)
(q − 1)i

r∑
i=0

(t+2r
i

)
(q − 1)i

as n→∞ for fixed q,t and n=q(k− t+1). This proves

(6) q2
r∑
i=1

(
t+ 2r − 2
i− 1

)
(q − 1)i = (q − 1)

r∑
i=0

(
t+ 2r
i

)
(q − 1)i
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Now choose k∈I. (Here we do not assume n=q(k− t+1).) Then,

AK(n, k, t, r − 1)
AK(n, k, t, r)

=
(n− t− 2r + 2)(n− t− 2r + 1)
(k − t− r + 1)(n− k − r + 1)

r−1∑
j=0

( t+2r−2
t+r+j−1

) j∏
i=1

k−t−r−i+2
n−k−r+i+1

r∑
j=0

( t+2r
t+r+j

) j∏
i=1

k−t−r−i+1
n−k−r+i

<
n2

(1− ε)(n/q)(1− (1 + ε)/q)n

r−1∑
j=0

( t+2r−2
t+r+j−1

) j∏
i=1

(1+ε)(n/q)
(1−(1+ε)/q)n

r∑
j=0

( t+2r
t+r+j

) j∏
i=1

(1−ε)(n/q)
(1−(1−ε)/q)n

=
q2

(1− ε)(q − 1− ε)

r∑
i=1

(t+2r−2
i−1

) ( q−1−ε
1+ε

)i
r∑
i=0

(t+2r
i

) ( q−1+ε
1−ε

)i .

By (6), the above ratio tends to 1 as ε→0. Thus for any ε′>0 we can conclude
that

AK(n, k, t, r − 1) < (1 + ε′)AK(n, k, t, r)

if we choose ε sufficiently small and n sufficiently large, and k∈I. Finally we have

f(n, q, t)q−n < q−n
∑
k∈I

max{AK(n, k, t, r),AK(n, k, t, r − 1)}(q − 1)n−k + ε

< (1 + ε′)q−n
∑
k∈I

AK(n, k, t, r)(q − 1)n−k + ε

< (1 + ε′)q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i + ε.

Using the same argument in Case I, we have

g(q, t) := lim
n→∞

f(n, q, t)q−n = q−t−2r
r∑
i=0

(
t+ 2r
i

)
(q − 1)i,

and f(n,q,t)=qng(q,t), which completes the proof of the theorem.
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3. Another approach

In this section we give a direct proof for the case q≥ t+1 using tools developed
in [1].

Let A⊂2[n]. A family G⊂2[n] is called a kernel of A if A=
⋃
G∈G U(G) where

U(G) :={F ⊂ [n] :G⊂F}. A rank of A is defined by

rank(A) := min{|
⋃
G∈G

G| : G is a kernel of A}.

Theorem 3. Let A⊂ 2[n] be a shifted t-intersecting family with w(A) = f(n,q,t).

Then rank(A)≤ t+2r, where r :=
⌊
t−1
q−2

⌋
.

Since the proof is almost the same as the proof of Lemma 6 in [1], we omit the
details.
Proof. (Outline) Choose a shifted, inclusion minimal (i.e., antichain) kernel G⊂2[n]

ofA satisfying rank(A)= |
⋃
G∈GG|. Assume that δ>0 and M := t+2r+δ=rank(A).

Let G=G0∪G1, G0 :={G∈G :M ∈G}, G1 :=G−G0, and let

G0 = Rt+1 ∪ · · · ∪ RM−1,

where Ri :=G0∩
([M ]
i

)
. Set

R′i := {E − {M} : E ∈ Ri} ⊂
(

[M − 1]
i− 1

)
.

Then, E ∈R′i, E′ ∈R′j and i+ j 6=M + t imply |E ∩E′| ≥ t. Thus we may assume

that Ri 6=∅, Rj 6=∅, i+j=M+ t for some i, j.

Case I. i 6=j.
Define

F1 := G1 ∪ (G0 − (Ri ∪Rj)) ∪R′i,

F2 := G1 ∪ (G0 − (Ri ∪Rj)) ∪R′j ,

Bi := U(Fi).
Then we have

A− B1 = {R ∪ S : R ∈ Rj , S ∈ 2[M+1,n]},

B1 −A = {R ∪ S : R ∈ R′i, S ∈ 2[M+1,n]},
and hence

w(A− B1) = |Rj |(q − 1)M−jqn−M ,

w(B1 −A) = |Ri|(q − 1)M−i+1qn−M .
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If w(A)≥w(B1) and w(A)≥w(B2) then

|Rj |(q − 1)M−j ≥ |Ri|(q − 1)M−i+1,

|Ri|(q − 1)M−i ≥ |Rj |(q − 1)M−j+1.

Thus 1≥(q−1)2, a contradiction.

Case II. i=j= M+t
2 = t+r+ δ

2 .
In this case δ is even and δ≥2. Using the same argument in Case I, we may assume

that Rα = ∅ for all α 6= i, and G =Ri∪G1. The average degree d̄ of R′i ⊂
([M−1]
i−1

)
is given by d̄ = (i− 1)|Ri|/(M − 1). Therefore we can find ` ∈ [M − 1] such that
degR′i(`)≤ d̄. Define a t-intersecting family T as follows:

T := {E ∈ R′i : ` 6∈ E} ⊂
(

[M − 1]− {`}
i− 1

)
.

Then |T |≥|R′i|−d̄= M−i
M−1 |Ri|. LetA=D1∪D2 whereD1 :=U(G1), D2 :=U(Ri)−D1,

and let U(T ∪G1)=D1∪D3 where D3 :=U(T )−D1. Then we have

w(D2) = |Ri|(q − 1)M−iqn−M ,

w(D3) = |T |(q − 1)M−iqn−M+1 ≥ M − i
M − 1

|Ri|(q − 1)M−iqn−M+1.

If w(D2)≥w(D3) then 1≥ M−i
M−1 ·q. Since M= t+2r+δ and i= t+r+ δ

2 , we have

t+ 2r + δ − 1 ≥ 2r + δ

2
q,

or equivalently,

r ≤ t− 1− (q/2− 1)δ
q − 2

=
t− 1
q − 2

− δ

2
.

Since δ
2 ≥1 we have r≤ t−1

q−2−1, which contradicts a definition of r.

Corollary 1. If q≥ t+1 then f(n,q,t)=qn−t.

Proof. Suppose that A⊂ 2[n] is t-intersecting and w(A) = f(n,q,t). By Theorem

3, we may assume rank(A) ≤ t+ 2r, r :=
⌊
t−1
q−2

⌋
. If q ≥ t+ 2 then r = 0, and

f(n,q,t)≤w(A0)=qn−t.
If q= t+1 then r=1 and f(n,q,t)≤max{w(A0),w(A1)}. In this case we have

w(A0)=w(A1)=qn−t.
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