Combinatorics, Probability and Computing

http://journals.cambridge.org/CPC

Additional services for Combinatorics, Probability and Computing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Uniform Intersecting Families with Covering Number Restrictions

P. FRANKL, K. OTA and N. TOKUSHIGE

Combinatorics, Probability and Computing / Volume 7 / Issue 01 / March 1998, pp 47 - 56
DOI: null, Published online: 08 September 2000
Link to this article: http://journals.cambridge.org/abstract S096354839700326X

How to cite this article:

P. FRANKL, K. OTA and N. TOKUSHIGE (1998). Uniform Intersecting Families with Covering Number Restrictions.

Combinatorics, Probability and Computing, 7, pp 47-56
Request Permissions: Click here

Uniform Intersecting Families with Covering Number Restrictions

P. FRANKL ${ }^{1}$, K. OTA ${ }^{2}$ and N. TOKUSHIGE ${ }^{3}$
${ }^{1}$ CNRS, ER 175 Combinatoire,
54 Bd Raspail, 75006 Paris, France
${ }^{2}$ Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223 Japan
(e-mail: ohta@comb.math.keio.ac.jp)
${ }^{3}$ College of Education, Ryukyu University
1 Nishihara, Okinawa, 903-01 Japan
(e-mail: hide@edu.u-ryukyu.ac.jp)

Received 30 May 1995; revised 17 February 1997

It is known that any k-uniform family with covering number t has at most $k^{t} t$-covers. In this paper, we deal with intersecting families and give better upper bounds for the number of t-covers. Let $p_{t}(k)$ be the maximum number of t-covers in any k-uniform intersecting families with covering number t. We prove that, for a fixed t,

$$
p_{t}(k) \leqslant k^{t}-\frac{1}{\sqrt{2}}\left\lfloor\frac{t-1}{2}\right\rfloor^{\frac{3}{2}} k^{t-1}+O\left(k^{t-2}\right) .
$$

In the cases of $t=4$ and 5 , we also prove that the coefficient of k^{t-1} in $p_{t}(k)$ is exactly $\binom{t}{2}$.

1. Introduction

Let X be a finite set. The family of all k-element subsets of X is denoted by $\binom{X}{k}$. A family $\mathscr{F} \subset\binom{X}{k}$ is called k-uniform. The vertex set of \mathscr{F}, denoted by $V(\mathscr{F})$, is defined to be $\bigcup_{F \in \mathscr{F}} F$, which is a subset of X in general. An element of \mathscr{F} is called an edge of \mathscr{F}. A family $\mathscr{F} \subset\binom{X}{k}$ is called intersecting if $F \cap G \neq \emptyset$ holds for every $F, G \in \mathscr{F}$. A set $C \subset X$ is called a cover of \mathscr{F} if it intersects every edge of \mathscr{F}, i.e., $C \cap F \neq \emptyset$ holds for all $F \in \mathscr{F}$. A cover C is also called a t-cover if $|C|=t$. The covering number $\tau(\mathscr{F})$ of \mathscr{F} is the minimum cardinality of any cover of \mathscr{F}.
For a family $\mathscr{F} \subset\binom{X}{k}$ and an integer $t \geqslant 1$, define

$$
\mathscr{C}_{t}(\mathscr{F})=\left\{C \in\binom{X}{t}: C \cap F \neq \emptyset \text { for all } F \in \mathscr{F}\right\} .
$$

Note that $\mathscr{C}_{t}(\mathscr{F})=\emptyset$ for $t<\tau(\mathscr{F})$. Define

$$
p_{t}(k)=\max \left\{\left|\mathscr{C}_{t}(\mathscr{F})\right|: \mathscr{F} \subset\binom{X}{k} \text { is intersecting and } \tau(\mathscr{F})=t\right\}
$$

where 'max' is also taken over all X. Gyárfás [6] proved that $\left|\mathscr{C}_{t}(\mathscr{F})\right| \leqslant k^{t}$. What happens if we know that \mathscr{F} is intersecting? In Gyárfás's inequality, equality is attained only if \mathscr{F} consists of t pairwise disjoint sets, so, in particular, for $t \geqslant 2$, only if \mathscr{F} is nonintersecting. The aim of the present paper is to attain better bounds for $p_{t}(k)$.

It is shown in [2] (see also [3] and [5]) that the maximum size of k-uniform intersecting families with covering number t is $\left(p_{t-1}(k)+o(1)\right)\binom{n}{k-t}$ as the number of vertices n tends to infinity. So, it is greatly important to determine the value $p_{t}(k)$. See [1], [2], [3] and [7] for results on the maximum size of k-uniform intersecting families with covering number restrictions.

It is easy to see that $p_{1}(k)=k$. For $t=2$ and 3 , the value $p_{t}(k)$ is determined in [2], [3] and [4].

Theorem A [2]. For $k \geqslant 2, p_{2}(k)=k^{2}-k+1$.
Theorem B [3, 4]. For $k=3$ and $k \geqslant 9, p_{3}(k)=k^{3}-3 k^{2}+6 k-4$.
The following conjecture appears in [4].
Conjecture 1 [4]. For a fixed $t, p_{t}(k)=k^{t}-\binom{t}{2} k^{t-1}+O\left(k^{t-2}\right)$.
The coefficient of k^{t-1} in this conjecture is best possible if it is true.
Example 1. Let T be any tournament with vertex set $\{1,2, \ldots, t\}$, and let α_{i} be the outdegree of the vertex i of T. Choosing t sets of vertices $X_{1}, X_{2}, \ldots, X_{t}$ such that $\left|X_{i}\right|=k-\alpha_{i}$ for $(1 \leqslant i \leqslant t)$, we define a family \mathscr{F}_{i} for each $i(1 \leqslant i \leqslant t)$ as follows:

$$
\mathscr{F}_{i}=\left\{X_{i} \cup A:|A|=\alpha_{i},\left|A \cap X_{j}\right|=1 \text { if and only if } i \text { dominates } j\right\} .
$$

Then, $\mathscr{F}=\bigcup_{i=1}^{t} \mathscr{F}_{i}$ is a k-uniform intersecting family and $\tau(\mathscr{F})=t$ if $k \geqslant t$. Now, we can get a t-cover of \mathscr{F} by choosing any one vertex from each $X_{i}(1 \leqslant i \leqslant t)$. Hence

$$
\begin{aligned}
\left|\mathscr{C}_{t}(\mathscr{F})\right| & \geqslant \prod_{i=1}^{t}\left|X_{i}\right|=\prod_{i=1}^{t}\left(k-\alpha_{i}\right)=k^{t}-\left(\sum_{i=1}^{t} \alpha_{i}\right) k^{t-1}+O\left(k^{t-2}\right) \\
& =k^{t}-\binom{t}{2} k^{t-1}+O\left(k^{t-2}\right)
\end{aligned}
$$

In view of this example, we make the following conjecture.
Conjecture 2. Let $\mathscr{F} \subset\binom{X}{k}$ be an intersecting family with $\tau(\mathscr{F})=t$. Let $X_{1}, X_{2}, \ldots, X_{t}$ be pairwise disjoint subsets of X, and suppose that \mathscr{F} is partitioned into t classes of edges $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{t}$, and that, for each i, every edge $F \in \mathscr{F}_{i}$ contains X_{i}. Then, $\sum_{i=1}^{t}\left(k-\left|X_{i}\right|\right) \geqslant\binom{ t}{2}$.

Obviously, Conjecture 1 implies Conjecture 2. One of the main results in this paper is the other implication. In fact, we prove the following theorem, in which the function $b(t)$ is defined to be the minimum value of $\sum_{i=1}^{t}\left(k-\left|X_{i}\right|\right)$ among the families satisfying the assumption of Conjecture 2. Note that $b(t) \leqslant\binom{ t}{2}$, by Example 1.

Theorem 1.1. $p_{t}(k)=k^{t}-b(t) k^{t-1}+O\left(k^{t-2}\right)$.

We prove Theorem 1.1 in Section 2.
For a general t, we prove the following theorem in Section 3.
Theorem 1.2. $\quad b(t) \geqslant \frac{1}{\sqrt{2}}\left\lfloor\frac{t-1}{2}\right\rfloor^{\frac{3}{2}}$.
Corollary 1.1. $p_{t}(k) \leqslant k^{t}-\frac{1}{\sqrt{2}}\left\lfloor\frac{t-1}{2}\right\rfloor^{\frac{3}{2}} k^{t-1}+O\left(k^{t-2}\right)$.
Moreover, in Section 4, we determine the exact value for $b(4)$ and $b(5)$, showing that Conjecture 2, and hence Conjecture 1 , is true for $t \leqslant 5$.
In the subsequent argument, we use the following propositions without explicit reference.
Proposition 1.1. [6] $p_{t}(k) \leqslant k^{t}$.
For a family $\mathscr{A} \subset 2^{X}$ and vertices $x, y \in X$, we define

$$
\begin{aligned}
\mathscr{A}(x) & =\{A \in \mathscr{A}: x \in A\}, \\
\mathscr{A}(\bar{x}) & =\{A \in \mathscr{A}: x \notin A\}, \\
\mathscr{A}(x y) & =\{A \in \mathscr{A}: x \in A, y \in A\}, \\
\mathscr{A}(x \bar{y}) & =\{A \in \mathscr{A}: x \in A, y \notin A\}, \text { etc. },
\end{aligned}
$$

and for $Y \subset X$,

$$
\begin{aligned}
& \mathscr{A}(Y)=\{A \in \mathscr{A}: Y \subset A\}, \\
& \mathscr{A}(\bar{Y})=\{A \in \mathscr{A}: Y \cap A=\emptyset\} .
\end{aligned}
$$

Proposition 1.2 [4]. Suppose that $\mathscr{F} \subset\binom{X}{k}$ is an intersecting family with $\tau(\mathscr{F})=t$. Let $\mathscr{C}=\mathscr{C}_{t}(\mathscr{F})$. Then, for any subset A of X with $|A|<t$, we have $|\mathscr{C}(A)| \leqslant p_{t-|A|}(k)$.

2. Proof of Theorem 1.1

Throughout this section, we assume that t is a fixed positive integer, k is large compared to t, and that $\mathscr{F} \subset\binom{X}{k}$ is an intersecting family with $\tau(\mathscr{F})=t$ such that $\left|\mathscr{C}_{t}(\mathscr{F})\right| \geqslant k^{t}-\binom{t}{2} k^{t-1}$. We simply write \mathscr{C} for $\mathscr{C}_{t}(\mathscr{F})$.

For $A \in \mathscr{F}$ and $x \in A$, define

$$
\begin{aligned}
\gamma_{i}(x, A) & =|\{C \in \mathscr{C}(x):|C \cap A|=i\}|, \\
c(x, A) & =\sum_{i=1}^{t} \frac{1}{i} \gamma_{i}(x, A) .
\end{aligned}
$$

We call $c(x, A)$ the contribution of $x \in A$ for $|\mathscr{C}|$, because it is easy to see that $|\mathscr{C}|=$ $\sum_{x \in A} c(x, A)$. Moreover, by definition, we have $|\mathscr{C}(x)|=\sum_{i=1}^{t} \gamma_{i}(x, A)$.

Lemma 2.1. For any pair of edges A and B in \mathscr{F}, either $|A \cap B|<t^{2}$ or $|A \cap B|>k-t^{2}$ holds.

Proof. Define $a=|A \cap B|$. We assume that $t^{2} \leqslant a \leqslant k-t^{2}$, and estimate the contribution of each vertex $x \in A$ for $|\mathscr{C}|$.
If $x \in A-B$, then every t-cover $C \in \mathscr{C}$ with $C \cap A=\{x\}$ must contain some vertex $y \in B-A$. So, for fixed $y \in B-A$, we have $|\mathscr{C}(x y)| \leqslant p_{t-2}(k) \leqslant k^{t-2}$. Hence,

$$
\gamma_{1}(x, A) \leqslant|B-A| k^{t-2}=(k-a) k^{t-2} .
$$

Thus,

$$
\begin{aligned}
c(x, A) & \leqslant \gamma_{1}(x, A)+\frac{1}{2}\left(|\mathscr{C}(x)|-\gamma_{1}(x, A)\right) \\
& =\frac{1}{2}\left(\gamma_{1}(x, A)+|\mathscr{C}(x)|\right) \\
& \leqslant \frac{1}{2}\left((k-a) k^{t-2}+k^{t-1}\right) \\
& =k^{t-1}-\frac{a}{2} k^{t-2} .
\end{aligned}
$$

If $x \in A \cap B$, then we have $c(x, A) \leqslant|\mathscr{C}(x)| \leqslant p_{t-1}(k) \leqslant k^{t-1}$. By summing up all contributions of $x \in A$, we get

$$
\begin{aligned}
|\mathscr{C}|=\sum_{x \in A} c(x, A) & \leqslant(k-a)\left(k^{t-1}-\frac{a}{2} k^{t-2}\right)+a k^{t-1} \\
& =k^{t}-\frac{a}{2} k^{t-1}+\frac{a^{2}}{2} k^{t-2}
\end{aligned}
$$

Since $t^{2} \leqslant a \leqslant k-t^{2}$, the RHS of the above inequality attains its maximum when $a=t^{2}$. So, $|\mathscr{C}| \leqslant k^{t}-\frac{t^{2}}{2} k^{t-1}+\frac{t^{4}}{2} k^{t-2}$, which contradicts the assumption that $|\mathscr{C}| \geqslant k^{t}-\binom{t}{2} k^{t-1}$, for k sufficiently large.

The result of Lemma 2.1 implies that the set of edges in \mathscr{F} is partitioned into the equivalence classes $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{r}$, where $|A \cap B|>k-t^{2}$ if and only if A and B are in the same class \mathscr{F}_{i}.

Lemma 2.2. For each $i(1 \leqslant i \leqslant r)$, we have $\left|\bigcap_{F \in \mathscr{F}_{i}} F\right|>k-t^{2}$.

Proof. Fix i and $A \in \mathscr{F}_{i}$. Let $X_{i}=\bigcap_{F \in \mathscr{F}_{i}} F$ and $a=\left|X_{i}\right|$. We assume that $a \leqslant k-t^{2}$. If $x \in A-X_{i}$, then there exists an edge $B \in \mathscr{F}_{i}$ such that $x \notin B$. Note that $|A \cap B|>k-t^{2}$ and hence $|B-A|<t^{2}$. By the same argument used in Lemma 2.1, we have $\gamma_{1}(x, A) \leqslant$
$|B-A| k^{t-2}<t^{2} k^{t-2}$. Therefore,

$$
\begin{aligned}
c(x, A) & \leqslant \frac{1}{2}\left(\gamma_{1}(x, A)+|\mathscr{C}(x)|\right) \\
& <\frac{1}{2}\left(t^{2} k^{t-2}+k^{t-1}\right)
\end{aligned}
$$

If $x \in X_{i}$, then $c(x, A) \leqslant|\mathscr{C}(x)| \leqslant k^{t-1}$. Thus,

$$
\begin{aligned}
|\mathscr{C}|=\sum_{x \in A} c(x, A) & <(k-a) \frac{1}{2}\left(t^{2} k^{t-2}+k^{t-1}\right)+a k^{t-1} \\
& =\frac{1}{2}\left(k^{t}+t^{2} k^{t-1}+a\left(k^{t-1}-t^{2} k^{t-2}\right)\right) \\
& \leqslant \frac{1}{2}\left(k^{t}+t^{2} k^{t-1}+\left(k-t^{2}\right)\left(k^{t-1}-t^{2} k^{t-2}\right)\right) \\
& =k^{t}-\frac{t^{2}}{2} k^{t-1}+\frac{t^{4}}{2} k^{t-2}
\end{aligned}
$$

This is a contradiction.

By Lemma 2.2, $\tau\left(\mathscr{F}_{i}\right)=1$ holds for each $i(1 \leqslant i \leqslant r)$. And so we have that $r \geqslant t$ must hold, since $\tau(\mathscr{F})=t$.

Lemma 2.3. $r=t$.

Proof. Suppose that $r \geqslant t+1$. Choose one edge F_{i} from each $\mathscr{F}_{i}, 1 \leqslant i \leqslant t+1$, and define $\mathscr{H}=\left\{F_{1}, F_{2}, \ldots, F_{t+1}\right\}$. The degree of a vertex x in \mathscr{H} is the number of edges in \mathscr{H} containing x. Let Y be the set of those vertices whose degree in \mathscr{H} is at least two. Note that $\left|F_{i} \cap F_{j}\right|<t^{2}$ if $i \neq j$, and hence $|Y|<\binom{t+1}{2} t^{2}$. On the other hand, every t-cover of \mathscr{F} must contain some vertex in Y. Thus,

$$
\begin{aligned}
|\mathscr{C}| & \leqslant \sum_{y \in Y}|\mathscr{C}(y)| \leqslant|Y| p_{t-1}(k) \\
& <\binom{t+1}{2} t^{2} k^{t-1} .
\end{aligned}
$$

This is a contradiction.

For each $i(1 \leqslant i \leqslant t)$, define $X_{i}=\bigcap_{F \in \mathscr{F}_{i}} F$ and $\alpha_{i}=k-\left|X_{i}\right|$. By Lemma 2.2, we have $\alpha_{i}<t^{2}$.
The vertex sets $X_{1}, X_{2}, \ldots, X_{t}$ are pairwise disjoint, for otherwise \mathscr{F} can be covered by at most $t-1$ vertices.

Lemma 2.4. $|\mathscr{C}|=k^{t}-\left(\sum_{i=1}^{t} \alpha_{i}\right) k^{t-1}+O\left(k^{t-2}\right)$.
Proof. Define

$$
\mathscr{C}^{\prime}=\left\{C \in\binom{X}{t}:\left|C \cap X_{i}\right|=1 \text { for all } i, 1 \leqslant i \leqslant t\right\} .
$$

Obviously, $\mathscr{C}^{\prime} \subset \mathscr{C}=\mathscr{C}_{t}(\mathscr{F})$, and

$$
\left|\mathscr{C}^{\prime}\right|=\prod_{i=1}^{t}\left|X_{i}\right|=\prod_{i=1}^{t}\left(k-\alpha_{i}\right)=k^{t}-\left(\sum_{i=1}^{t} \alpha_{i}\right) k^{t-1}+O\left(k^{t-2}\right) .
$$

Hence, in order to prove the lemma, it suffices to show that $\left|\mathscr{C}-\mathscr{C}^{\prime}\right|=O\left(k^{t-2}\right)$.
For each $i(1 \leqslant i \leqslant t)$, let \mathscr{C}_{i} be the set of t-covers C of \mathscr{F} such that $C \cap X_{i}=\emptyset$. Fix i and $A \in \mathscr{F}_{i}$. Since every t-cover $C \in \mathscr{C}_{i}$ contains some vertex in $A-X_{i}$, there exists a vertex $x \in A-X_{i}$ such that $\left|\mathscr{C}_{i}(x)\right| \geqslant \frac{1}{\alpha_{i}}\left|\mathscr{C}_{i}\right|$. Now, there exists an edge $B \in \mathscr{F}_{i}$ such that $x \notin B$. Since every cover $C \in \mathscr{C}_{i}(x)$ must contain some vertex in $B-X_{i}$, there exists a vertex $y \in B-X_{i}$ such that $\left|\mathscr{C}_{i}(x y)\right| \geqslant \frac{1}{\alpha_{i}}\left|\mathscr{C}_{i}(x)\right| \geqslant \frac{1}{\alpha_{i}^{2}}\left|\mathscr{C}_{i}\right|$.

On the other hand, $\left|\mathscr{C}_{i}(x y)\right| \leqslant|\mathscr{C}(x y)| \leqslant p_{t-2}(k) \leqslant k^{t-2}$. The last two inequalities imply $\left|\mathscr{C}_{i}\right| \leqslant \alpha_{i}^{2} k^{t-2}<t^{4} k^{t-2}$. Thus,

$$
\left|\mathscr{C}-\mathscr{C}^{\prime}\right| \leqslant \sum_{i=1}^{t}\left|\mathscr{C}_{i}\right|<t^{5} k^{t-2}=O\left(k^{t-2}\right)
$$

This completes the proof of Lemma 2.4.
Now we can easily prove Theorem 1.1. Suppose that k is sufficiently large with respect to t. Let $\mathscr{F} \subset\binom{X}{k}$ be an intersecting family with $\tau(\mathscr{F})=t$ such that $\left|\mathscr{C}_{t}(\mathscr{F})\right|=p_{t}(k)$. Because we know that $b(t) \leqslant\binom{ t}{2}$ (see Example 1), we have

$$
\left|\mathscr{C}_{t}(\mathscr{F})\right| \geqslant k^{t}-b(t) k^{t-1} \geqslant k^{t}-\binom{t}{2} k^{t-1}
$$

Then, by Lemma 2.4,

$$
\left|\mathscr{C}_{t}(\mathscr{F})\right| \leqslant k^{t}-b(t) k^{t-1}+O\left(k^{t-2}\right) .
$$

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We assume that $\mathscr{F} \subset\binom{X}{k}$ is an intersecting family with $\tau(\mathscr{F})=t$. Let $X_{1}, X_{2}, \ldots, X_{t}$ be pairwise disjoint subset of X. Suppose that \mathscr{F} is partitioned into t classes of edges $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{t}$, and that, for each i, every edge $F \in \mathscr{F}_{i}$ contains X_{i},

Let $\left|X_{i}\right|=k-\alpha_{i}$ for $1 \leqslant i \leqslant t$.
Define $s=\left\lfloor\frac{t-1}{2}\right\rfloor$. Let $F_{1}, F_{2}, \ldots, F_{s}$ be edges of \mathscr{F} such that F_{i} and F_{j} are in the different classes of $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{t}$ if $i \neq j$. Define

$$
\mathscr{H}=\left\{F_{1}, F_{2}, \ldots, F_{s}\right\} .
$$

The degree of a vertex x in \mathscr{H} is denoted by $\operatorname{deg}_{\mathscr{H}}(x)$. Let us choose $F_{1}, F_{2}, \ldots, F_{s}$ so that $\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)$ is maximal. We may assume that $F_{i} \in \mathscr{F}_{i}$ for each $i(1 \leqslant i \leqslant s)$. Let $x_{1}, x_{2}, \ldots, x_{s}$ be the s vertices of \mathscr{H} whose degrees in \mathscr{H} are as large as possible. Define $d=\min _{1 \leqslant i \leqslant s} \operatorname{deg}_{\mathscr{H}}\left(x_{i}\right)$. Now,

$$
\begin{array}{ll}
\operatorname{deg}_{\mathscr{H}}\left(x_{i}\right) \geqslant d & \text { for each } i(1 \leqslant i \leqslant s), \quad \text { and } \\
\operatorname{deg}_{\mathscr{H}}(y) \leqslant d & \text { for each } y \in V(\mathscr{H})-\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} .
\end{array}
$$

Case 1. $d \geqslant \sqrt{s / 2}$.
Since $\operatorname{deg}_{\mathscr{H}}\left(x_{i}\right) \geqslant d$ for each $i(1 \leqslant i \leqslant s)$, we have

$$
\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right) \geqslant s(d-1) \geqslant \frac{1}{\sqrt{2}} s^{\frac{3}{2}}-s .
$$

On the other hand,

$$
\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)=k s-|V(\mathscr{H})| \leqslant k s-\sum_{i=1}^{s}\left|X_{i}\right|=\sum_{i=1}^{s} \alpha_{i} .
$$

Hence, we have $\sum_{i=1}^{s} \alpha_{i} \geqslant \frac{1}{\sqrt{2}} s^{\frac{3}{2}}-s$. Moreover, since \mathscr{F} is intersecting, at most one of $\alpha_{s+1}, \ldots, \alpha_{t}$ is 0 . Thus,

$$
\begin{aligned}
\sum_{i=1}^{t} \alpha_{i} & \geqslant \sum_{i=1}^{s} \alpha_{i}+(t-s-1) \\
& \geqslant\left(\frac{1}{\sqrt{2}} s^{\frac{3}{2}}-s\right)+s=\frac{1}{\sqrt{2}} s^{\frac{3}{2}}
\end{aligned}
$$

Case 2. $d<\sqrt{s / 2}$.
For each $i(1 \leqslant i \leqslant s)$, choose one vertex $y_{i} \in X_{i}$. Since $\tau(\mathscr{F})=t>2 s$, there exists an edge $G \in \mathscr{F}$ such that $G \cap\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{s}\right\}=\emptyset$. We may assume that $G \in \mathscr{F}_{s+1}$. We will find an edge $F_{l} \in \mathscr{H}$ such that the family $\left(\mathscr{H}-\left\{F_{l}\right\}\right) \cup\{G\}$ contradicts the maximality of $\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)$.

Let Y be the set of vertices y in $V(\mathscr{H})$ with $\operatorname{deg}_{\mathscr{H}}(y) \geqslant 2$, and define $a_{i}=\left|F_{i} \cap Y\right|$ for $1 \leqslant i \leqslant s$. Then

$$
\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)=\sum_{y \in Y}\left(\operatorname{deg}_{\mathscr{H}}(y)-1\right)=\sum_{i=1}^{s} a_{i}-|Y| .
$$

Obviously, $|Y| \leqslant \sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)$ holds, and hence

$$
\sum_{i=1}^{s} a_{i}=\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)+|Y| \leqslant 2 \sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)
$$

If $\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right) \geqslant s(\sqrt{s / 2}-1)$, then, by the same argument as used in Case 1 , we are done. Hence, we may assume that $\sum_{i=1}^{s} a_{i}<2 s(\sqrt{s / 2}-1)$. Therefore, there exists some $l(1 \leqslant l \leqslant s)$ such that $a_{l}<2(\sqrt{s / 2}-1)=\sqrt{2 s}-2$.

Now define $\mathscr{H}^{\prime}=\left(\mathscr{H}-\left\{F_{l}\right\}\right) \cup\{G\}$. Let $Z=V\left(\mathscr{H}-\left\{F_{l}\right\}\right) \cap G$. Recall that G contains none of the vertices x_{1}, \ldots, x_{s}. So the degree of every vertex of Z in \mathscr{H} (and hence in $\left.\mathscr{H}-\left\{F_{l}\right\}\right)$ is at most $d<\sqrt{s / 2}$, while G must intersect with $s-1$ edges of $\mathscr{H}-\left\{F_{l}\right\}$.

Therefore, we have $|Z| \geqslant \frac{s-1}{d}>\sqrt{2 s}-\sqrt{2 / s}$. Thus,

$$
\begin{aligned}
\sum_{x \in V(\mathscr{H}}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right) & =\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)-a_{l}+|Z| \\
& >\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)-(\sqrt{2 s}-2)+(\sqrt{2 s}-\sqrt{2 / s}) \\
& \geqslant \sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right) .
\end{aligned}
$$

This contradicts the maximality of $\sum_{x \in V(\mathscr{H})}\left(\operatorname{deg}_{\mathscr{H}}(x)-1\right)$.

4. $p_{4}(k)$ and $p_{5}(k)$

In this section, we show that Conjecture 2, and hence Conjecture 1 , is true for $t=4$ and $t=5$.

Theorem 4.1. $p_{4}(k)=k^{4}-6 k^{3}+O\left(k^{2}\right)$.
Theorem 4.2. $p_{5}(k)=k^{5}-10 k^{4}+O\left(k^{3}\right)$.
Proof of Theorem 4.1. We will use Theorem 1.1. Let $\mathscr{F} \subset\binom{X}{2}$ be an intersecting family with $\tau(\mathscr{F})=4$. Let X_{1}, X_{2}, X_{3} and X_{4} be pairwise disjoint subsets of X. Suppose that \mathscr{F} is partitioned into four classes $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}$ and \mathscr{F}_{4} such that, for each $i(1 \leqslant i \leqslant 4)$, every edge $F \in \mathscr{F}_{i}$ contains X_{i}. We may assume that $\left|X_{1}\right| \geqslant\left|X_{2}\right| \geqslant\left|X_{3}\right| \geqslant\left|X_{4}\right|$. We want to show that $\sum_{i=1}^{4}\left(k-\left|X_{i}\right|\right) \geqslant 6$.

We use the following notation. For $I \subset\{1,2,3,4\}$, define $\mathscr{F}_{I}=\bigcup_{i \in I} \mathscr{F}_{i}$ and $X_{I}=\bigcup_{i \in I} X_{i}$. If $I=\{i, j, \ldots\}$, then we write $\mathscr{F}_{i j \ldots \text { and }} X_{i j \ldots \text { instead of }} \mathscr{F}_{\{i, j, \ldots\}}$ and $X_{\{i, j, \ldots\}}$, respectively. Note that $\tau\left(\mathscr{F}_{I}\right)=|I|$, for otherwise, i.e., if $\tau\left(\mathscr{F}_{I}\right)<|I|$, then \mathscr{F} can be covered by at most three vertices.

Case 1. $\left|X_{1}\right|=k$.
If $\left|X_{2}\right| \leqslant k-2$, then $\sum_{i=1}^{4}\left(k-\left|X_{i}\right|\right) \geqslant 6$, and we are done. So we may assume that $\left|X_{2}\right|=k-1$. In this case, for any $F \in \mathscr{F}_{12}$, we have $F \subset X_{12}$, i.e., $F \cap X_{34}=\emptyset$. Since $\tau\left(\mathscr{F}_{12}\right)=2$, every edge $G \in \mathscr{F}_{34}$ contains at least two vertices of X_{12}, in order to intersect with all edges in \mathscr{F}_{12}. Hence we have $\left|X_{3}\right| \leqslant k-2$. We may assume that $\left|X_{3}\right|=k-2$. Then $V\left(\mathscr{F}_{123}\right)=X_{123}$. In particular, for every edge $F \in \mathscr{F}_{123}$, we have $F \cap X_{4}=\emptyset$. Since $\tau\left(\mathscr{F}_{123}\right)=3$, every edge $G \in \mathscr{F}_{4}$ must contain at least three vertices of X_{123}. Hence $\left|X_{4}\right| \leqslant k-3$. Thus $\sum_{i=1}^{4}\left(k-\left|X_{i}\right|\right) \geqslant 6$ has been proved.
Case 2. $\left|X_{1}\right| \leqslant k-1$.
We may assume that $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=k-1$ and that $\left|X_{4}\right|=k-1$ or $k-2$. Let $H \in \mathscr{F}_{4}$. Since $\left|H-X_{4}\right| \leqslant 2$ and $\tau\left(\mathscr{F}_{123}\right)=3, H-X_{4}$ does not cover \mathscr{F}_{123}. This implies that there exists an edge $F \in \mathscr{F}_{123}$ such that $F \cap H \subset X_{4}$. We may assume that $F \in \mathscr{F}_{1}$. In particular, $F \subset X_{14}$. Then every edge $G \in \mathscr{F}_{i}(i=2,3)$ consists of X_{i} and some vertex in $F \subset X_{14}$. In this situation, it is easy to see that either some edges $G \in \mathscr{F}_{2}$ and $G^{\prime} \in \mathscr{F}_{3}$ do not intersect, or $\tau\left(\mathscr{F}_{12}\right)$ or $\tau\left(\mathscr{F}_{13}\right)$ is one, a contradiction.

Our proof of Theorem 4.2 is lengthy and tedious, so we give only a part of the proof.
Proof of Theorem 4.2. As assumed in the proof of Theorem 4.1, let $\mathscr{F} \subset\binom{X}{2}$ be an intersecting family with $\tau(\mathscr{F})=5$. Let $X_{1}, X_{2}, X_{3}, X_{4}$ and X_{5} be pairwise disjoint subsets of X. Suppose that \mathscr{F} is partitioned into five classes $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}, \mathscr{F}_{4}$ and \mathscr{F}_{5} such that, for each $i(1 \leqslant i \leqslant 5)$, every edge $F \in \mathscr{F}_{i}$ contains X_{i}.

We use the same notation used in the proof of Theorem 4.1. Also, we use the following facts.
(1) For $I \subset\{1,2,3,4,5\}$, we have $\tau\left(\mathscr{F}_{I}\right)=|I|$.
(2) For $F \in \mathscr{F}_{i}$ and $G \in \mathscr{F}_{j}(i \neq j)$, if $F \cap\left(G-X_{j}\right)=\emptyset$, then $F \cap X_{j} \neq \emptyset$.
(3) Let $I \subset\{1,2,3,4,5\}$. Suppose that $V\left(\mathscr{F}_{I}\right) \cap X_{j}=\emptyset$. Then, for every $F \in \mathscr{F}_{j}, F-X_{j}$ covers \mathscr{F}_{I}. In particular, $\left|F-X_{j}\right|=k-\left|X_{j}\right| \geqslant|I|$.
We may assume that $\left|X_{1}\right| \geqslant\left|X_{2}\right| \geqslant\left|X_{3}\right| \geqslant\left|X_{4}\right| \geqslant\left|X_{5}\right|$. Now, we want to show that $\sum_{i=1}^{5}\left(k-\left|X_{i}\right|\right) \geqslant 10$. So, we may also assume that $\left|X_{1}\right| \geqslant k-1$. We distinguish the following five cases.

Case 1. $\left|X_{1}\right|=k$ and $\left|X_{2}\right|=k-1$.
Case 2. $\left|X_{1}\right|=k$ and $\left|X_{2}\right| \leqslant k-2$.
Case 3. $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=k-1$.
Case 4. $\left|X_{1}\right|=\left|X_{2}\right|=k-1$ and $\left|X_{3}\right| \leqslant k-2$.
Case 5. $\left|X_{1}\right|=k-1$ and $\left|X_{2}\right| \leqslant k-2$.
Here, we consider only the last case (Case 5), which is in a sense the most complicated case. The other cases are similar but easier.

Now, we may assume that $\left|X_{1}\right|=k-1$ and $\left|X_{2}\right|=\left|X_{3}\right|=\left|X_{4}\right|=\left|X_{5}\right|=k-2$.
Subcase 5.1. There exists an edge $A_{1} \in \mathscr{F}_{1}$ such that $A_{1} \cap X_{2345} \neq \emptyset$.
We may assume that $A_{1}=X_{1} \cup\left\{e_{1}\right\}$ with $e_{1} \in X_{5}$. Let E_{0} be an edge in \mathscr{F}_{5}. Note that $\left|\left(E_{0}-X_{5}\right) \cup\left\{e_{1}\right\}\right|=3$. So $\left(E_{0}-X_{5}\right) \cup\left\{e_{1}\right\}$ does not cover \mathscr{F}_{2345}. We may assume that there exists an edge $B_{1} \in \mathscr{F}_{2}$ such that $B_{1} \cap\left(\left(E_{0}-X_{5}\right) \cup\left\{e_{1}\right\}\right)=\emptyset$. This edge B_{1} must intersect with A_{1} and E_{0}. Hence B_{1} must contain a vertex a_{1} of X_{1} and a vertex e_{2} of $X_{5}\left(e_{2} \neq e_{1}\right)$, i.e., $B_{1}=X_{2} \cup\left\{a_{1}, e_{2}\right\}$.

Consider the set $\left\{a_{1}, e_{1}, e_{2}\right\}$, which does not cover \mathscr{F}_{1345}. We may assume that there exists an edge $C_{1} \in \mathscr{F}_{3}$ such that $C_{1} \cap\left\{a_{1}, e_{1}, e_{2}\right\}=\emptyset$. Since C_{1} must intersect with A_{1} and B_{1}, we can write $C_{1}=X_{3} \cup\left\{a_{2}, b_{1}\right\}$ with $a_{2} \in X_{1}-\left\{a_{1}\right\}$ and $b_{1} \in X_{2}$.

Now, the set $\left\{a_{2}, b_{1}, e_{1}\right\}$ does not cover \mathscr{F}_{1245}. So there exists an edge $D_{1} \in \mathscr{F}_{4}$ such that $D_{1} \cap\left\{a_{2}, b_{1}, e_{1}\right\}=\emptyset$. Since D_{1} must intersect with A_{1} and C_{1}, D_{1} must contain some vertex in X_{1} and some vertex in X_{3}. Also, D_{1} intersects with B_{1}, and hence D_{1} must contain a_{1}. Let $D_{1}=X_{4} \cup\left\{a_{1}, c_{1}\right\}$ with $c_{1} \in X_{3}$.
Also, the set $\left\{a_{1}, c_{1}, e_{1}\right\}$ does not cover \mathscr{F}_{1235}. So, there exists an edge $B_{2} \in \mathscr{F}_{2}$ such that $B_{2} \cap\left\{a_{1}, c_{1}, e_{1}\right\}=\emptyset$. Since B_{2} must intersect with A_{1} and D_{1}, we can put $B_{2}=X_{2} \cup\left\{a, d_{1}\right\}$ where $a \in X_{1}-\left\{a_{1}\right\}$ and $d_{1} \in X_{4}$.

Finally, the set $\left\{a_{2}, b_{1}, c_{1}, d_{1}\right\}$ does not cover \mathscr{F}. So, there exists an edge $E_{1} \in \mathscr{F}_{5}$ such that $E_{1} \cap\left\{a_{2}, b_{1}, c_{1}, d_{1}\right\}=\emptyset$. Since E_{1} must intersect with C_{1}, we can put $E_{1}=X_{5} \cup\left\{c_{2}, x\right\}$ with $c_{2} \in X_{3}-\left\{c_{1}\right\}$ and $x \notin\left\{a_{2}, b_{1}, c_{1}, d_{1}\right\}$. Now, $E_{1} \cap D_{1} \neq \emptyset$ and $E_{1} \cap B_{2} \neq \emptyset$, while $\left(D_{1} \cup B_{2}\right) \cap\left(X_{5} \cup\left\{c_{2}\right\}\right)=\emptyset$. Hence, $x \in D_{1} \cap B_{2}=\left\{d_{1}\right\}$. This is a contradiction.
Subcase 5.2. $\quad V\left(\mathscr{F}_{1}\right) \cap X_{2345}=\emptyset$.
In this case, every edge in \mathscr{F}_{2345} contains some vertex of $V\left(\mathscr{F}_{1}\right)$. Let $A_{0} \in \mathscr{F}_{1}$ and $B_{0} \in \mathscr{F}_{2}$. Since $\left|A_{0}-X_{1}\right|=1$ and $\left|B_{0}-X_{2}\right|=2,\left(A_{0}-X_{1}\right) \cup\left(B_{0}-X_{2}\right)$ does not cover \mathscr{F}_{1345}. So, we may assume that there exists an edge $C_{1}=X_{3} \cup\left\{a_{1}, b_{1}\right\} \in \mathscr{F}_{3}$ with $a_{1} \in X_{1}$ and $b_{1} \in X_{2}$. Next, the set $\left(A_{0}-X_{1}\right) \cup\left\{a_{1}, b_{1}\right\}$ does not cover \mathscr{F}_{1245}. So, we may assume that there exists an edge $D_{1}=X_{4} \cup\left\{a_{2}, c_{1}\right\} \in \mathscr{F}_{4}$ with $a_{2} \in X_{1}-\left\{a_{1}\right\}$ and $c_{1} \in X_{3}$.
Now, the set $\left\{a_{1}, b_{1}, c_{1}\right\}$ does not cover \mathscr{F}_{1235}. So, we may assume that there exists an edge $E_{1}=X_{5} \cup\left\{c_{2}, x\right\} \in \mathscr{F}_{5}$ with $c_{2} \in X_{3}-\left\{c_{1}\right\}$ and $x \notin\left\{a_{1}, b_{1}, c_{1}\right\}$. But E_{1} must intersect with A_{0} and D_{1}, while $\left(A_{0} \cup D_{1}\right) \cap\left(X_{5} \cup\left\{c_{2}\right\}\right)=\emptyset$. Hence $x \in A_{0} \cap D_{1}=\left\{a_{2}\right\}$, i.e., $x=a_{2}$. In particular, every edge $E \in \mathscr{F}_{5}\left(\overline{a_{1} b_{1} c_{1}}\right)$ contains a_{2}.

Now, the set $\left\{a_{1}, a_{2}, b_{1}, c_{1}\right\}$ does not cover \mathscr{F}, but covers \mathscr{F}_{1235}. So, there exists an edge $D_{2} \in \mathscr{F}_{4}$ such that $D_{2} \cap\left\{a_{1}, a_{2}, b_{1}, c_{1}\right\}=\emptyset$. Since D_{2} must intersect with A_{0}, C_{1} and E_{1}, D_{2} contains a vertex of A_{0} and the vertex c_{2}. Let $D_{2}=X_{4} \cup\left\{a^{\prime}, c_{2}\right\}$, where $a^{\prime} \in A_{0}-\left\{a_{1}, a_{2}\right\}$ and $c_{2} \in X_{3}-\left\{c_{1}\right\}$. The argument implies that every edge $D \in \mathscr{F}_{4}\left(\overline{a_{1} a_{2} b_{1}}\right)$ contains c_{2}.

Next, consider the set $\left\{a_{1}, a_{2}, b_{1}, c_{2}\right\}$, which does not cover \mathscr{F}. This set covers \mathscr{F}_{123}, and also, by the result in the last paragraph, covers \mathscr{F}_{4}. So, there exists an edge $E_{2} \in \mathscr{F}_{5}$ such that $E_{2} \cap\left\{a_{1}, a_{2}, b_{1}, c_{2}\right\}=\emptyset$. This edge E_{2} must contain the vertices a^{\prime} and c_{1}.
Now, we can easily see that every edge $F \in \mathscr{F}_{45}\left(\overline{a_{1} b_{1}}\right)$ must contain one of the vertices c_{1} and c_{2}. This implies that \mathscr{F} is covered by $\left\{a_{1}, b_{1}, c_{1}, c_{2}\right\}$, a contradiction.

References

[1] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12 313-320.
[2] Frankl, P. (1980) On intersecting families of finite sets. Bull. Austral. Math. Soc. 21 363-372.
[3] Frankl, P., Ota, K. and Tokushige, N. (1995) Uniform intersecting families with covering number four. J. Combin. Theory, Ser. A 71 127-145.
[4] Frankl, P., Ota, K. and Tokushige, N. (1996) Covers in uniform intersecting families and a counterexample to a conjecture of Lovász. J. Combin. Theory, Ser. A 74 33-42.
[5] Füredi, Z. (1988) Matchings and covers in hypergraphs. Graphs and Combin. 4 115-206.
[6] Gyárfás, A. (1977) Partition coverings and blocking sets in hypergraphs. (In Hungarian.) MTA SZTAKI Tanulmányok 7162.
[7] Hilton, A. J. W. and Milner, E. C. (1967) Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 18 369-384.

