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It is known that any k-uniform family with covering number t has at most kt t-covers. In this

paper, we deal with intersecting families and give better upper bounds for the number of

t-covers. Let pt(k) be the maximum number of t-covers in any k-uniform intersecting

families with covering number t. We prove that, for a fixed t,

pt(k) 6 k
t − 1√

2

⌊
t− 1

2

⌋ 3
2

kt−1 + O(kt−2).

In the cases of t = 4 and 5, we also prove that the coefficient of kt−1 in pt(k) is exactly
(
t
2

)
.

1. Introduction

Let X be a finite set. The family of all k-element subsets of X is denoted by
(
X
k

)
. A

family F ⊂
(
X
k

)
is called k-uniform. The vertex set of F, denoted by V (F), is defined

to be
⋃
F∈F F , which is a subset of X in general. An element of F is called an edge of

F. A family F ⊂
(
X
k

)
is called intersecting if F ∩ G 6= ∅ holds for every F,G ∈ F. A set

C ⊂ X is called a cover of F if it intersects every edge of F, i.e., C ∩ F 6= ∅ holds for all

F ∈ F. A cover C is also called a t-cover if |C| = t. The covering number τ(F) of F is

the minimum cardinality of any cover of F.

For a family F ⊂
(
X
k

)
and an integer t > 1, define

Ct(F) =

{
C ∈

(
X

t

)
: C ∩ F 6= ∅ for all F ∈ F

}
.
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Note that Ct(F) = ∅ for t < τ(F). Define

pt(k) = max

{
|Ct(F)| :F ⊂

(
X

k

)
is intersecting and τ(F) = t

}
,

where ‘max’ is also taken over all X. Gyárfás [6] proved that |Ct(F)| 6 kt. What happens

if we know that F is intersecting? In Gyárfás’s inequality, equality is attained only if F
consists of t pairwise disjoint sets, so, in particular, for t > 2, only if F is nonintersecting.

The aim of the present paper is to attain better bounds for pt(k).

It is shown in [2] (see also [3] and [5]) that the maximum size of k-uniform intersecting

families with covering number t is (pt−1(k) + o(1))
(
n
k−t
)

as the number of vertices n tends

to infinity. So, it is greatly important to determine the value pt(k). See [1], [2], [3] and [7]

for results on the maximum size of k-uniform intersecting families with covering number

restrictions.

It is easy to see that p1(k) = k. For t = 2 and 3, the value pt(k) is determined in [2], [3]

and [4].

Theorem A [2]. For k > 2, p2(k) = k2 − k + 1.

Theorem B [3, 4]. For k = 3 and k > 9, p3(k) = k3 − 3k2 + 6k − 4.

The following conjecture appears in [4].

Conjecture 1 [4]. For a fixed t, pt(k) = kt −
(
t
2

)
kt−1 + O(kt−2).

The coefficient of kt−1 in this conjecture is best possible if it is true.

Example 1. Let T be any tournament with vertex set {1, 2, . . . , t}, and let αi be the

outdegree of the vertex i of T . Choosing t sets of vertices X1, X2, . . . , Xt such that

|Xi| = k − αi for (1 6 i 6 t), we define a family Fi for each i (1 6 i 6 t) as follows:

Fi = {Xi ∪ A : |A| = αi, |A ∩Xj | = 1 if and only if i dominates j}.

Then, F =
⋃t
i=1Fi is a k-uniform intersecting family and τ(F) = t if k > t. Now, we can

get a t-cover of F by choosing any one vertex from each Xi (1 6 i 6 t). Hence

|Ct(F)| >
t∏
i=1

|Xi| =
t∏
i=1

(k − αi) = kt −
(

t∑
i=1

αi

)
kt−1 + O(kt−2)

= kt −
(
t

2

)
kt−1 + O(kt−2).

In view of this example, we make the following conjecture.

Conjecture 2. Let F ⊂
(
X
k

)
be an intersecting family with τ(F) = t. Let X1, X2, . . . , Xt

be pairwise disjoint subsets of X, and suppose that F is partitioned into t classes

of edges F1,F2, . . . ,Ft, and that, for each i, every edge F ∈ Fi contains Xi. Then,∑t
i=1(k − |Xi|) >

(
t
2

)
.
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Obviously, Conjecture 1 implies Conjecture 2. One of the main results in this paper is

the other implication. In fact, we prove the following theorem, in which the function b(t)

is defined to be the minimum value of
∑t

i=1(k − |Xi|) among the families satisfying the

assumption of Conjecture 2. Note that b(t) 6
(
t
2

)
, by Example 1.

Theorem 1.1. pt(k) = kt − b(t)kt−1 + O(kt−2).

We prove Theorem 1.1 in Section 2.

For a general t, we prove the following theorem in Section 3.

Theorem 1.2. b(t) > 1√
2
b t−1

2
c 3

2 .

Corollary 1.1. pt(k) 6 kt − 1√
2
b t−1

2
c 3

2 kt−1 + O(kt−2).

Moreover, in Section 4, we determine the exact value for b(4) and b(5), showing that

Conjecture 2, and hence Conjecture 1, is true for t 6 5.

In the subsequent argument, we use the following propositions without explicit reference.

Proposition 1.1. [6] pt(k) 6 kt.

For a family A ⊂ 2X and vertices x, y ∈ X, we define

A(x) = {A ∈ A : x ∈ A},
A(x) = {A ∈ A : x /∈ A},
A(xy) = {A ∈ A : x ∈ A, y ∈ A},
A(xy) = {A ∈ A : x ∈ A, y /∈ A}, etc.,

and for Y ⊂ X,

A(Y ) = {A ∈ A : Y ⊂ A},
A(Y ) = {A ∈ A : Y ∩ A = ∅}.

Proposition 1.2 [4]. Suppose that F ⊂
(
X
k

)
is an intersecting family with τ(F) = t. Let

C = Ct(F). Then, for any subset A of X with |A| < t, we have |C(A)| 6 pt−|A|(k).

2. Proof of Theorem 1.1

Throughout this section, we assume that t is a fixed positive integer, k is large compared to

t, and thatF ⊂
(
X
k

)
is an intersecting family with τ(F) = t such that |Ct(F)| > kt−

(
t
2

)
kt−1.

We simply write C for Ct(F).

For A ∈ F and x ∈ A, define

γi(x, A) = |{C ∈ C(x) : |C ∩ A| = i}|,

c(x, A) =

t∑
i=1

1

i
γi(x, A).
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We call c(x, A) the contribution of x ∈ A for |C|, because it is easy to see that |C| =∑
x∈A c(x, A). Moreover, by definition, we have |C(x)| =

∑t
i=1 γi(x, A).

Lemma 2.1. For any pair of edges A and B in F, either |A ∩ B| < t2 or |A ∩ B| > k − t2
holds.

Proof. Define a = |A∩B|. We assume that t2 6 a 6 k− t2, and estimate the contribution

of each vertex x ∈ A for |C|.
If x ∈ A − B, then every t-cover C ∈ C with C ∩ A = {x} must contain some vertex

y ∈ B − A. So, for fixed y ∈ B − A, we have |C(xy)| 6 pt−2(k) 6 kt−2. Hence,

γ1(x, A) 6 |B − A| kt−2 = (k − a)kt−2.

Thus,

c(x, A) 6 γ1(x, A) +
1

2
(|C(x)| − γ1(x, A))

=
1

2
(γ1(x, A) + |C(x)|)

6
1

2
((k − a)kt−2 + kt−1)

= kt−1 − a

2
kt−2.

If x ∈ A ∩ B, then we have c(x, A) 6 |C(x)| 6 pt−1(k) 6 kt−1. By summing up all

contributions of x ∈ A, we get

|C| =
∑
x∈A

c(x, A) 6 (k − a)
(
kt−1 − a

2
kt−2

)
+ akt−1

= kt − a

2
kt−1 +

a2

2
kt−2.

Since t2 6 a 6 k − t2, the RHS of the above inequality attains its maximum when a = t2.

So, |C| 6 kt − t2

2
kt−1 + t4

2
kt−2, which contradicts the assumption that |C| > kt −

(
t
2

)
kt−1,

for k sufficiently large.

The result of Lemma 2.1 implies that the set of edges in F is partitioned into the

equivalence classes F1,F2, . . . ,Fr , where |A∩B| > k− t2 if and only if A and B are in the

same class Fi.

Lemma 2.2. For each i (1 6 i 6 r), we have |
⋂
F∈Fi F | > k − t2.

Proof. Fix i and A ∈ Fi. Let Xi =
⋂
F∈Fi F and a = |Xi|. We assume that a 6 k − t2. If

x ∈ A−Xi, then there exists an edge B ∈ Fi such that x /∈ B. Note that |A ∩ B| > k − t2
and hence |B − A| < t2. By the same argument used in Lemma 2.1, we have γ1(x, A) 6
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|B − A| kt−2 < t2kt−2. Therefore,

c(x, A) 6
1

2
(γ1(x, A) + |C(x)|)

<
1

2
(t2kt−2 + kt−1).

If x ∈ Xi, then c(x, A) 6 |C(x)| 6 kt−1. Thus,

|C| =
∑
x∈A

c(x, A) < (k − a)1

2
(t2kt−2 + kt−1) + akt−1

=
1

2
(kt + t2kt−1 + a(kt−1 − t2kt−2))

6
1

2
(kt + t2kt−1 + (k − t2)(kt−1 − t2kt−2))

= kt − t2

2
kt−1 +

t4

2
kt−2.

This is a contradiction.

By Lemma 2.2, τ(Fi) = 1 holds for each i (1 6 i 6 r). And so we have that r > t must

hold, since τ(F) = t.

Lemma 2.3. r = t.

Proof. Suppose that r > t + 1. Choose one edge Fi from each Fi, 1 6 i 6 t + 1, and

defineH = {F1, F2, . . . , Ft+1}. The degree of a vertex x inH is the number of edges inH
containing x. Let Y be the set of those vertices whose degree in H is at least two. Note

that |Fi ∩Fj | < t2 if i 6= j, and hence |Y | <
(
t+1

2

)
t2. On the other hand, every t-cover of F

must contain some vertex in Y . Thus,

|C| 6
∑
y∈Y
|C(y)| 6 |Y | pt−1(k)

<

(
t+ 1

2

)
t2kt−1.

This is a contradiction.

For each i (1 6 i 6 t), define Xi =
⋂
F∈Fi F and αi = k − |Xi|. By Lemma 2.2, we have

αi < t2.

The vertex sets X1, X2, . . . , Xt are pairwise disjoint, for otherwise F can be covered by

at most t− 1 vertices.

Lemma 2.4. |C| = kt −
(∑t

i=1 αi
)
kt−1 + O(kt−2).

Proof. Define

C′ =

{
C ∈

(
X

t

)
: |C ∩Xi| = 1 for all i, 1 6 i 6 t

}
.
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Obviously, C′ ⊂ C = Ct(F), and

|C′| =
t∏
i=1

|Xi| =
t∏
i=1

(k − αi) = kt −
(

t∑
i=1

αi

)
kt−1 + O(kt−2).

Hence, in order to prove the lemma, it suffices to show that |C − C′| = O(kt−2).

For each i (1 6 i 6 t), let Ci be the set of t-covers C of F such that C ∩ Xi = ∅. Fix

i and A ∈ Fi. Since every t-cover C ∈ Ci contains some vertex in A − Xi, there exists a

vertex x ∈ A − Xi such that |Ci(x)| > 1
αi
|Ci|. Now, there exists an edge B ∈ Fi such that

x /∈ B. Since every cover C ∈ Ci(x) must contain some vertex in B − Xi, there exists a

vertex y ∈ B −Xi such that |Ci(xy)| > 1
αi
|Ci(x)| > 1

α2
i

|Ci|.
On the other hand, |Ci(xy)| 6 |C(xy)| 6 pt−2(k) 6 kt−2. The last two inequalities imply

|Ci| 6 α2
i k
t−2 < t4kt−2. Thus,

|C − C′| 6
t∑
i=1

|Ci| < t5kt−2 = O(kt−2).

This completes the proof of Lemma 2.4.

Now we can easily prove Theorem 1.1. Suppose that k is sufficiently large with respect

to t. Let F ⊂
(
X
k

)
be an intersecting family with τ(F) = t such that |Ct(F)| = pt(k).

Because we know that b(t) 6
(
t
2

)
(see Example 1), we have

|Ct(F)| > kt − b(t)kt−1 > kt −
(
t

2

)
kt−1.

Then, by Lemma 2.4,

|Ct(F)| 6 kt − b(t)kt−1 + O(kt−2).

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We assume that F ⊂
(
X
k

)
is an intersecting family with τ(F) = t. Let X1, X2, . . . , Xt

be pairwise disjoint subset of X. Suppose that F is partitioned into t classes of edges

F1,F2, . . . ,Ft, and that, for each i, every edge F ∈ Fi contains Xi,

Let |Xi| = k − αi for 1 6 i 6 t.
Define s = b t−1

2
c. Let F1, F2, . . . , Fs be edges ofF such that Fi and Fj are in the different

classes of F1,F2, . . . ,Ft if i 6= j. Define

H = {F1, F2, . . . , Fs}.

The degree of a vertex x in H is denoted by degH(x). Let us choose F1, F2, . . . , Fs so that∑
x∈V (H)(degH(x)− 1) is maximal. We may assume that Fi ∈ Fi for each i (1 6 i 6 s). Let

x1, x2, . . . , xs be the s vertices of H whose degrees in H are as large as possible. Define

d = min16i6s degH(xi). Now,

degH(xi) > d for each i (1 6 i 6 s), and

degH(y) 6 d for each y ∈ V (H)− {x1, x2, . . . , xs}.
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Case 1. d >
√
s/2.

Since degH(xi) > d for each i (1 6 i 6 s), we have

∑
x∈V (H)

(degH(x)− 1) > s(d− 1) >
1√
2
s

3
2 − s.

On the other hand,

∑
x∈V (H)

(degH(x)− 1) = ks− |V (H)| 6 ks−
s∑
i=1

|Xi| =
s∑
i=1

αi.

Hence, we have
∑s

i=1 αi >
1√
2
s

3
2 − s. Moreover, since F is intersecting, at most one of

αs+1, . . . , αt is 0. Thus,

t∑
i=1

αi >
s∑
i=1

αi + (t− s− 1)

>

(
1√
2
s

3
2 − s

)
+ s =

1√
2
s

3
2 .

Case 2. d <
√
s/2.

For each i (1 6 i 6 s), choose one vertex yi ∈ Xi. Since τ(F) = t > 2s, there exists an edge

G ∈ F such that G ∩ {x1, . . . , xs, y1, . . . , ys} = ∅. We may assume that G ∈ Fs+1. We will

find an edge Fl ∈ H such that the family (H−{Fl})∪ {G} contradicts the maximality of∑
x∈V (H)(degH(x)− 1).

Let Y be the set of vertices y in V (H) with degH(y) > 2, and define ai = |Fi ∩ Y | for

1 6 i 6 s. Then

∑
x∈V (H)

(degH(x)− 1) =
∑
y∈Y

(degH(y)− 1) =

s∑
i=1

ai − |Y |.

Obviously, |Y | 6
∑

x∈V (H)(degH(x)− 1) holds, and hence

s∑
i=1

ai =
∑

x∈V (H)

(degH(x)− 1) + |Y | 6 2
∑

x∈V (H)

(degH(x)− 1).

If
∑

x∈V (H)(degH(x) − 1) > s(
√
s/2 − 1), then, by the same argument as used in Case 1,

we are done. Hence, we may assume that
∑s

i=1 ai < 2s(
√
s/2− 1). Therefore, there exists

some l (1 6 l 6 s) such that al < 2(
√
s/2− 1) =

√
2s− 2.

Now define H′ = (H− {Fl}) ∪ {G}. Let Z = V (H− {Fl}) ∩ G. Recall that G contains

none of the vertices x1, . . . , xs. So the degree of every vertex of Z in H (and hence in

H− {Fl}) is at most d <
√
s/2, while G must intersect with s − 1 edges of H− {Fl}.
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Therefore, we have |Z | > s−1
d
>
√

2s−
√

2/s. Thus,∑
x∈V (H′)

(degH′ (x)− 1) =
∑

x∈V (H)

(degH(x)− 1)− al + |Z |

>
∑

x∈V (H)

(degH(x)− 1)− (
√

2s− 2) + (
√

2s−
√

2/s)

>
∑

x∈V (H)

(degH(x)− 1).

This contradicts the maximality of
∑

x∈V (H)(degH(x)− 1).

4. p4(k) and p5(k)

In this section, we show that Conjecture 2, and hence Conjecture 1, is true for t = 4 and

t = 5.

Theorem 4.1. p4(k) = k4 − 6k3 + O(k2).

Theorem 4.2. p5(k) = k5 − 10k4 + O(k3).

Proof of Theorem 4.1. We will use Theorem 1.1. Let F ⊂
(
X
2

)
be an intersecting family

with τ(F) = 4. Let X1, X2, X3 and X4 be pairwise disjoint subsets of X. Suppose that F
is partitioned into four classes F1, F2, F3 and F4 such that, for each i (1 6 i 6 4), every

edge F ∈ Fi contains Xi. We may assume that |X1| > |X2| > |X3| > |X4|. We want to

show that
∑4

i=1(k − |Xi|) > 6.

We use the following notation. For I ⊂ {1, 2, 3, 4}, defineFI =
⋃
i∈IFi and XI =

⋃
i∈I Xi.

If I = {i, j, . . .}, then we write Fij··· and Xij··· instead of F{i,j,...} and X{i,j,...}, respectively.

Note that τ(FI ) = |I|, for otherwise, i.e., if τ(FI ) < |I|, then F can be covered by at most

three vertices.

Case 1. |X1| = k.

If |X2| 6 k − 2, then
∑4

i=1(k − |Xi|) > 6, and we are done. So we may assume that

|X2| = k − 1. In this case, for any F ∈ F12, we have F ⊂ X12, i.e., F ∩ X34 = ∅. Since

τ(F12) = 2, every edge G ∈ F34 contains at least two vertices of X12, in order to intersect

with all edges in F12. Hence we have |X3| 6 k − 2. We may assume that |X3| = k − 2.

Then V (F123) = X123. In particular, for every edge F ∈ F123, we have F ∩ X4 = ∅.
Since τ(F123) = 3, every edge G ∈ F4 must contain at least three vertices of X123. Hence

|X4| 6 k − 3. Thus
∑4

i=1(k − |Xi|) > 6 has been proved.

Case 2. |X1| 6 k − 1.

We may assume that |X1| = |X2| = |X3| = k − 1 and that |X4| = k − 1 or k − 2. Let

H ∈ F4. Since |H − X4| 6 2 and τ(F123) = 3, H − X4 does not cover F123. This implies

that there exists an edge F ∈ F123 such that F ∩ H ⊂ X4. We may assume that F ∈ F1.

In particular, F ⊂ X14. Then every edge G ∈ Fi (i = 2, 3) consists of Xi and some vertex

in F ⊂ X14. In this situation, it is easy to see that either some edges G ∈ F2 and G′ ∈ F3

do not intersect, or τ(F12) or τ(F13) is one, a contradiction.
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Our proof of Theorem 4.2 is lengthy and tedious, so we give only a part of the proof.

Proof of Theorem 4.2. As assumed in the proof of Theorem 4.1, let F ⊂
(
X
2

)
be an

intersecting family with τ(F) = 5. Let X1, X2, X3, X4 and X5 be pairwise disjoint subsets

of X. Suppose that F is partitioned into five classes F1, F2, F3, F4 and F5 such that,

for each i (1 6 i 6 5), every edge F ∈ Fi contains Xi.

We use the same notation used in the proof of Theorem 4.1. Also, we use the following

facts.

(1) For I ⊂ {1, 2, 3, 4, 5}, we have τ(FI ) = |I|.
(2) For F ∈ Fi and G ∈ Fj (i 6= j), if F ∩ (G−Xj) = ∅, then F ∩Xj 6= ∅.
(3) Let I ⊂ {1, 2, 3, 4, 5}. Suppose that V (FI ) ∩ Xj = ∅. Then, for every F ∈ Fj , F − Xj

covers FI . In particular, |F −Xj | = k − |Xj | > |I|.
We may assume that |X1| > |X2| > |X3| > |X4| > |X5|. Now, we want to show that∑5
i=1(k − |Xi|) > 10. So, we may also assume that |X1| > k − 1. We distinguish the

following five cases.

Case 1. |X1| = k and |X2| = k − 1.

Case 2. |X1| = k and |X2| 6 k − 2.

Case 3. |X1| = |X2| = |X3| = k − 1.

Case 4. |X1| = |X2| = k − 1 and |X3| 6 k − 2.

Case 5. |X1| = k − 1 and |X2| 6 k − 2.

Here, we consider only the last case (Case 5), which is in a sense the most complicated

case. The other cases are similar but easier.

Now, we may assume that |X1| = k − 1 and |X2| = |X3| = |X4| = |X5| = k − 2.

Subcase 5.1. There exists an edge A1 ∈ F1 such that A1 ∩X2345 6= ∅.
We may assume that A1 = X1 ∪ {e1} with e1 ∈ X5. Let E0 be an edge in F5. Note that

|(E0−X5)∪{e1}| = 3. So (E0−X5)∪{e1} does not coverF2345. We may assume that there

exists an edge B1 ∈ F2 such that B1 ∩ ((E0 −X5) ∪ {e1}) = ∅. This edge B1 must intersect

with A1 and E0. Hence B1 must contain a vertex a1 of X1 and a vertex e2 of X5 (e2 6= e1),

i.e., B1 = X2 ∪ {a1, e2}.
Consider the set {a1, e1, e2}, which does not cover F1345. We may assume that there

exists an edge C1 ∈ F3 such that C1 ∩ {a1, e1, e2} = ∅. Since C1 must intersect with A1 and

B1, we can write C1 = X3 ∪ {a2, b1} with a2 ∈ X1 − {a1} and b1 ∈ X2.

Now, the set {a2, b1, e1} does not cover F1245. So there exists an edge D1 ∈ F4 such that

D1 ∩{a2, b1, e1} = ∅. Since D1 must intersect with A1 and C1, D1 must contain some vertex

in X1 and some vertex in X3. Also, D1 intersects with B1, and hence D1 must contain a1.

Let D1 = X4 ∪ {a1, c1} with c1 ∈ X3.

Also, the set {a1, c1, e1} does not cover F1235. So, there exists an edge B2 ∈ F2 such that

B2 ∩ {a1, c1, e1} = ∅. Since B2 must intersect with A1 and D1, we can put B2 = X2 ∪ {a, d1}
where a ∈ X1 − {a1} and d1 ∈ X4.
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Finally, the set {a2, b1, c1, d1} does not cover F. So, there exists an edge E1 ∈ F5 such

that E1 ∩ {a2, b1, c1, d1} = ∅. Since E1 must intersect with C1, we can put E1 = X5 ∪ {c2, x}
with c2 ∈ X3 − {c1} and x /∈ {a2, b1, c1, d1}. Now, E1 ∩ D1 6= ∅ and E1 ∩ B2 6= ∅, while

(D1 ∪ B2) ∩ (X5 ∪ {c2}) = ∅. Hence, x ∈ D1 ∩ B2 = {d1}. This is a contradiction.

Subcase 5.2. V (F1) ∩X2345 = ∅.
In this case, every edge inF2345 contains some vertex of V (F1). Let A0 ∈ F1 and B0 ∈ F2.

Since |A0−X1| = 1 and |B0−X2| = 2, (A0−X1)∪ (B0−X2) does not cover F1345. So, we

may assume that there exists an edge C1 = X3 ∪ {a1, b1} ∈ F3 with a1 ∈ X1 and b1 ∈ X2.

Next, the set (A0−X1)∪{a1, b1} does not coverF1245. So, we may assume that there exists

an edge D1 = X4 ∪ {a2, c1} ∈ F4 with a2 ∈ X1 − {a1} and c1 ∈ X3.

Now, the set {a1, b1, c1} does not cover F1235. So, we may assume that there exists an

edge E1 = X5 ∪{c2, x} ∈ F5 with c2 ∈ X3−{c1} and x /∈ {a1, b1, c1}. But E1 must intersect

with A0 and D1, while (A0 ∪ D1) ∩ (X5 ∪ {c2}) = ∅. Hence x ∈ A0 ∩ D1 = {a2}, i.e., x = a2.

In particular, every edge E ∈ F5(a1b1c1) contains a2.

Now, the set {a1, a2, b1, c1} does not cover F, but covers F1235. So, there exists an edge

D2 ∈ F4 such that D2 ∩ {a1, a2, b1, c1} = ∅. Since D2 must intersect with A0, C1 and E1, D2

contains a vertex of A0 and the vertex c2. Let D2 = X4 ∪ {a′, c2}, where a′ ∈ A0 − {a1, a2}
and c2 ∈ X3 − {c1}. The argument implies that every edge D ∈ F4(a1a2b1) contains c2.

Next, consider the set {a1, a2, b1, c2}, which does not cover F. This set covers F123, and

also, by the result in the last paragraph, covers F4. So, there exists an edge E2 ∈ F5 such

that E2 ∩ {a1, a2, b1, c2} = ∅. This edge E2 must contain the vertices a′ and c1.

Now, we can easily see that every edge F ∈ F45(a1b1) must contain one of the vertices

c1 and c2. This implies that F is covered by {a1, b1, c1, c2}, a contradiction.
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[6] Gyárfás, A. (1977) Partition coverings and blocking sets in hypergraphs. (In Hungarian.) MTA

SZTAKI Tanulmányok 71 62.
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