Combinatorics, Probability and Computing

. . Combinatorics,
http://journals.cambridge.org/CPC /’ Probability &
(,hm})rrmfg

Additional services for Combinatorics, Probability and Computing:

srecuL mIUE
Pan i

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Some Inequalities Concerning Cross-Intersecting Families

P. FRANKL and N. TOKUSHIGE

Combinatorics, Probability and Computing / Volume 7 / Issue 03 / September 1998, pp 247 - 260
DOI: null, Published online: 08 September 2000

Link to this article: http://journals.cambridge.org/abstract_S0963548398003575

How to cite this article:
P. FRANKL and N. TOKUSHIGE (1998). Some Inequalities Concerning Cross-Intersecting Families. Combinatorics,
Probability and Computing, 7, pp 247-260

Request Permissions : Click here

CAMBRIDGE JOURMNALS

Downloaded from http://journals.cambridge.org/CPC, IP address: 193.224.79.1 on 22 Sep 2014



Combinatorics, Probability and Computing (1998) 7, 247-260. Printed in the United Kingdom
© 1998 Cambridge University Press

Some Inequalities Concerning
Cross-Intersecting Families

P. FRANKL! and N. TOKUSHIGE?

I CNRS, ER 175 Combinatoire,
54 Bd Raspail, 75006 Paris, France
(e-mail: combinatorics@cs.meiji.ac.jp)

2 College of Education, Ryukyu University,
Nishihara, Okinawa, 903-0213 Japan
(e-mail: hide@edu.u-ryukyu.ac. jp)

Received 30 May 1995; revised 30 December 1997

Let a,b and n be integers with 2 < a < b and n > a + b. Suppose that o/ < ([Z]) and 4 <

[Z]) are nontrivial cross-intersecting families. Then |.«/| +|%| < 2+ (Z) —2(";”) + ("732").
This result is best possible.

1. Introduction

Let [n] := {1,2,...,n} be an n-element set. For an integer k, 0 < k < n, we denote by
([Z]) the set of all k-element subsets of [n]. A family & < ([Z]) is called nontrivial if
Nres F = 0. Two families, o/ = (") and 2 < (1)), are said to be cross-intersecting i
ANB +# ( holds for all A € .o/ and B € 4. A family & < ([Z]) is called intersecting if .o/
and ./ are cross-intersecting.

Let us recall the following two fundamental results.

Theorem A (Erdés, Ko and Rado [1]). Let k and n be integers with n = 2k. If 7 < (1))
is intersecting, then |7 | < (Z:})

Theorem B (Hilton and Milner [6]). Let k and n be integers with n = 2k. If # < ([Z]) is
nontrivial intersecting, then |7 | < (Z’::) - (";ﬁ]) + 1.

In [4], Fiiredi proposed the following conjectures.

Conjecture 1. Let a,b and n be integers with n > a + b. Suppose that o/ < ([Z]) and

B = ([Z]) are cross-intersecting families. Then ||| 8| < (Z:i) (Zj)
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Conjecture 2. Let a,b and n be integers with a < b and n > a+b. Suppose that </ < ([Z])
and B < ([Z]) cire cross-inltersectingifamilies. If |.of| = (Zj) — (";ﬁ?l) +1 and <7 is nontrivial,
then 18] < (3=1) — (",57) + (%,2%0)-

Conjecture 3. Let a,b and n be integers with a < b and n = a+ b. Suppose that o/ < ([Z])
and B < ([Z]) are nontrivial cross-intersecting families. Then

|+ 2| < ‘<[a:”>]+‘{3 c <[Z]) [a+1]NB| ;2}].

Conjecture 1 was known to be true if n > max{2a,2b} (see [10], [13]). But if n <
max{2a,2b} then the conjecture is not true in general. A simple counterexample is given
in Section 2.

In Section 3, we show that Conjecture 2 is a direct consequence of a theorem of Mors.

Conjecture 3 is false even if we fix |.o7| = a + 1. In this case, the best construction is the
following. Let

Ai={l,...,a—1}Uf{a+i} for0<i<a,
and set

of = {Ags.., Aut) Ulla,...,2a — 1},

B = {Be ([Z]> :AﬂB#@forallAe;zi}.

If we do not restrict |.o/|, the following construction is much better.
Example. Choose disjoint Ag, A; € ([Z]), and set .o7/¢ := {Ao, 41},

By = {BE ([Z]> IBon#(D, BN A #0}

Then o7y and %, are nontrivial cross-intersecting families. (.«/( has size 2.)
Actually, if b > a + 2 then we have the following result.

Theorem 1. Let a,b and n be integers with 2 < a < b—2 and n = a + b. Suppose that
two families of < ([Z]) and B < ([Z]) are cross-intersecting, and the family </ is nontrivial.
Then, |/ | + |B| < || + |Bo| holds. For n > a + b, equality holds if and only if of = o/
and B = RB.

Note that in the above theorem it is not assumed that % is nontrivial. We prove
Theorem 1 in Section 5. If |.¢/| is relatively small then the same inequality holds for the
casesh=aorb=a+1 as well.

Theorem 2. Let a,b and n be integers with 2 < a < b and n = a + b. Suppose that two
families of < ([Z]) and # < ([Z]) are cross-intersecting, and the family .o/ is nontrivial. Then
the following statements hold.
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() Ifb=a+1and || < ("2}) + ("2), then |«/| + |B| < |Zo| + |Bo|. For n > a+b,

a—

equality holds if and only if o/ = ofy and B = R,.
(il) If b=a and || < (Zj) - ("_”_1) + 1 then |.of| + |B| < |Ao| + |DBo|. For n>a+b

a—1

and a = 3, equality holds if and only if of = o/y and B = Hy.
Using Theorems 1 and 2, we have the following.
Theorem 3. Let a,b and n be integers with 2 < a < b and n > a+b. Suppose that o/ = ([Z])
and B < ([z]) are nontrivial cross-intersecting families. Then |of | + |B| < || + |DBy|. For

n>a+b and b = 3, equality holds if and only if of = /o and B = H,.

Since Theorems 1, 2, 3 are trivial if n = a + b, throughout this paper we consider the
case n > a-+b.

2. Counterexample to Conjecture 1

Define

o ={de ([Z]> H{1,2}n4#0},

B = {B € <[Z]> {12} = B}.

These two families are cross-intersecting, and

=)+ (2D -G -62)

Set 0 := |.«/||B| — ("_}) (}=}). Then & > 0 is equivalent to

b—1
(n—1)(b—a)
m > . (2.1)
Let n=(2—a)b, a= (1 — )b, where
O<a<p<l (2.2)

Then n > a+ b holds and condition (2.1) is equivalent to
(1—1/b)p > (1 —a)*. (2.3)

If we choose o, f and b so that (2.2) and (2.3) hold, then n > a + b, but 6 > 0. For
example, choose an integer ¢ > 5 and set n = 17¢, a = 5¢ and b = 10c: then the pair of
o/ and 4 is a counterexample to Conjecture 1.

3. The Mors theorem
Let # < (W) and 0 <1 < k. The Ith shadow A(F) of # is defined by

A(F):={G:|G| =1, G c F for some F € 7}.
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Let us define the colex order on () by
A< B ifand only if max{4 — B} < max{B — A}.

Define Colex(k, j) to be the first j sets in (Y:) with respect to the colex order. Let us define
|7 || := Upes F. For given integers n, k, i, [, what is the minimum of |A(F)| if # < ([Z]),
|7 =nand |#| =i? The Mors theorem (Theorem C below) gives the complete answer
to this question.

Let n, k, i be integers with n/k < i < (}). Let us construct a family #, = (i)
with | #o|| = n, |#| = i as follows. Define g := max{j : n — |Colex(k, j)|| < (i — j)k},
h = ||Colex(k, g)|. For 1 < j <i—g, define F; :={(j— Dk +h+1,..., jk + h}. Further,
define G :={(i—g—Dk+h+1,...,n,1,2,....,k — (n— (i — g — 1)k — h)}. Finally, define

F = Colex(k,g) U {F1,...,Fi_4_1,G}.

Theorem C (Mors [12]). Let n, k, i, | be integers with 1 <1 <k <n, n/k <i < (}).
Suppose that 7 < (W), | F || = n, |Z| = i. Then |A(F)| = |A(F ).

If n < 2k, the situation is much simpler. In this case, the optimal family % is given by
Fo = Colex(k,i— 1)U {h+1,...,n,1,2,....k + h—n}.

Let us show how Conjecture 2 follows from Theorem C (see also [5]). Note that
n—1 n—a—1
> _
oz (00 -0
_ n—2 n n—3 4og n—a—1 n n—a—1
 \n—a n—a—1 n—2a+1 n—a—1)
By the Mors theorem, we have
— — —a—1 —a—1
‘%gn_nZ_n3_m_na _(n—a
b b b—1 b—a+1 b—1
_ n—1 n n—a—1 B n—a—1
o\b—1 b—a b—1 )
4. Tools for proofs

In this section, we list several inequalities concerning binomial coefficients (see [2], [3],
[10], [11]). These inequalities will be used in later sections.

Lemma 1. Let b > a,a = e+3 and n = a+b. Then inequality P(j,n) holds for 0 < e < a—3
and 0 < j<e+1,

P(in) - n—a+e\ (n—2a+e - n—a+e
P \po1— b—1—j et1—j)

Proof. We prove P(j,n) by double induction on j and n. Fix a, b and e.
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If j = e+ 1, then the desired inequality is

) n—a+e n—2a+e
P(e+ 1,n): (b—2—e> _(b—z—e) > 1.
Since b>a>e+3,we have b—2—e > 1. Thus P(e+ 1,n) holds for all n = a+ b.
Now fix 0 < j < e and assume that P(j,n) holds for all n = a + b. We prove

. ) n—a-e n—2a+e n—a-+e
PU— L (b—j >_< b—j >><e+2—j>

using induction on n.
First we check the case n = a + b, that is,

. b+e b—a+e b+e
PU=Laxh): (b—j>_( b—j )>(e+2—j>'

The above inequality is trivial if b —a+ e < b — j. So assume a < e + j. By the induction
hypothesis P(j,a + b), it follows that

b+e _(b—a+e - b+e _e+2—j( b+te
b—1—j b—1—j e+1—j) b—1+j\e+2—j)

Thus, to prove P(j — 1,a + b), it suffices to show

b+e B b—a+e >b—1+j b+e B b—a+e
b—j b—j e+2—j\\b—1—j b—1-—j) )’

or, equivalently,

(b+e>(1_b—1+j_ b—j )><b—a+e)<1_b—1+j. b—j )
b—j e+2—j e+1+j b—j e+2—j e+l+4+j—a)’

The above inequality clearly holds.
Next we fix n and assume P(j — 1,n). We prove P(j — 1,n + 1). Using the induction
hypotheses P(j — 1,n) and P(j,n), we have

<n+2:j+e>_<n+1b—_2ja+e>
- {0 HGE) - (5]

n—a-e n n—a+e\ n—a-+e+1
e+2—j e+1—j) \ e+2—j

This proves P(j — 1,n+ 1), and by induction P(j — 1,n) holds for all n > a + b. ]

Lemma 2. Let n and a be integers with n > 2a, a > 1. Define f(n,a) := (";1) + ("_aza) —
2("_2_1) - (Zj) Then we have f(n,a) > 0.

Proof. We prove f(n,a) > 0 by double induction on n and a. It is easily checked that
f(n,1) =0 and f(2a,a) = 0. Fix n and a, and assume f(n,a) > 0 and f(n,a— 1) = 0. Using
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these assumptions, let us prove f(n,a + 1) > 0. Since

f(n+1,a)
)= () =) -G
= + -2 - +
a a a a—1
n—1 n n—_2a 5 n—a—1 n—1
{(a—l) <a—1>_ ( a—1 )_<G_Z>}
—a—1 n—2a a—2
= smassoma-n+2(" T 2N (14 5550 )

it suffices to show that
m—a—1)(n—2a+2) " a—?2
(n—2a)---(n—3a+3) ~ 2(n—3a+3)

Let us check the above inequality:

1 a—1
LHS = 1+ ——
< 2) <+n—3a+3>
—1 a—1 a—2
14+ — ——>14+4———— = RHS.
> b Tt T332 —3a+3) S

This proves f(n+ 1,a) > 0. L]

(@) —

Lemma 3. Let n and a be integers with n > 2a+ 1, a > 0. Define f(n,a) := ( " ) —

a+1
27+ (550 — (). Then f(n,a) > 0.

Proof. We prove f(n,a) > 0 by double induction on n and a. One can easily check that
f(n,0) =0and f(2a+1,a) = 0. Fix n and a, and assume that f(n,a) > 0 and f(n,a—1) > 0.
Using these assumptions, let us prove f(n+ 1,a) > 0. In fact,

{(2)- ()=o) =0 -]
() -0 )= (2]
f(n,a)+f(n,a—1)+2{< _a)—<”_z_1)}+
) -G - ()

f(n+1,a)

For an integer k and a real x >k, define (}) = T (x — i) /K.

Lemma 4. Let s,t and n be integers with n > s + t. Define a real valued function f(x) :=
—(X) + (n Z) Then the following statements hold.

N

(i) Suppose that 1 + #ﬂ%) < (9)/(,",)- Then f'(x) < O holds for all real numbers

x <.
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(i) Let u,v be real numbers with u < v, and let w € {u,v}. Suppose that f'(u) < 0 and
f(w) = max{f(u), f(v)}. Then f(w) = f(x) holds for all real numbers x, u < x < v.

Proof. (i) Since f'(x) = —(}) Zj.;}) =+ 05) z;;g—‘ 5 ['(x) <0 is equivalent to

£) /() - 0/
par; xX—7j = xX—7j S n—t
(m—1)--(s+1)
By simple estimation, we have

(x—s) - (x—n+t+1)

"1 Lo n—t—s x

LHS =1 <l l4+-—— " .=
+ Zx—j /onx—j +x—n+t—|—1 s

j=s

A

(4.1)

Thus, to prove (4.1), it suffices to show that

(x—9) (x—n+t+1) <1+ nois x) <(—10--(s+1). (42

X—n+t+1 s
Since the LHS of (4.2) is increasing with x, it suffices to show (4.2) for x = v, that is,

n n—t—s (v v
v—n+t+1 s s n—t)’
But this was our assumption.

(ii) Suppose on the contrary that f(w) < f(x) holds for some x, x > u. Then, we may
assume that there exist p,q which satisfy

u<p<q<v,
f'(p)=71"(q) =0,
fp) < fw) < f(g).
If f'(x) = 0, it follows that

-0+ (5] /(55

Jj=s Jj=0

Substituting this into f(x), we define a new function:
n—t—1 s—1
X 1 1
a "‘(n—r) ; x—j / ;x—j

Note that g(x) = f(x) holds if f’(x) = 0. Thus, f(w) < g(q) must hold. We derive a
contradiction by showing that f(w) = g(x) or, equivalently,

(- (o)

j= Jj=s
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holds for all x > p. We may assume that () — (,",) is nonnegative. Then the LHS is
decreasing with x. On the other hand, the RHS is increasing with x. Therefore, it suffices
to check the inequality for x = p, that is, f(w) = g(p) = f(p). But this was our assumption.

U

Lemma 5. Let a,b and n be integers with n > a+b. Define a real valued function f(y) :=
—(,")) + (,_2_,)- Then, the following hold.

(1) If b=a+3 then f(y) <f(n—a—1) holds forn—a—1<y<n—1.
(i) If b=a+e then f(y) < f(n—a—1) holds forn—a—1<y<n—34e¢ ¢=0,1,2.

Proof. Sets:=b—1andt:=a+ 1.

(i) Set v :=n— 1. Then, we have
(n—s—thy (n—a—1)(n—b+1)—(n—a—>b)

sv—n+t+1) (b—1)a+1) ’
v v _(n—a—1)~--(n—b+1)>(n—a—1)(n—b—1)
(S>/<"—t>_ (b—1)-(@+1) = (b—1)a+1)

Using Lemma 4(i), we have f'(y) <0 for y <n—1.

(i) Set v ;= n— 4 + e. Using Lemma 4(i), one can check f'(y) < 0 for y < n—4+e.
Next, define u :=n—4+e, v :=n—3+e, w := u. Using Lemma 4(ii), one can check
fO)<fn—4+e)=fn—3+e)forn—4+e<y<n—3+e ]

5. Proof of Theorem 1
Let n > a + b and consider cross-intersecting families .o/ < ([Z]) and 4 < ([I’;]). Define
P(t) := max{|.«/| + |B| : || =t, o/ and & are cross-intersecting and .o/ is nontrivial}.
Our goal is to show P(|.«Z|) < P(2) for 2 < || < (1).
Define the complement of o/ by /¢ := {[nf] — A4 : A € o/} < (n[’_’]a), and recall from
Section 3 that the bth shadow of .«7¢ is

[n]

Ap(A€) = {F € ( b > :FNA=0for some A € Eszf}.
Since ./ is nontrivial, we have |Jp. . F = [n]. The cross-intersecting property implies

Ap(/) N B = .

Case 1. |«/| < (I7}).

In this case, we assume b > a+ 1 instead of b = a + 2. (We will use this part of the proof
for a proof of Theorems 2 and 3 later.) Suppose that |.&/| = |.&7¢] < (Z:i) is fixed. Then,
in order to maximize |.<Z| 4 |4|, we have to choose .«/ so that |Ay(.«/¢)| is minimal. (Then
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% = (") — Ap(=/°) has the maximal size.) By the Mors theorem, the optimal family is
the following. Let & < (”['_’]a) be the first |.o/| — 1 sets with respect to the colex order. Let

Uges E = {1,2,...,x} and define F := {1,...,x —a} U {x + 1,...,n}. Finally, the optimal
family <7 is given by &/ = % U {F}. Then we have

P(l)=P(7 |+ 1) = |7+ 1+ (Z) — [Ay(F U {F})I.

Lemma 6. Let b > a. For any integer x, n—a < x < n—2, we have P(2) > P((nfa) + 1).

Proof. Let o/ =% U{F} and |#|=(,*,). In this case, # = () and F = {1,...,x -

n—a

a} U{x+1,...,n} hold. Thus, [Ay(7)| = (}) + (") — (*,“). Therefore, we have

P2 )= G2 e ()= 6) - (57) + (5°)

Let f(x) == (,%,) — (}) + (). We want to show f(x) < f(n—a) forn—a <x<n-—2.
Let us define g(x) := f(x)— f(x+ 1). It suffices to show g(n—a+e) >0for0 < e<a—3.

This follows from Lemma 1 by setting j = 0. L]

Lemma 7. Let b = a. For any integer x, n —a < x < n— 2, we have P((nfa) +1) >
P((nfa) + 2). Equality holds if and only if x =n—2 and a=b = 2.

Proof. We calculated P((nfa) + 1) in the proof of Lemma 6. Now we consider the case
|/ =(,")+2=(" )—1—("7“71)4—1. This time, we have & = (n[f]a)u{l,...,n—a—l,x—H}

n—a n—a n—a—1

and F={l,....x—a+ 1} U {x+2,...,n}. Thus,

P50 +2) =62+ (6)-0) (5 )-Ca) ()

Therefore,
n—a-—1 X—a
_ —1>=0.
e B e B ET:

PG )= (G2a) )

Lemma 8. Let b = a+ 1, and let x be an integer with n —a < x < n— 2. If
(X)) +2 < | < (3 then P((,*,) +2) > P(|</|). Equality holds if and only if
|| = (,%,) +2

U

Proof. Choose areal y,n—a—1<y <x,so that || = (,*,)+(, ) ,) + 1. In this case,
it follows that ./ = 7 U {F},

o) ofouternoc(, 1))

F={l,...,x—a+1}U{x+2,...,n}.
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Using the Kruskal-Katona theorem ([7], [8], [9]), we have

P(t) = &f|+(,’j) — [As()

< ( ) >+< Y >+1+
n—a n—a—1
n X y n—a x—a+1
6)-6)-(2)- ()03
Now define a real valued function f(y) :==—(,*,)+(,_ ) ) forn—a—1<y<n—2.By
Lemma 5, we have f(y) < f(n —a— 1), that is, P(l.Z|) < P((,",) + 2). Equality holds if

and only if y =n—a—1, that s, || = (,* ) +2. -

By Lemmas 6, 7 and 8, we have P(2) > P(|.¢/|) for 2 < |.&/| < ( ) Equality holds
only if a = b = 2. Since we have assumed b > a + 1, we obtain P(2) > P(|.</|).

Case 2. |/| > ("_}).

By the Erd6és—Ko-Rado theorem ([1]), .« is nontrivial no matter how we choose .7
Suppose that |.&/| = |.&7¢] > (a 1) is fixed. Then, to maximize |.o7/| + |%|, we have to choose
</ so that |Ap(<7€)| is minimal. By the Kruskal-Katona theorem, we may assume that .o/¢
is the first |.o7| sets with respect to the colex order. Choose areal y,n—a—1<y<n—1,

so that [«/¢| = ("_}) + (,__,). Then we have

n C
P(l)) = ||+ <b) — [Ap(/°)]
n—1 y n n—1 y
< _ _
< (oo G+ 0)-00)-62)
Let us define a real valued function f(y) == —(,”,) +(,} ) forn—a—1<y<n—1

Then, by our assumption b > a 4+ 2 and Lemma 5, we have f(y) < f(n —a — 1). Thus,

n—1 n—1 n—a—1
P(|/)) <P ((a_l)—i-l) =P ((a_l)>+1—< b1 )<P(2).

This completes the proof of Theorem 1. ]

6. Proof of Theorem 2

The proof is similar to the proof of Theorem 1. We leave some of the computations in
the proof of Theorem 2 to the reader. We use the same definitions and notation as in the
proof of Theorem 1.

Proof of Theorem 2 (i)
Case 1. || < ("7)).
The proof of this case is exactly same as the proof of Theorem 1.
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Case 2. (Zj) <l < (") + (”_2).

a—1 a—1

Choose a real y,n—a—1<y<n—2,so that [«/¢| = ("_}) + (). Then we have

n—a n—a—1

n .
P(l) = ||+ (b) — [Ap(7°)|
n—1 y n n—1 y
< _ _
< (o) (o)< 0) =000 -62)
Let us define a real valued function f(y) == —(,”,) +(,} ;) forn—a—1<y<n-—2.

Then, by Lemma 5, we have f(y) < f(n —a — 1). Thus,

n—1 n—1 n—a—1
P(|&/)<P(<a_l)+1)=P(<a_1>)+l—( b1 ><P(2). U

Proof of Theorem 2 (ii)

Let us settle the case a = b = 2 first. In this case, it is not difficult to check that
|/ | + |B) < 6 = || + |%Bo| by hand. Equality holds if and only if {.o/, B} = {.<7y, B¢} or
of =B ={12,13,23} or {/, B} = {{12,23,34},{13,23,24}}.

From now on, we assume a = b > 3.

Case 1. || < ("23) + ("2)).
We follow the proof of Theorem 1. This time, Lemmas 6 and 7 are still valid. Instead of

Lemma 8, we use the following.

Lemma 9. Let x be any integer withn—a<x<n—3.1If (,* ) +2 < || < (X‘H) then

n—a

P((,%,) +2) = P(/)) O

n—a

We can prove the above lemma in exactly the same way as in the proof of Lemma 8.

Now using Lemmas 6, 7, 9, it follows that P(2) < P(|«/|) for 2 < || < ("73) + (*73).

Case 2. (;73) + (123) <1< (1) + -+ (0.5 +1= (0) = (4 + 1.
For an integer x, 2 < x < a+ 1, let us define

g(x) = <Z:§) +<Z:;) Y
h(x) := (Z) _(ni;iz> _..._<ni;i2)_<n;jIl).

Note that if |.o/] = g(x) then, by the Kruskal-Katona theorem, we have |#| < h(x).
Note also that h(a + 1) = ("-}) — (",*;") + 1 = g(a + 1). Thus, if || > g(a + 1) then
18] < gla+1).

Lemma 10. For any integer x, 2 < x < a+ 1, we have P(2) > P(g(x)).
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Proof. Using the result of Case 1, we have P(2) > P(g(2)). Since

P(gx) —Px—1) = g)+h(x)—glx—1)—=h(x—1)
_ (n—x n—x
B (a—2>_<a—x+2>’

P(g(2)) = P(g(3)) = P(g(4)) < P(g(5)) < --- < P(gla+1)).
Thus, it suffices to show P(2) > P(g(a + 1)). Note that

glat1)=ha+1)= (”_1>—<”_“_1>+1,

a—1 a—1

we have

and

P(a+1)=2g(a+1)=2(n_1>—2<n_a_1)-|-2.

a—1 a—1

Therefore, the desired inequality P(2) > P(g(a + 1)) is equivalent to
(n—l) n <n—2a> _2<n—a—1) _ <n—1> -0
a a a a—1
The above inequality follows from Lemma 2. L]

Lemma 11. For any integer x, 2 < x < a, we have P(g(x)) > P(g(x) + 1).

Proof. If |o/| = g(x)+ 1 = g(x) + ("7"7”1), then by the Mors theorem, we have

n—x—a+1
18| < h(x) — (";547"). Thus, P(g(x)) > P(g(x) + 1) is equivalent to (",;*“t") > 1. This
follows from our assumption n > 2a. L]

Lemma 12. Let x be an integer with 2 < x < a. If g(x)+ 1 < || < g(x + 1) then
P(|</|) < max{P(g(x) + 1), P(g(x + 1))}

Proof. Choose areal y,n—x—a+ 1<y <n—x—1,so that |&/| = g(x) + (nixfaﬂ).
(Note that if y = n—x —1 then |.o7/| = g(x + 1).) Using the Kruskal-Katona theorem, we
have || < h(x)—(,_Y, ). Now define a real valued function f(y) == —(, 7))+ (,_"us1)
forn—x—a+1 < n—x—1. Our goal is to show f(y) < max{f(n—x—a+1), f(n—x—1)}.

First we settle the case x = a. In this case, we have f(y) = —(}1) + (n_2ya+1). Since n > 2a,
f(y) is an increasing function. Thus, f(y) < f(n —a — 1) holds.

From now on, we assume x < a. Set s :=a—x+1,t:=x+a—1,and v :=n—2x.
Using Lemma 4(i), one can check that f'(y) < 0 holds for y < n — 2x. Thus, we have
f'(n—x—a+1) <0. Therefore, f(y) < max{f(n—x—a+1),f(n—x — 1)} follows from
Lemma 4(ii). L]

By Lemmas 10, 11, 12, we have
P(|«/]) < max{P(g(2)),P(g(a+ 1))} < P(2). U
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7. Proof of Theorem 3

Recall that P(|.«/|) = max{|.«/| + |%|} (see Section 5). If b > a + 2, then the theorem
follows from Theorem 1.

Case 1. b=a+ 1.
If || < ("2}) + ("Z}) then the desired inequality (P(2) > P(|«/|) for 2 < |«/| <

1 1
(") + (;:f;) followas from Theorem 2. So we may assume |«/¢| > ("_!) + ("2 ?.). Then,

a—1 n—a
by the Kruskal-Katona theorem, we have

n . n n—1 n—2\ n—2
|%S(b)_m”(ﬂﬂg<a+1>_(a+1)_( a >_(n—(a+1)>'

Define
0(t) := max{|</| + || : |%| =t, o/ and % are cross-intersecting and Z is nontrivial}.

Let | 2| = (,_(,) +1 forn—a—1<y <n—2. Then we have Q(|%|) < f(y)+(constant),
where f(y) = (y) + (n o 1) Using Lemma 5, one can check that f(y) < f(n—a—1) for

a

n—a—1<y<n—2, thatis, 0(2) > O(|%)|) for 2 < |%8| < ('ll’(ail)). Using Lemma 3, we
have P(2) > Q(2). This completes the proof of this case.

Case 2. b =a.

Without loss of generality, we may assume that |.«/| < |%]. If |.«/| > ("_}) — (".“,") +1 then
1) < ("2 — ("7 +1 (see the computatlon in the proof of Theorem 2(ii), Case 2). Thus
we may assume that |.o7| < (”_ ) (" ot )—I—l Then the result follows from Theorem 2. [
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