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It is known that any k-uniform family with covering number ¢ has at most k! t-covers. In this
paper, we deal with intersecting families and give better upper bounds for the number of
t-covers. Let p;(k) be the maximum number of t-covers in any k-uniform intersecting
families with covering number t. We prove that, for a fixed ¢,

3
(k) <k — L LQJ Tk o),

NARE

In the cases of t = 4 and 5, we also prove that the coefficient of k&~ in p,(k) is exactly (;)

1. Introduction

Let X be a finite set. The family of all k-element subsets of X is denoted by (f) A

family # < (}) is called k-uniform. The vertex set of #, denoted by V(%), is defined

to be (Jpe, F, which is a subset of X in general. An element of % is called an edge of
Z. A family # < () is called intersecting if F NG # 0 holds for every F,G € Z. A set
C < X is called a cover of Z if it intersects every edge of Z, i.e., C N F # () holds for all
F € 7. A cover C is also called a t-cover if |C| = t. The covering number 1(%) of F is
the minimum cardinality of any cover of %.

For a family # < (;f) and an integer t > 1, define

%(?)z{CG (f) :CﬁF#Q)forallFef}.
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Note that €,(%) = 0 for t < ©(F). Define

p:i(k) = max {I%’z(gf) F <)k(> is intersecting and (%) = t},

where ‘max’ is also taken over all X. Gyarfas [6] proved that |%;(%)| < k'. What happens
if we know that & is intersecting? In Gyarfas’s inequality, equality is attained only if &
consists of ¢ pairwise disjoint sets, so, in particular, for ¢ > 2, only if % is nonintersecting.
The aim of the present paper is to attain better bounds for p,(k).

It is shown in [2] (see also [3] and [5]) that the maximum size of k-uniform intersecting
families with covering number ¢ is (p,—;(k) + 0(1))(k t) as the number of vertices n tends
to infinity. So, it is greatly important to determine the value p,(k). See [1], [2], [3] and [7]
for results on the maximum size of k-uniform intersecting families with covering number
restrictions.

It is easy to see that py(k) = k. For t = 2 and 3, the value p,(k) is determined in [2], [3]
and [4].

Theorem A [2]. For k =2, pa(k) = k* —k + 1.

Theorem B [3,4]. For k=3 and k =9, ps3(k) = k3 — 3k*> + 6k — 4.
The following conjecture appears in [4].

Conjecture 1 [4]. For a fixed t, p,(k) = k' — ())k'™! + O(k'2).
The coefficient of k'~! in this conjecture is best possible if it is true.

Example 1. Let T be any tournament with vertex set {1,2,...,t}, and let o; be the
outdegree of the vertex i of T. Choosing t sets of vertices X, X>,...,X; such that
|Xi| =k —o; for (1 <i<t), we define a family % for each i (1 <i<t) as follows:

={X;UA4 : |[Al =, |[ANX;| =1if and only if i dominates j}.

Then, & U Z; is a k-uniform intersecting family and (%) =t if k > t. Now, we can
get a t-cover of Z by choosing any one vertex from each X; (1 <i<t). Hence

t t

H\X| 11« —oci)=kl—<2(xl K=+ 0(k'?)

i=1

= k'— (2>k“1 + O(k"2). O

In view of this example, we make the following conjecture.

Conjecture 2. Let # < ()k() be an intersecting family with ©(%) = t. Let X1, X»,..., X,
be pairwise disjoint subsets of X, and suppose that Z is partitioned into ¢ classes
of edges #,%,,...,%;, and that, for each i, every edge F € %; contains X;. Then,

Eimi (k= 1XiD) = (3)-
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Obviously, Conjecture 1 implies Conjecture 2. One of the main results in this paper is
the other implication. In fact, we prove the following theorem, in which the function b(¢)
is defined to be the minimum value of Y _,(k — |X;|) among the families satisfying the
assumption of Conjecture 2. Note that b(t) < (5), by Example 1.

Theorem 1.1. p,(k) = k' — b(H)k'"™! + O(k'2).

We prove Theorem 1.1 in Section 2.
For a general ¢, we prove the following theorem in Section 3.

Theorem 1.2. b(t) = ﬁ L%J%.
Corollary 1.1. p,(k) <k'— % L5EP K+ Ok ).

Moreover, in Section 4, we determine the exact value for h(4) and b(5), showing that
Conjecture 2, and hence Conjecture 1, is true for t < 5.

In the subsequent argument, we use the following propositions without explicit reference.

Proposition 1.1. [6] p,(k) < k'.

For a family ./ = 2X and vertices x,y € X, we define

d(x) = {Aed : xeA}
AF) = {Aed : xgA),
A(xy) = {Ae€eod : xEA y€EA}
A(xy) = {Aeod : xe€Ad,y¢A}, et,
and for Y < X,
A(Y) = {Aed 1Y c Al
S(Y) = {Aesod 1 YNA=0).

Proposition 1.2 [4]. Suppose that & < ()k() is an intersecting family with ©(#) = t. Let

€ = 6(F). Then, for any subset A of X with |A| <t, we have |6(A)| < p;—4/(k).

2. Proof of Theorem 1.1

Throughout this section, we assume that ¢ is a fixed positive integer, k is large compared to
t,and that # < () is an intersecting family with ©(%) = ¢ such that |4,(#)| > k'—(})k"".
We simply write € for €,(%).

For A € & and x € A, define

pi(x,A) = |{Ce¥(x) : |[CnA|l =i},

t

1
c(x,A) = Z?yi(x,A).

i=1
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We call ¢(x,A) the contribution of x € A for |%|, because it is easy to see that |4| =
> veq €(x,A). Moreover, by definition, we have |%(x)| = S yi(x, A).

Lemma 2.1. For any pair of edges A and B in 7, either |[ANB| < t> or |[ANB| >k — >
holds.

Proof. Define a = |A N B|. We assume that t> < a < k —t*, and estimate the contribution
of each vertex x € A4 for |%).

If x € A — B, then every t-cover C € ¥ with C N A = {x} must contain some vertex
y € B — A. So, for fixed y € B — A4, we have |%(xy)| < p,—»(k) < k'~2. Hence,

71(x,A) < |B— A[K'? = (k — a)k' .
Thus,
1
c(x,4) < Vl(x,A)+5(\(6(x)|—vl(x,A))

Lo 4) + 60

1
< E((k—a)kl*2+kf*1)
o=l 940
= k 2k )

If x € AN B, then we have c(x,4) < |%(x)| < pi—i(k) < k'!. By summing up all
contributions of x € 4, we get

6= c(xA) < (k—a) (kf—l - ng) + k™!
xeA
a

t—2
2k .

a
— kt _ 7]([_1

3 +

Since 1> < a < k — >, the RHS of the above inequality attains its maximum when a = .

So, €] < k' — Sk~ + %k“z, which contradicts the assumption that |¢] > k' — (5)k",

for k sufficiently large. ]

The result of Lemma 2.1 implies that the set of edges in & is partitioned into the
equivalence classes 7, %>, ..., %,, where |ANB| > k —t> if and only if 4 and B are in the
same class ;.

Lemma 2.2. For each i (1 <i<r), we have |(\pe; F| >k — 12,

Proof. Fixiand 4 € #. Let X; = ﬂFe%F and a = |X;|. We assume that a < k — 2. If
x € A — X, then there exists an edge B € .Z; such that x ¢ B. Note that [A N B| > k — t?
and hence |B — A| < t>. By the same argument used in Lemma 2.1, we have y;(x, 4) <
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|B — A| k'=2 < ?k'=2. Therefore,
AxA) < S0i(%A) +600)
< %(tzkf*2 + k).
If x € X;, then ¢(x, 4) < |%(x)] < k'~'. Thus,

1
6= cx.4) < (k- a)E(tzkt_z + k1) + ak!!

x€A
— %(kl 4 t2k171 4 a(k“l _ t2kt72))
1
< E(kt + tzkt—l + (k _ t2)(kt—1 _ [2kt—2))
t? t4
I AL S (L A )
= k 3 K= + 3 k==
This is a contradiction. ]

By Lemma 2.2, ©(%;) = 1 holds for each i (1 < i <r). And so we have that » > t must
hold, since (¥ ) =t.

Lemma 23. r=t.

Proof. Suppose that r > t + 1. Choose one edge F; from each %, 1 < i <t+1, and
define # = {Fy, Fa,..., Fi11}. The degree of a vertex x in # is the number of edges in #
containing x. Let Y be the set of those vertices whose degree in J# is at least two. Note
that |[F;NF;| < ?if i # j, and hence |Y | < ("}')¢%. On the other hand, every t-cover of #
must contain some vertex in Y. Thus,

6l < D 160 < [Y|pa(k)

yey

t+1\ 5,
( ) >tk .

This is a contradiction. |

For each i (1 <i<t), define X; = ﬂFe%F and o; = k — |X;|. By Lemma 2.2, we have
o < 2.

The vertex sets X1, X»,..., X, are pairwise disjoint, for otherwise % can be covered by
at most ¢ — 1 vertices.

Lemma 24. |6 =k'— (3i_; o) k"1 4+ O(k'2).

Proof. Define

‘6’={CE()§) : |ICNX;| =1 forall i, lgigt}.
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Obviously, ¥’ = € = %,(%), and

t t t
| =[] 1%l =]tk — o) =K' — <Z a,-> K=+ 0k ).
i=1 i=1 i=1
Hence, in order to prove the lemma, it suffices to show that [ — %'| = O(k'~2).

For each i (1 < i < t), let 4; be the set of t-covers C of # such that C N X; = (. Fix
i and A € Z;. Since every t-cover C € %; contains some vertex in 4 — X;, there exists a
vertex x € 4 — X; such that |%;(x)| > al|‘6,-|. Now, there exists an edge B € %; such that
x ¢ B. Since every cover C € %;(x) must contain some vertex in B — X;, there exists a
vertex y € B — X; such that |%i(xy)| = 1|%i(x)] = %|%l.

On the other hand, |%;(xy)| < |%(xy)| < pr_a(k) < k'~2. The last two inequalities imply
|%:| < o2k~ < t*k'~2. Thus,

t
6= <> |6 < Pk = 0(k'™).
i=1
This completes the proof of Lemma 2.4. ]

Now we can easily prove Theorem 1.1. Suppose that k is sufficiently large with respect
tot. Let F < (f) be an intersecting family with ©(%#) = t such that |%,(F)| = p:(k).
Because we know that b(t) < (3) (see Example 1), we have

G F)| =k — bk > k! — (;) Kt

Then, by Lemma 2.4,
|6(F)| < k' —b(t)k'™" + O(K'2).

This completes the proof of Theorem 1.1. ]

3. Proof of Theorem 1.2

We assume that & < (if) is an intersecting family with (%) = t. Let X, X>,...,X;
be pairwise disjoint subset of X. Suppose that # is partitioned into ¢ classes of edges
F1,F,..., T, and that, for each i, every edge F € %; contains X;,

Let | Xi|=k—o; for 1 <i<t

Define s = L%J Let Fyi, F»,...,F; be edges of  such that F; and F; are in the different
classes of 71, %,..., % if i # j. Define

H = {Fy,Fs,..., F}.
The degree of a vertex x in # is denoted by deg . (x). Let us choose Fi, F,..., Fs so that
erv(%)(deg”(x) —1) is maximal. We may assume that F; € % for each i (1 < i< s). Let
X1,X2,...,Xs be the s vertices of # whose degrees in # are as large as possible. Define
d = min;¢;<; deg,(x;). Now,
deg,(x;)>d foreachi(l <i<s), and
deg,(y) <d foreachye V(#)—{x1,x2...,Xs}
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Case 1. d>=./s/2.

Since deg,(x;) = d for each i (1 < i< s), we have

e}
[P
|

]

D (degy(x) =) =sd—1)=

xeV(#)

S

On the other hand,
D (degy(x) — 1) =ks— V() <ks =D |Xi[ =) .
i=1

xeV(#) i=1

3 . .. .
Hence, we have Zf=1 o = S Moreover, since & is intersecting, at most one of

. V2
Os+1s,-- -0 18 0. Thus,
t N
Z%’ = Zoci—l—(t—s—l)
i=1 i=1

= (\1@5 —s)—l—s = \lﬁsg.

[

Case 2. d < +/s/2.

For each i (1 <i < s), choose one vertex y; € X;. Since 1(F ) =t > 2s, there exists an edge
G € Z such that GN {xq,..., X5, V1,..., )5} = 0. We may assume that G € F,;1. We will
find an edge F; € # such that the family (# — {F;}) U {G} contradicts the maximality of
Exev(%,)(deg%;(x) —1).

Let Y be the set of vertices y in V() with deg,,(y) = 2, and define a; = |F;N Y| for
1 <i<s. Then

D (egy(x)—1) = (degy(y) =) => ai—|Y|.
i=1

xeV(H) yeY

Obviously, | Y] < erv(y/)(deg%(x) — 1) holds, and hence

STai= " (degp(x) =D +[Y[<2 D (degy(x) —1).
i=1

xeV(H) xeV ()

If ZXGVW)(degf(x) -1 = s(\/s/7 — 1), then, by the same argument as used in Case 1,
we are done. Hence, we may assume that ) ;_; a; < 25(\/5/7 — 1). Therefore, there exists
some [ (1 <1< s) such that g <2(m-1) = \/E—Z.

Now define #' = (# — {F;}) U{G}. Let Z = V(# — {F;}) N G. Recall that G contains
none of the vertices xy,...,x;. So the degree of every vertex of Z in # (and hence in
# — {F;}) is at most d < +/s/2, while G must intersect with s — 1 edges of # — {F,}.
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Therefore, we have |Z| > = > /25 — \/2/s. Thus,
> (egyp(x)—1) = > (degy(x)—1)—a+|Z|

xeV(#) XEV(H)
> D (degy(x) — )= (V25 =2+ (V25— V2/5)
xeV(H)
> > (degy(x)—1).
XEV(H)
This contradicts the maximality of >_ . (degy,(x) — 1). L]

4. p4(k) and ps(k)

In this section, we show that Conjecture 2, and hence Conjecture 1, is true for t = 4 and
t=>35.

Theorem 4.1. py(k) = k* — 6k> + O(k?).
Theorem 4.2. ps(k) = k> — 10k* + O(k3).

Proof of Theorem 4.1. We will use Theorem 1.1. Let & < ()2( ) be an intersecting family
with ©(#) = 4. Let Xy, X5, X3 and X4 be pairwise disjoint subsets of X. Suppose that #
is partitioned into four classes Z#, %#,, %3 and %4 such that, for each i (1 <i < 4), every
edge F € Z; contains X;. We may assume that |X|| > |X5| = |X3] = |X4]. We want to
show that 3>, (k — [ Xi]) > 6.

We use the following notation. For I < {1,2,3,4}, define #; = |J,.; % and X; = J,.; X:.
If I = {i,j,...}, then we write ;.. and X;;.. instead of #;; , and X{;; ,, respectively.
Note that () = |I|, for otherwise, i.e., if (%) < |I|, then % can be covered by at most
three vertices.

Case 1. |X | =k.

If |X5] < k— 2, then Z;l(k — |Xi|]) = 6, and we are done. So we may assume that
|X5| = k — 1. In this case, for any F € %5, we have F < Xy, i.e., F N X34 = (. Since
©(F12) = 2, every edge G € F34 contains at least two vertices of X,, in order to intersect
with all edges in ;. Hence we have |X;| < k — 2. We may assume that |X3| =k — 2.
Then V(%123) = X123. In particular, for every edge F € F53, we have F N X4 = 0.
Since t©(Z123) = 3, every edge G € Z4 must contain at least three vertices of X3. Hence
|X4| <k —3. Thus 37, (k — |X;|) > 6 has been proved.

Case 2. |[Xi|<k-—1

We may assume that |X;| = |X»| = [X3] = k — 1 and that |X4] = k—1 or k — 2. Let
H € #,. Since |H — X4| < 2 and ©(#3) = 3, H — X4 does not cover F1»3. This implies
that there exists an edge F € 153 such that F N H < X4. We may assume that F € 7.
In particular, F < Xy4. Then every edge G € %; (i = 2,3) consists of X; and some vertex
in F = Xy4. In this situation, it is easy to see that either some edges G € %, and G’ € 73
do not intersect, or ©(Z1;) or ©(Z3) is one, a contradiction. ]
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Our proof of Theorem 4.2 is lengthy and tedious, so we give only a part of the proof.

Proof of Theorem 4.2. As assumed in the proof of Theorem 4.1, let & < ()2() be an
intersecting family with 7(#) = 5. Let Xy, X5, X3, X4 and X5 be pairwise disjoint subsets
of X. Suppose that Z is partitioned into five classes %1, %,, 73, #4 and Fs such that,
for each i (1 <i<95), every edge F € %; contains X;.

We use the same notation used in the proof of Theorem 4.1. Also, we use the following
facts.

(1) ForI < {1,2,3,4,5}, we have ©(77) = |I|.
(2) For F e # and G € 7 (i # j), if FN(G—X,) =0, then FN X, # 0.

(3) LetI < {1,2,3,4,5}. Suppose that V(#;) N X; = 0. Then, for every F € Z;, F — X;
covers Z. In particular, |[F — X;| = k — | X;| = |I].

We may assume that [X| = |X5| = |X3] = |X4| = [Xs|. Now, we want to show that
Zis:l(k — |Xi]) = 10. So, we may also assume that |X;| > k — 1. We distinguish the
following five cases.

Case 1. |Xi|=kand |X3|=k—1.

Case 2. |X|| =k and | X5| <k —2.

Case 3. |Xi|=|Xa|=|X3|=k—1L

Case 4. |Xq|=|X3|=k—1and [ X3 <k-—-2.
Case 5. |Xi|=k—1and |X,| <k-—2.

Here, we consider only the last case (Case 5), which is in a sense the most complicated
case. The other cases are similar but easier.
Now, we may assume that |X{| =k — 1 and | X;| = |X3]| = | X4 = |X5| =k — 2.

Subcase 5.1. There exists an edge 4| € % such that 4 N X345 = 0.

We may assume that 4; = X; U {e;} with ¢; € Xs. Let Ey be an edge in 5. Note that
|(Eo—Xs5)U{ei}| = 3. So (Ey— X5)U{e;} does not cover F2345. We may assume that there
exists an edge By € %, such that By N ((Eg — X5) U {e;}) = 0. This edge B; must intersect
with A; and Ey. Hence B; must contain a vertex a; of X; and a vertex e, of X5 (e; # ey),
ie, Bi=X,U {al,ez}.

Consider the set {aj,ej,er}, which does not cover Zj34s. We may assume that there
exists an edge C; € 3 such that Cy N {ay,er,ex} = 0. Since C; must intersect with 4; and
B, we can write C; = X3 U {az,bl} with a, € X1 — {al} and by € X>».

Now, the set {ay, by, e1} does not cover Fyy4s. So there exists an edge D € %4 such that
Dy N{ay,by,e;} = 0. Since Dy must intersect with A; and C;, D; must contain some vertex
in X; and some vertex in X3. Also, D; intersects with B;, and hence D; must contain a;.
Let D = X4 U {a1,01} with ¢; € X;.

Also, the set {aj, c1,e1} does not cover F1a3s. So, there exists an edge B, € 7, such that
By N {ay,c1,e1} = 0. Since B, must intersect with A; and Dy, we can put B, = X, U {a,d;}
where a € X; — {a1} and d; € X4.
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Finally, the set {a,by,c1,d;} does not cover F. So, there exists an edge E; € %5 such
that E; N {az, b1, c¢1,d;} = 0. Since E; must intersect with Cy, we can put E; = X5U {¢2, x}
with ¢, € X5 — {Cl} and x ¢ {az,bl,q,d]}. Now, E; N Dy 7& 0 and E\NB, # Q), while
(D1 UBy) N (X5U {c2}) = 0. Hence, x € Dy N By = {d,}. This is a contradiction.

Subcase 5.2. V(F1) N Xy345 = 0.

In this case, every edge in %345 contains some vertex of V(%#1). Let Ay € #; and By € %,.
Since [Ag— Xi| =1 and |By — X3| = 2, (Ag — X1) U (By — X3) does not cover F345. So, we
may assume that there exists an edge C; = X3 U {a1,b1} € 73 with a; € X; and b; € X.
Next, the set (49— X1)U{ay, b1} does not cover F1s. So, we may assume that there exists
an edge D; = X4 U {az,cl} € F4 with a; € X1 — {al} and ¢; € X;.

Now, the set {a1,b1,c;} does not cover Fir3s. So, we may assume that there exists an
edge E; = XsU{c2,x} € Fs with ¢, € X5 —{c1} and x ¢ {ay,by,c;}. But E; must intersect
with 4y and D4, while (4o UD{)N(XsU {Cz}) = (. Hence x € AoNDy = {ag}, ie, X = a.
In particular, every edge E € %5(a;bic;) contains aj.

Now, the set {aj, a, by, c1} does not cover #, but covers F135. So, there exists an edge
D, € Z4 such that D, N {ay,az,b1,¢1} = 0. Since D, must intersect with Ao, C; and E;, D,
contains a vertex of 4y and the vertex c,. Let Dy = X4 U {d, 2}, where d’ € Ay — {a1,a,}
and ¢, € X3 — {¢1}. The argument implies that every edge D € Z4(ajaxb;) contains c;.

Next, consider the set {ay,as, by, c2}, which does not cover #. This set covers F,3, and
also, by the result in the last paragraph, covers Z4. So, there exists an edge E; € %5 such
that E, N {ay, a2, by, c2} = 0. This edge E; must contain the vertices a’ and ¢;.

Now, we can easily see that every edge F € %45(a;b;) must contain one of the vertices
¢y and ¢,. This implies that & is covered by {ay, by, c1,¢2}, a contradiction. ]
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