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For positive integers n,q,t we determine the maximum number of integer sequences
(aq,...,an) which satisfy 1 < a; < ¢ for 1 <i < n, and any two sequences agree in at least ¢
positions. The result gives an affirmative answer to a conjecture of Frankl and Fiiredi.

1. Introduction

Let n,q,t be positive integers with ¢ > 2, n > t, and let [¢] := {1,2,...,q}. Then
H C [q]™ is a set of integer sequences (ay,...,an), 1 <a; <q. We say that H is
t-intersecting if any two sequences intersect in at least ¢ positions, more precisely,
|{i : a; = d’;}| >t holds for all (a1,...,an), (a},...,a},) € H. In this paper, we
determine the exact value of the following function.

f(n,q,t) == max{|H| : H C [¢|", H is t-intersecting}.

A family Ac 2 is called t-intersecting if [ANA’|>¢ holds for all A, A’ € A. Define

a weighted size of A by w(A):=>" 4c 4(q— 1)"~ 14l Using a shifting technique, it
is not difficult to check the following:

Lemma 1. (Proposition 2 in [5].) f(n,q,t)=max 4 w(A), where AC 2" runs over

all t-intersecting families.

If ¢ = 2 then w(A) = |A|. Thus, f(n,2,t) is simply the maximal size of ¢-

intersecting family A C 2["], which is given by the Katona Theorem. This case was
solved by Kleitman [7].

Let us define a t-intersecting family A, C 2ln] by
Ar:={ACn]: |AN[t+2r]| >t +r}.
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In [5], Frankl and Fiiredi conjectured f(n,q,t) =max,>qw(A;). If ¢>1+1 then the

conjecture claims f(n,q,t)=¢" . They showed that this is true if ¢>15.

Now we introduce the full Erdés-Ko-Rado theorem, which was conjectured by
Frankl in [4], and proved by Ahlswede and Khachatrian in [1]. Set

AK(n, k,t,r) == |{B € C;j) SBAfE+ 2] >t + 7).

Theorem 1. ([1]) Let 1<t<k<n and BC ([ ]) be t-intersecting. If

<k—t+U<2+;i%>Sng(k—t+n(2+igl>

for some r €N, then |B| < AK(n,k,t,r).

Using the above result, we prove the following in section 2.
Theorem 2. Let ¢>3 and set r:= {q QJ Then f(n,q,t)=w(Ay) for n>t+2r.

Note that

”ﬁjm"gg? <t+2r)<nt 2r)( i

= i=t+r

_Z_: (”—t )(q_ n—t—2r—j tir (t+27"> 2

i=t+r
1) ety ("2 )@=

1=0

In section 3, we prove the case ¢>t+1 (and ¢>1) directly.

Independently, Ahlswede and Khachatrian [2] obtained Theorem 2 as a dia-
metric theorem in Hamming spaces. They used a different method. See [6] or [2]
for the history of the problem.

2. Proof of the theorem

Throughout this section, we fix ¢ and ¢ and set

t—1 t—1
== .
' {qu q—2

Let us recall the following easy probabilistic result.
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Lemma 2. (Proposition 3 in [5].) For every ¢ > 0 the number of sequences
(a1,...,an) €[q]™ which contain more than (1+¢€)(n/q) 1’s or less than (1—e€)(n/q)
17s is less than eq™ for n>ng(e).

Choose any sufficiently small positive e, i.e., 0 <e < ep(g,t), and set an open

interval I:=((1—¢)(n/q),(14+€)(n/q)). In view of Lemma 1, f(n,q,t)qg" " =w(A)g™"
for some t-intersecting family A. Moreover Lemma 2 gives that

f(n,q,t)g" <w(B)g™ " +¢

where B:={BeA:|B|e€I}. Set B(k):={Be€B:|B|=k}.

Case I. 0<o<1.
Note that 0 depends only on t and q.

Lemma 3. For k€l and sufficiently large n,

t—1 t—1
2 E—t+1D) (24— ) <n<(k-t+1)(2+—
® () (2477 ) sns o (247

Proof. (2) is equivalent to

(3) Q+t—1)/r) In+t-1<k<@2+@t-1)/r+1) n4+t—1
Let us show the right half. Since k< (1+¢€)(n/q), it is sufficient to show

(146 (n/q) <2+ t—-1)/(r+1) tn+t-1
14+e)2+(t—1)/(r+1)) <gq

This follows from ¢=2+(t—1)/(r+06)>2+(t—1)/(r+1) and e<ep(g,t). One can
prove the left half of (3) similarly. ]

Thus, by the Ahlswede-Khachatrian theorem we have |B(k)| < AK(n,k,t,r).
Therefore,

flnoa,t)g™" <q ™)y w(B(k

kel

7"ZAKnktr(q71)n7k+e

kel

t+2r
_ t+2r\ /n—t—2r _
—n e > () (L e

kel j=t+r J

t+2r n—t—2r+j
_ t+2r n—t—2r _
<y ()2 (M et

. J
Jj=t+r k=j
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t+2r n—t—2r
g " t+2r n—t—2r _ \(n—t—=2r)—i/__ q\t+2r—j
()Y (e (=1 e

j=t+r =0
t+2r
— —n Z <t+27‘> n— t—27’(q_1>t+2r—j+6
J=t+r J
T
4 t+2r ;
_ t—2r 1\t
=q Z( ; )(q 1) +e
=0
Hence we have
.
_ . t+2r ;
T n < t—2r Y
@ gt lm frate " <q 2‘6( a1
1=
On the other hand, (1) implies
.
4 t+ 2r ;
5 1) > t—2r — 1)
(5) 9(a:t) = q Z( ; )(q )

1=0
By (4) and (5), we finally have
-
_ t+2r ;
¢ t—2r 1)
o0 =g 2‘6( -

Now suppose that for some t-intersecting family A C 2" we have w(A) >
q"g(q,t)+1. Since f(n+1,q,t)>qf(n,q,t) we have

', q,t) > ¢V " f(n, g t) > ¢ TMw(A) > ¢ (9(g,t) + g7,

which implies 1imn/_>oof(n’,q,t)q_”/ >g(q,t)+q¢ " >g(q,t), a contradiction. Thus
we must have w(A) <q"g(q,t), and actually w(A,)=¢"g(q,t). (We need n>t+2r
here.) This completes the proof of Case I.

Case II. §=0.
In this case, we have ¢=2+ =1

Lemma 4. For k€ and sufficiently large n,

(k:t+1)< ;+D §n§(kt+1)< ;_D

In fact, one can prove

o 171 B ft-1<(1-or
p— n < Eq

-1
t—1

<lit-1<O+o<(24—) n+t—1
q q r+1



THE ERDOS-KO-RADO THEOREM 59

The proof is similar to the proof of Lemma 3 and we omit it. By this lemma, we
have

|B(k)| < max{AK(n, k,t,r), AK(n,k,t,7 — 1)}.

If n=q(k—t+1) then AK(n,k,t,r)=AK(n,k,t,r —1). Since

'
t+2r n—t—2r
AK(n’k’t’r)Z<t+r+j) <k—t—r—j>

i=0
(n—t—2r i t+2r ﬁktriJrl
S \k—t—r )~ \t+r+j)- n—k—r+i ’
]:0 =1
we have
= AK(n,k,t,r —1)
- AK(n, k,t,7)
= (22 ll[ k—t—r—it2
(=t =204+ 2)(n—t—2r 1) =0 TV o
(k—t—r+1l)(n—k—-r+1) i(t—&—%)ﬁk—t—r—i-&—l
A t+r+j/ . n—k—r—+i
7=0 =1
The above ratio tends to
T or—o —j T tror—2 i
, 2 (o) @ =177 , > () (@ — 1)
q  j=0 __ 4 i=1
q—1) ¢ 2 _ qg—1) & 2
SRR = ATUEE S A o S Ok
j= 1=

as n— oo for fixed ¢,t and n=¢q(k—t+1). This proves

(6) qu (tt?_rlz)(ql)"(ql);o (tt.%)(ql)i

=1 %
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Now choose k€ I. (Here we do not assume n=gq(k—t+1).) Then,

AK(n,k,t,r —1)

AK(n, k,t,7)
r—1 _ J i
> (82 1T atesda
_(n—t—2r+2)(n—t—2r+1) ;=0 =1
k—t—r+O)(n—k—r+1) ry ket
JEO (tﬁrt’i]) ll:l knfkfvd:gl
r—1 r— J 1+€)(n
p T () s
- ‘
(1=e)(n/g)(1— (1 +e)/qn 5 (52 ) [T ~1-aw/e)_
= t+rty/) 2L (=(1=e)/a)n
2 ()
(I-elg—1-€) §~ (tt+2r) (g=lte)’
X () (52E)

By (6), the above ratio tends to 1 as e —0. Thus for any €’ >0 we can conclude
that

AK(n, k,t,r —1) < (1 +)AK(n, k, t,7)

if we choose € sufficiently small and n sufficiently large, and k€ I. Finally we have

fn,q,t)g " <qg " Z max{AK(n, k,t,7), AK(n, k, t,r — )}(q—1)""F + ¢

kel
< (1 + €/)qin ZAK(TL, k’,t,’f‘)(q - 1)7L7k' +e
kel
.
t+ 2r i
1 N —t=2r — 1) .
<(1+€)g ;}( ; )(q )" +e

Using the same argument in Case I, we have

: —n —t—2r - t+2r 7
9(g, 1) = lim f(n,q,t)g" =q Yo e,

" (3
=0

and f(n,q,t)=q"g(q,t), which completes the proof of the theorem. |
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3. Another approach

In this section we give a direct proof for the case ¢ >t+1 using tools developed
in [1].

Let Ac2. A family ¢ €2 is called a kernel of A if A=UgegU(G) where
U(G):={F C[n]:GCF}. A rank of A is defined by

rank(A) := min{| U G| : G is a kernel of A}.
Geg
Theorem 3. Let A C 20" be a shifted t-intersecting family with w(A) = f(n,q,t).

Then rank(A) <t+2r, where r:= L%J .

Since the proof is almost the same as the proof of Lemma 6 in [1], we omit the
details.

Proof. (Outline) Choose a shifted, inclusion minimal (i.e., antichain) kernel G c 2["
of A satisfying rank(A) =|Ugeg G|. Assume that § >0 and M :=t+2r+d =rank(A).

Let G=GoUG1, Go:={G€G:M G}, G1:=G—Gp, and let
G0 =Riy1U--URp—1,

where R;:=GpN ([Af]). Set

Ri:={E—-{M}:EcR;}C ([1\5_11])

Then, E€R,, E' ER;- and i+j# M+t imply |[ENE’| >t. Thus we may assume
that R; #0, R; #0, i+j=M 4+t for some i, j.

Case I. i#j.
Define

F1:=G1U(Go — (Ri UR;)) URS,
Fo:=G1U(Go — (RiUR;)) UR;
Bi := U(F3)-
Then we have
A-B1={RUS:RcRj, Sc 2[M+17n]}’

Bi—A={RUS:ReR, §e2lMtlnly
and hence
w(A = B1) = [Rjl(q — )M g M,
w(Br = A) = |Ry|(g - Mg
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If w(A)>w(By) and w(A)>w(Bz) then

[Rjla =DM > |R;|(q — )M,
Ril(g = )M~ = |Ryl(g — DML,

Thus 1> (¢—1)2, a contradiction.

Case II. i:j:@:t—i—r—i—%.

In this case § is even and § >2. Using the same argument in Case I, we may assume
that Ro =0 for all @ #4, and G =TR;UG;. The average degree d of R} C ([Ai/l:ll])
is given by d = (i — 1)|R;|/(M —1). Therefore we can find £ € [M — 1] such that
degr; (¢)<d. Define a t-intersecting family 7 as follows:

T:={EcR,:{¢E}C <[M_£1_{f}).

Then |T|>|R}|-d= =% |R;|. Let A=D1UD; where Dy :=U(G1), Da:=U(R;)-D1,
and let U(7 UG1)=D1UD3 where D3:=U(7)—D;. Then we have

w(D2) = [Ril(q — )M g,

—i n— M —1 i on—
w(D3) = |T|(q — DM~ lgn=MH1 > mmﬂ(Q*l)M i ML

If w(Dy) >w(D3) then 1> ]]\\/[/[:{ -q. Since M =t+2r+¢ and i:t—l—r—i—%, we have

2 1)
thorts—1>2"

q,

or equivalently,

< t—l—(q/2—1)6: t—1 75
q—2 q—2 2
Since %2 1 we have r< 2:—% — 1, which contradicts a definition of r. [ |

Corollary 1. If g>t+1 then f(n,q,t)=¢" .

Proof. Suppose that A C 2[ is t-intersecting and w(A) = f(n,q,t). By Theorem
3, we may assume rank(A) < t+2r, r:= M:—%J If ¢g>t+2 then r =0, and
f(n.q,t) <w(Ag)=¢""".

If g=t+1 then r=1 and f(n,q,t) <max{w(Ap),w(A1)}. In this case we have
w(Ag) =w(A1)=¢""" 1
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