Combinatorics, Probability and Computing

http://journals.cambridge.org/CPC

Additional services for Combinatorics, Probability and Computing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Some Inequalities Concerning Cross-Intersecting Families

P. FRANKL and N. TOKUSHIGE

Combinatorics, Probability and Computing / Volume 7 / Issue 03 / September 1998, pp 247-260
DOI: null, Published online: 08 September 2000
Link to this article: http://journals.cambridge.org/abstract S0963548398003575
How to cite this article:
P. FRANKL and N. TOKUSHIGE (1998). Some Inequalities Concerning Cross-Intersecting Families. Combinatorics, Probability and Computing, 7, pp 247-260

Request Permissions : Click here

Some Inequalities Concerning Cross-Intersecting Families

P. FRANKL ${ }^{1}$ and N. TOKUSHIGE ${ }^{2}$
${ }^{1}$ CNRS, ER 175 Combinatoire,
54 Bd Raspail, 75006 Paris, France
(e-mail: combinatorics@cs.meiji.ac.jp)
${ }^{2}$ College of Education, Ryukyu University,
Nishihara, Okinawa, 903-0213 Japan
(e-mail: hide@edu.u-ryukyu.ac.jp)

Received 30 May 1995; revised 30 December 1997

Let a, b and n be integers with $2 \leqslant a \leqslant b$ and $n \geqslant a+b$. Suppose that $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset$
$\binom{[n]}{b}$ are nontrivial cross-intersecting families. Then $|\mathscr{A}|+|\mathscr{B}| \leqslant 2+\binom{n}{b}-2\binom{n-a}{b}+\binom{n-2 a}{b}$. This result is best possible.

1. Introduction

Let $[n]:=\{1,2, \ldots, n\}$ be an n-element set. For an integer $k, 0 \leqslant k \leqslant n$, we denote by $\binom{[n]}{k}$ the set of all k-element subsets of [n]. A family $\mathscr{F} \subset\binom{[n]}{k}$ is called nontrivial if $\bigcap_{F \in \mathscr{F}} F=\emptyset$. Two families, $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$, are said to be cross-intersecting if $A \cap B \neq \emptyset$ holds for all $A \in \mathscr{A}$ and $B \in \mathscr{B}$. A family $\mathscr{F} \subset\binom{[n]}{k}$ is called intersecting if \mathscr{A} and \mathscr{A} are cross-intersecting.

Let us recall the following two fundamental results.
Theorem A (Erdős, Ko and Rado [1]). Let k and n be integers with $n \geqslant 2 k$. If $\mathscr{F} \subset\binom{[n]}{k}$ is intersecting, then $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}$.

Theorem B (Hilton and Milner [6]). Let k and n be integers with $n \geqslant 2 k$. If $\mathscr{F} \subset\binom{[n]}{k}$ is nontrivial intersecting, then $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

In [4], Füredi proposed the following conjectures.
Conjecture 1. Let a, b and n be integers with $n>a+b$. Suppose that $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are cross-intersecting families. Then $|\mathscr{A}||\mathscr{B}| \leqslant\binom{ n-1}{a-1}\binom{n-1}{b-1}$.

Conjecture 2. Let a, b and n be integers with $a \leqslant b$ and $n \geqslant a+b$. Suppose that $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are cross-intersecting families. If $|\mathscr{A}| \geqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1$ and \mathscr{A} is nontrivial, then $|\mathscr{B}| \leqslant\binom{ n-1}{b-1}-\binom{n-a-1}{b-1}+\binom{n-a-1}{b-a}$.

Conjecture 3. Let a, b and n be integers with $a \leqslant b$ and $n \geqslant a+b$. Suppose that $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are nontrivial cross-intersecting families. Then

$$
|\mathscr{A}|+|\mathscr{B}| \leqslant\left|\binom{[a+1]}{a}\right|+\left|\left\{B \in\binom{[n]}{b}:|[a+1] \cap B| \geqslant 2\right\}\right| .
$$

Conjecture 1 was known to be true if $n \geqslant \max \{2 a, 2 b\}$ (see [10], [13]). But if $n<$ $\max \{2 a, 2 b\}$ then the conjecture is not true in general. A simple counterexample is given in Section 2.

In Section 3, we show that Conjecture 2 is a direct consequence of a theorem of Mörs.
Conjecture 3 is false even if we fix $|\mathscr{A}|=a+1$. In this case, the best construction is the following. Let

$$
A_{i}:=\{1, \ldots, a-1\} \cup\{a+i\} \quad \text { for } 0 \leqslant i<a,
$$

and set

$$
\begin{aligned}
\mathscr{A} & :=\left\{A_{0}, \ldots, A_{a-1}\right\} \cup\{\{a, \ldots, 2 a-1\}\}, \\
\mathscr{B} & :=\left\{B \in\binom{[n]}{b}: A \cap B \neq \emptyset \text { for all } A \in \mathscr{A}\right\} .
\end{aligned}
$$

If we do not restrict $|\mathscr{A}|$, the following construction is much better.
Example. Choose disjoint $A_{0}, A_{1} \in\binom{[n]}{a}$, and set $\mathscr{A}_{0}:=\left\{A_{0}, A_{1}\right\}$,

$$
\mathscr{B}_{0}:=\left\{B \in\binom{[n]}{b}: B \cap A_{0} \neq \emptyset, B \cap A_{1} \neq \emptyset\right\} .
$$

Then \mathscr{A}_{0} and \mathscr{B}_{0} are nontrivial cross-intersecting families. (\mathscr{A}_{0} has size 2.)
Actually, if $b \geqslant a+2$ then we have the following result.
Theorem 1. Let a, b and n be integers with $2 \leqslant a \leqslant b-2$ and $n \geqslant a+b$. Suppose that two families $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are cross-intersecting, and the family \mathscr{A} is nontrivial. Then, $|\mathscr{A}|+|\mathscr{B}| \leqslant\left|\mathscr{A}_{0}\right|+\left|\mathscr{B}_{0}\right|$ holds. For $n>a+b$, equality holds if and only if $\mathscr{A} \cong \mathscr{A}_{0}$ and $\mathscr{B} \cong \mathscr{B}_{0}$.

Note that in the above theorem it is not assumed that \mathscr{B} is nontrivial. We prove Theorem 1 in Section 5 . If $|\mathscr{A}|$ is relatively small then the same inequality holds for the cases $b=a$ or $b=a+1$ as well.

Theorem 2. Let a, b and n be integers with $2 \leqslant a \leqslant b$ and $n \geqslant a+b$. Suppose that two families $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are cross-intersecting, and the family \mathscr{A} is nontrivial. Then the following statements hold.
(i) If $b=a+1$ and $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}+\binom{n-2}{a-1}$, then $|\mathscr{A}|+|\mathscr{B}| \leqslant\left|\mathscr{A}_{0}\right|+\left|\mathscr{B}_{0}\right|$. For $n>a+b$, equality holds if and only if $\mathscr{A} \cong \mathscr{A}_{0}$ and $\mathscr{B} \cong \mathscr{B}_{0}$.
(ii) If $b=a$ and $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1$ then $|\mathscr{A}|+|\mathscr{B}| \leqslant\left|\mathscr{A}_{0}\right|+\left|\mathscr{B}_{0}\right|$. For $n>a+b$ and $a \geqslant 3$, equality holds if and only if $\mathscr{A} \cong \mathscr{A}_{0}$ and $\mathscr{B} \cong \mathscr{B}_{0}$.

Using Theorems 1 and 2, we have the following.
Theorem 3. Let a, b and n be integers with $2 \leqslant a \leqslant b$ and $n \geqslant a+b$. Suppose that $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$ are nontrivial cross-intersecting families. Then $|\mathscr{A}|+|\mathscr{B}| \leqslant\left|\mathscr{A}_{0}\right|+\left|\mathscr{B}_{0}\right|$. For $n>a+b$ and $b \geqslant 3$, equality holds if and only if $\mathscr{A} \cong \mathscr{A}_{0}$ and $\mathscr{B} \cong \mathscr{B}_{0}$.

Since Theorems 1,2,3 are trivial if $n=a+b$, throughout this paper we consider the case $n>a+b$.

2. Counterexample to Conjecture 1

Define

$$
\begin{aligned}
& \mathscr{A}:=\left\{A \in\binom{[n]}{a}:\{1,2\} \cap A \neq \emptyset\right\}, \\
& \mathscr{B}:=\left\{B \in\binom{[n]}{b}:\{1,2\} \subset B\right\} .
\end{aligned}
$$

These two families are cross-intersecting, and

$$
|\mathscr{A}|=\binom{n-1}{a-1}+\binom{n-2}{a-1}, \quad|\mathscr{B}|=\binom{n-1}{b-1}-\binom{n-2}{b-1}
$$

Set $\delta:=|\mathscr{A}||\mathscr{B}|-\binom{n-1}{a-1}\binom{n-1}{b-1}$. Then $\delta>0$ is equivalent to

$$
\begin{equation*}
\frac{(n-1)(b-a)}{(n-b)(n-a)}>1 \tag{2.1}
\end{equation*}
$$

Let $n=(2-\alpha) b, a=(1-\beta) b$, where

$$
\begin{equation*}
0<\alpha<\beta<1 \tag{2.2}
\end{equation*}
$$

Then $n>a+b$ holds and condition (2.1) is equivalent to

$$
\begin{equation*}
(1-1 / b) \beta>(1-\alpha)^{2} \tag{2.3}
\end{equation*}
$$

If we choose α, β and b so that (2.2) and (2.3) hold, then $n>a+b$, but $\delta>0$. For example, choose an integer $c>5$ and set $n=17 c, a=5 c$ and $b=10 c$: then the pair of \mathscr{A} and \mathscr{B} is a counterexample to Conjecture 1 .

3. The Mörs theorem

Let $\mathscr{F} \subset\binom{[n]}{k}$ and $0<l<k$. The l th shadow $\Delta_{l}(\mathscr{F})$ of \mathscr{F} is defined by

$$
\Delta_{l}(\mathscr{F}):=\{G:|G|=l, G \subset F \text { for some } F \in \mathscr{F}\} .
$$

Let us define the colex order on $\binom{[n]}{k}$ by

$$
A<B \quad \text { if and only if } \max \{A-B\}<\max \{B-A\}
$$

Define Colex (k, j) to be the first j sets in $\binom{\mathbf{N}}{k}$ with respect to the colex order. Let us define $\|\mathscr{F}\|:=\bigcup_{F \in \mathscr{F}} F$. For given integers n, k, i, l, what is the minimum of $\left|\Delta_{l}(\mathscr{F})\right|$ if $\mathscr{F} \subset\binom{[n]}{k}$, $\|\mathscr{F}\|=n$ and $|\mathscr{F}|=i$? The Mörs theorem (Theorem C below) gives the complete answer to this question.
Let n, k, i be integers with $n / k \leqslant i \leqslant\binom{ n}{k}$. Let us construct a family $\mathscr{F}_{0} \subset\binom{[n]}{k}$ with $\left\|\mathscr{F}_{0}\right\|=n,|\mathscr{F}|=i$ as follows. Define $g:=\max \{j: n-\|\operatorname{Colex}(k, j)\| \leqslant(i-j) k\}$, $h:=\|\operatorname{Colex}(k, g)\|$. For $1 \leqslant j<i-g$, define $F_{j}:=\{(j-1) k+h+1, \ldots, j k+h\}$. Further, define $G:=\{(i-g-1) k+h+1, \ldots, n, 1,2, \ldots, k-(n-(i-g-1) k-h)\}$. Finally, define

$$
\mathscr{F}_{0}:=\operatorname{Colex}(k, g) \cup\left\{F_{1}, \ldots, F_{i-g-1}, G\right\} .
$$

Theorem C (Mörs [12]). Let n, k, i, l be integers with $1 \leqslant l<k \leqslant n, n / k \leqslant i \leqslant\binom{ n}{k}$. Suppose that $\mathscr{F} \subset\binom{[n]}{k},\|\mathscr{F}\|=n,|\mathscr{F}|=i$. Then $\left|\Delta_{l}(\mathscr{F})\right| \geqslant\left|\Delta_{l}\left(\mathscr{F}_{0}\right)\right|$.

If $n \leqslant 2 k$, the situation is much simpler. In this case, the optimal family \mathscr{F}_{0} is given by

$$
\mathscr{F}_{0}:=\operatorname{Colex}(k, i-1) \cup\{h+1, \ldots, n, 1,2, \ldots, k+h-n\} .
$$

Let us show how Conjecture 2 follows from Theorem C (see also [5]). Note that

$$
\begin{aligned}
|\mathscr{A}| & \geqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1 \\
& =\binom{n-2}{n-a}+\binom{n-3}{n-a-1}+\cdots+\binom{n-a-1}{n-2 a+1}+\binom{n-a-1}{n-a-1} .
\end{aligned}
$$

By the Mörs theorem, we have

$$
\begin{aligned}
|\mathscr{B}| & \leqslant\binom{ n}{b}-\binom{n-2}{b}-\binom{n-3}{b-1}-\cdots-\binom{n-a-1}{b-a+1}-\binom{n-a-1}{b-1} \\
& =\binom{n-1}{b-1}+\binom{n-a-1}{b-a}-\binom{n-a-1}{b-1} .
\end{aligned}
$$

4. Tools for proofs

In this section, we list several inequalities concerning binomial coefficients (see [2], [3], [10], [11]). These inequalities will be used in later sections.

Lemma 1. Let $b \geqslant a, a \geqslant e+3$ and $n \geqslant a+b$. Then inequality $P(j, n)$ holds for $0 \leqslant e \leqslant a-3$ and $0 \leqslant j \leqslant e+1$,

$$
P(j, n): \quad\binom{n-a+e}{b-1-j}-\binom{n-2 a+e}{b-1-j}>\binom{n-a+e}{e+1-j} .
$$

Proof. We prove $P(j, n)$ by double induction on j and n. Fix a, b and e.

If $j=e+1$, then the desired inequality is

$$
P(e+1, n): \quad\binom{n-a+e}{b-2-e}-\binom{n-2 a+e}{b-2-e}>1
$$

Since $b \geqslant a \geqslant e+3$, we have $b-2-e \geqslant 1$. Thus $P(e+1, n)$ holds for all $n \geqslant a+b$.
Now fix $0<j \leqslant e$ and assume that $P(j, n)$ holds for all $n \geqslant a+b$. We prove

$$
P(j-1, n): \quad\binom{n-a+e}{b-j}-\binom{n-2 a+e}{b-j}>\binom{n-a+e}{e+2-j}
$$

using induction on n.
First we check the case $n=a+b$, that is,

$$
P(j-1, a+b): \quad\binom{b+e}{b-j}-\binom{b-a+e}{b-j}>\binom{b+e}{e+2-j}
$$

The above inequality is trivial if $b-a+e \leqslant b-j$. So assume $a<e+j$. By the induction hypothesis $P(j, a+b)$, it follows that

$$
\binom{b+e}{b-1-j}-\binom{b-a+e}{b-1-j}>\binom{b+e}{e+1-j}=\frac{e+2-j}{b-1+j}\binom{b+e}{e+2-j}
$$

Thus, to prove $P(j-1, a+b)$, it suffices to show

$$
\binom{b+e}{b-j}-\binom{b-a+e}{b-j}>\frac{b-1+j}{e+2-j}\left(\binom{b+e}{b-1-j}-\binom{b-a+e}{b-1-j}\right)
$$

or, equivalently,

$$
\binom{b+e}{b-j}\left(1-\frac{b-1+j}{e+2-j} \cdot \frac{b-j}{e+1+j}\right)>\binom{b-a+e}{b-j}\left(1-\frac{b-1+j}{e+2-j} \cdot \frac{b-j}{e+1+j-a}\right)
$$

The above inequality clearly holds.
Next we fix n and assume $P(j-1, n)$. We prove $P(j-1, n+1)$. Using the induction hypotheses $P(j-1, n)$ and $P(j, n)$, we have

$$
\begin{aligned}
& \binom{n+1-a+e}{b-j}-\binom{n+1-2 a+e}{b-j} \\
& =\left\{\binom{n-a+e}{b-j}-\binom{n-2 a+e}{b-j}\right\}+\left\{\binom{n-a+e}{b-j-1}-\binom{n-2 a+e}{b-j-1}\right\} \\
& >\binom{n-a+e}{e+2-j}+\binom{n-a+e}{e+1-j}=\binom{n-a+e+1}{e+2-j}
\end{aligned}
$$

This proves $P(j-1, n+1)$, and by induction $P(j-1, n)$ holds for all $n \geqslant a+b$.
Lemma 2. Let n and a be integers with $n>2 a, a>1$. Define $f(n, a):=\binom{n-1}{a}+\binom{n-2 a}{a}-$ $2\binom{n-a-1}{a}-\binom{n-1}{a-1}$. Then we have $f(n, a)>0$.

Proof. We prove $f(n, a)>0$ by double induction on n and a. It is easily checked that $f(n, 1)=0$ and $f(2 a, a)=0$. Fix n and a, and assume $f(n, a) \geqslant 0$ and $f(n, a-1) \geqslant 0$. Using
these assumptions, let us prove $f(n, a+1)>0$. Since

$$
\begin{aligned}
f(n+1, a) & \left\{\binom{n-1}{a}+\binom{n-2 a}{a}-2\binom{n-a-1}{a}-\binom{n-1}{a-1}\right\}+ \\
& \left\{\binom{n-1}{a-1}+\binom{n-2 a}{a-1}-2\binom{n-a-1}{a-1}-\binom{n-1}{a-2}\right\} \\
= & f(n, a)+f(n, a-1)+2\binom{n-a-1}{a-2}-2\binom{n-2 a}{a-2}\left(1+\frac{a-2}{2(n-3 a+3)}\right),
\end{aligned}
$$

it suffices to show that

$$
\frac{(n-a-1) \cdots(n-2 a+2)}{(n-2 a) \cdots(n-3 a+3)} \geqslant 1+\frac{a-2}{2(n-3 a+3)} .
$$

Let us check the above inequality:

$$
\begin{aligned}
\text { LHS } & =\left(1+\frac{a-1}{n-2 a}\right) \cdots\left(1+\frac{a-1}{n-3 a+3}\right) \\
& >1+\frac{a-1}{n-2 a}+\cdots+\frac{a-1}{n-3 a+3}>1+\frac{a-2}{2(n-3 a+3)}=\text { RHS. }
\end{aligned}
$$

This proves $f(n+1, a)>0$.
Lemma 3. Let n and a be integers with $n>2 a+1, a>0$. Define $f(n, a):=\binom{n}{a+1}-\binom{n}{a}-$ $2\binom{n-a-1}{a+1}+\binom{n-2 a}{a+1}-\binom{n-2 a-2}{a}$. Then $f(n, a)>0$.

Proof. We prove $f(n, a)>0$ by double induction on n and a. One can easily check that $f(n, 0)=0$ and $f(2 a+1, a)=0$. Fix n and a, and assume that $f(n, a)>0$ and $f(n, a-1)>0$. Using these assumptions, let us prove $f(n+1, a)>0$. In fact,

$$
\begin{aligned}
f(n+1, a)= & \left\{\binom{n}{a+1}-\binom{n}{a}-2\binom{n-a-1}{a+1}+\binom{n-2 a}{a+1}-\binom{n-2 a-2}{a}\right\} \\
& \left\{\binom{n}{a}-\binom{n}{a-1}-2\binom{n-a-1}{a}+\binom{n-2 a}{a}-\binom{n-2 a-2}{a-1}\right\} \\
= & f(n, a)+f(n, a-1)+2\left\{\binom{n-a}{a}-\binom{n-a-1}{a}\right\}+ \\
& \left\{\binom{n-2 a}{a}-\binom{n-2 a-2}{a}\right\}+\left\{\binom{n-2 a}{a-1}-\binom{n-2 a-2}{a-1}\right\} \\
> & 0 .
\end{aligned}
$$

For an integer k and a real $x \geqslant k$, define $\binom{x}{k}:=\prod_{i=0}^{k-1}(x-i) / k!$.
Lemma 4. Let s, t and n be integers with $n>s+t$. Define a real valued function $f(x):=$ $-\binom{x}{s}+\binom{x}{n-t}$. Then the following statements hold.
(i) Suppose that $1+\frac{(n-s-t) v}{s(v-n+t+1)}<\binom{v}{s} /\binom{v}{n-t}$. Then $f^{\prime}(x)<0$ holds for all real numbers $x \leqslant v$.
(ii) Let u, v be real numbers with $u<v$, and let $w \in\{u, v\}$. Suppose that $f^{\prime}(u)<0$ and $f(w)=\max \{f(u), f(v)\}$. Then $f(w) \geqslant f(x)$ holds for all real numbers $x, u \leqslant x \leqslant v$.

Proof. (i) Since $f^{\prime}(x)=-\binom{x}{s} \sum_{j=0}^{s-1} \frac{1}{x-j}+\binom{x}{n-t} \sum_{j=0}^{n-t-1} \frac{1}{x-j}, f^{\prime}(x)<0$ is equivalent to

$$
\begin{align*}
\left(\sum_{j=0}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) & <\binom{x}{s} /\binom{n}{n-t} \\
& =\frac{(n-t) \cdots(s+1)}{(x-s) \cdots(x-n+t+1)} \tag{4.1}
\end{align*}
$$

By simple estimation, we have

$$
\mathrm{LHS}=1+\left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) \leqslant 1+\frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s}
$$

Thus, to prove (4.1), it suffices to show that

$$
\begin{equation*}
(x-s) \cdots(x-n+t+1)\left(1+\frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s}\right)<(n-t) \cdots(s+1) \tag{4.2}
\end{equation*}
$$

Since the LHS of (4.2) is increasing with x, it suffices to show (4.2) for $x=v$, that is,

$$
1+\frac{n-t-s}{v-n+t+1} \cdot \frac{v}{s}<\binom{v}{s} /\binom{v}{n-t}
$$

But this was our assumption.
(ii) Suppose on the contrary that $f(w)<f(x)$ holds for some $x, x>u$. Then, we may assume that there exist p, q which satisfy

$$
\begin{gathered}
u<p<q \leqslant v \\
f^{\prime}(p)=f^{\prime}(q)=0 \\
f(p)<f(w)<f(q)
\end{gathered}
$$

If $f^{\prime}(x)=0$, it follows that

$$
\binom{x}{s}=\binom{x}{n-t}\left\{1+\left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right)\right\}
$$

Substituting this into $f(x)$, we define a new function:

$$
g(x):=-\binom{x}{n-t}\left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) .
$$

Note that $g(x)=f(x)$ holds if $f^{\prime}(x)=0$. Thus, $f(w)<g(q)$ must hold. We derive a contradiction by showing that $f(w) \geqslant g(x)$ or, equivalently,

$$
\left\{\binom{w}{s}-\binom{w}{n-t}\right\} \sum_{j=0}^{s-1} \frac{1}{x-j} \leqslant\binom{ x}{n-t} \sum_{j=s}^{n-t-1} \frac{1}{x-j}
$$

holds for all $x \geqslant p$. We may assume that $\binom{w}{s}-\binom{w}{n-t}$ is nonnegative. Then the LHS is decreasing with x. On the other hand, the RHS is increasing with x. Therefore, it suffices to check the inequality for $x=p$, that is, $f(w) \geqslant g(p)=f(p)$. But this was our assumption.

Lemma 5. Let a, b and n be integers with $n>a+b$. Define a real valued function $f(y):=$ $-\binom{y}{b-1}+\binom{y}{n-a-1}$. Then, the following hold.
(i) If $b \geqslant a+3$ then $f(y)<f(n-a-1)$ holds for $n-a-1<y \leqslant n-1$.
(ii) If $b=a+e$ then $f(y)<f(n-a-1)$ holds for $n-a-1<y \leqslant n-3+e, e=0,1,2$.

Proof. Set $s:=b-1$ and $t:=a+1$.
(i) Set $v:=n-1$. Then, we have

$$
\begin{gathered}
1+\frac{(n-s-t) v}{s(v-n+t+1)}=\frac{(n-a-1)(n-b+1)-(n-a-b)}{(b-1)(a+1)}, \\
\binom{v}{s} /\binom{v}{n-t}=\frac{(n-a-1) \cdots(n-b+1)}{(b-1) \cdots(a+1)} \geqslant \frac{(n-a-1)(n-b-1)}{(b-1)(a+1)} .
\end{gathered}
$$

Using Lemma 4(i), we have $f^{\prime}(y)<0$ for $y \leqslant n-1$.
(ii) Set $v:=n-4+e$. Using Lemma 4(i), one can check $f^{\prime}(y)<0$ for $y \leqslant n-4+e$. Next, define $u:=n-4+e, v:=n-3+e, w:=u$. Using Lemma 4(ii), one can check $f(y) \leqslant f(n-4+e)=f(n-3+e)$ for $n-4+e \leqslant y \leqslant n-3+e$.

5. Proof of Theorem 1

Let $n>a+b$ and consider cross-intersecting families $\mathscr{A} \subset\binom{[n]}{a}$ and $\mathscr{B} \subset\binom{[n]}{b}$. Define $P(t):=\max \{|\mathscr{A}|+|\mathscr{B}|:|\mathscr{A}|=t, \mathscr{A}$ and \mathscr{B} are cross-intersecting and \mathscr{A} is nontrivial $\}$.
Our goal is to show $P(|\mathscr{A}|) \leqslant P(2)$ for $2 \leqslant|\mathscr{A}| \leqslant\binom{ n}{a}$.
Define the complement of \mathscr{A} by $\mathscr{A}^{c}:=\{[n]-A: A \in \mathscr{A}\} \subset\binom{[n]}{n-a}$, and recall from Section 3 that the b th shadow of \mathscr{A}^{c} is

$$
\Delta_{b}\left(\mathscr{A}^{c}\right):=\left\{F \in\binom{[n]}{b}: F \cap A=\emptyset \text { for some } A \in \mathscr{A}\right\} .
$$

Since \mathscr{A} is nontrivial, we have $\bigcup_{F \in \mathscr{A}^{c}} F=[n]$. The cross-intersecting property implies $\Delta_{b}\left(\mathscr{A}^{c}\right) \cap \mathscr{B}=\emptyset$.

Case 1. $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}$.
In this case, we assume $b \geqslant a+1$ instead of $b \geqslant a+2$. (We will use this part of the proof for a proof of Theorems 2 and 3 later.) Suppose that $|\mathscr{A}|=\left|\mathscr{A}^{c}\right| \leqslant\binom{ n-1}{a-1}$ is fixed. Then, in order to maximize $|\mathscr{A}|+|\mathscr{B}|$, we have to choose \mathscr{A} so that $\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right|$ is minimal. (Then
$\mathscr{B}:=\binom{[n]}{b}-\Delta_{b}\left(\mathscr{A}^{c}\right)$ has the maximal size.) By the Mörs theorem, the optimal family is the following. Let $\mathscr{F} \subset\binom{[n]}{n-a}$ be the first $|\mathscr{A}|-1$ sets with respect to the colex order. Let $\bigcup_{E \in \mathscr{F}} E=\{1,2, \ldots, x\}$ and define $F:=\{1, \ldots, x-a\} \cup\{x+1, \ldots, n\}$. Finally, the optimal family \mathscr{A} is given by $\mathscr{A}^{c}=\mathscr{F} \cup\{F\}$. Then we have

$$
P(|\mathscr{A}|)=P(|\mathscr{F}|+1)=|\mathscr{F}|+1+\binom{n}{b}-\left|\Delta_{b}(\mathscr{F} \cup\{F\})\right| .
$$

Lemma 6. Let $b \geqslant a$. For any integer $x, n-a<x \leqslant n-2$, we have $P(2)>P\left(\binom{x}{n-a}+1\right)$.
Proof. Let $\mathscr{A}^{c}=\mathscr{F} \cup\{F\}$ and $|\mathscr{F}|=\binom{x}{n-a}$. In this case, $\mathscr{F}=\binom{[x]}{n-a}$ and $F=\{1, \ldots, x-$ $a\} \cup\{x+1, \ldots, n\}$ hold. Thus, $\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right|=\binom{x}{b}+\binom{n-a}{b}-\binom{x-a}{b}$. Therefore, we have

$$
P\left(\binom{x}{n-a}+1\right)=\binom{x}{n-a}+1+\binom{n}{b}-\binom{x}{b}-\binom{n-a}{b}+\binom{x-a}{b} .
$$

Let $f(x):=\binom{x}{n-a}-\binom{x}{b}+\binom{x-a}{b}$. We want to show $f(x)<f(n-a)$ for $n-a<x \leqslant n-2$. Let us define $g(x):=f(x)-f(x+1)$. It suffices to show $g(n-a+e)>0$ for $0 \leqslant e \leqslant a-3$. This follows from Lemma 1 by setting $j=0$.

Lemma 7. Let $b \geqslant a$. For any integer $x, n-a<x \leqslant n-2$, we have $P\left(\binom{x}{n-a}+1\right) \geqslant$ $P\left(\binom{x}{n-a}+2\right)$. Equality holds if and only if $x=n-2$ and $a=b=2$.

Proof. We calculated $P\left(\binom{x}{n-a}+1\right)$ in the proof of Lemma 6. Now we consider the case $\left|\mathscr{A}^{c}\right|=\binom{x}{n-a}+2=\binom{x}{n-a}+\binom{n-a-1}{n-a-1}+1$. This time, we have $\mathscr{F}=\binom{[x]}{n-a} \cup\{1, \ldots, n-a-1, x+1\}$ and $F=\{1, \ldots, x-a+1\} \cup\{x+2, \ldots, n\}$. Thus,
$P\left(\binom{x}{n-a}+2\right)=\binom{x}{n-a}+2+\binom{n}{b}-\binom{x}{b}-\binom{n-a-1}{b-1}-\binom{n-a}{b}+\binom{x-a+1}{b}$.
Therefore,

$$
P\left(\binom{x}{n-a}+1\right)-P\left(\binom{x}{n-a}+2\right)=\binom{n-a-1}{b-1}-\binom{x-a}{b-1}-1 \geqslant 0 .
$$

Lemma 8. Let $b \geqslant a+1$, and let x be an integer with $n-a \leqslant x \leqslant n-2$. If $\binom{x}{n-a}+2 \leqslant|\mathscr{A}| \leqslant\binom{ x+1}{n-a}$ then $P\left(\binom{x}{n-a}+2\right) \geqslant P(|\mathscr{A}|)$. Equality holds if and only if $|\mathscr{A}|=\binom{x}{n-a}+2$.

Proof. Choose a real $y, n-a-1 \leqslant y<x$, so that $|\mathscr{A}|=\binom{x}{n-a}+\binom{y}{n-a-1}+1$. In this case, it follows that $\mathscr{A}^{c}=\mathscr{F} \cup\{F\}$,

$$
\begin{gathered}
\mathscr{F} \subset\binom{[x]}{n-a} \cup\left\{G \cup\{x+1\}: G \in\binom{[[y\rceil]}{n-a-1}\right\}, \\
F=\{1, \ldots, x-a+1\} \cup\{x+2, \ldots, n\} .
\end{gathered}
$$

Using the Kruskal-Katona theorem ([7], [8], [9]), we have

$$
\begin{aligned}
P(|\mathscr{A}|)= & |\mathscr{A}|+\binom{n}{b}-\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right| \\
\leqslant & \binom{x}{n-a}+\binom{y}{n-a-1}+1+ \\
& \binom{n}{b}-\binom{x}{b}-\binom{y}{b-1}-\binom{n-a}{b}+\binom{x-a+1}{b} .
\end{aligned}
$$

Now define a real valued function $f(y):=-\binom{y}{b-1}+\binom{y}{n-a-1}$ for $n-a-1 \leqslant y<n-2$. By Lemma 5, we have $f(y) \leqslant f(n-a-1)$, that is, $P(|\mathscr{A}|) \leqslant P\left(\binom{x}{n-a}+2\right)$. Equality holds if and only if $y=n-a-1$, that is, $|\mathscr{A}|=\binom{x}{n-a}+2$.

By Lemmas 6, 7 and 8 , we have $P(2) \geqslant P(|\mathscr{A}|)$ for $2<|\mathscr{A}| \leqslant\binom{ n-1}{a-1}$. Equality holds only if $a=b=2$. Since we have assumed $b \geqslant a+1$, we obtain $P(2)>P(|\mathscr{A}|)$.

Case 2. $|\mathscr{A}|>\binom{n-1}{a-1}$.

By the Erdős-Ko-Rado theorem ([1]), \mathscr{A} is nontrivial no matter how we choose \mathscr{A}. Suppose that $|\mathscr{A}|=\left|\mathscr{A}^{c}\right|>\binom{n-1}{a-1}$ is fixed. Then, to maximize $|\mathscr{A}|+|\mathscr{B}|$, we have to choose \mathscr{A} so that $\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right|$ is minimal. By the Kruskal-Katona theorem, we may assume that \mathscr{A}^{c} is the first $|\mathscr{A}|$ sets with respect to the colex order. Choose a real $y, n-a-1 \leqslant y \leqslant n-1$, so that $\left|\mathscr{A}^{c}\right|=\binom{n-1}{n-a}+\binom{y}{n-a-1}$. Then we have

$$
\begin{aligned}
P(|\mathscr{A}|) & =|\mathscr{A}|+\binom{n}{b}-\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right| \\
& \leqslant\binom{ n-1}{n-a}+\binom{y}{n-a-1}+\binom{n}{b}-\binom{n-1}{b}-\binom{y}{b-1}
\end{aligned}
$$

Let us define a real valued function $f(y):=-\binom{y}{b-1}+\binom{y}{n-a-1}$ for $n-a-1 \leqslant y \leqslant n-1$. Then, by our assumption $b \geqslant a+2$ and Lemma 5 , we have $f(y) \leqslant f(n-a-1)$. Thus,

$$
P(|\mathscr{A}|) \leqslant P\left(\binom{n-1}{a-1}+1\right)=P\left(\binom{n-1}{a-1}\right)+1-\binom{n-a-1}{b-1}<P(2)
$$

This completes the proof of Theorem 1.

6. Proof of Theorem 2

The proof is similar to the proof of Theorem 1. We leave some of the computations in the proof of Theorem 2 to the reader. We use the same definitions and notation as in the proof of Theorem 1.

Proof of Theorem 2 (i)
Case 1. $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}$.
The proof of this case is exactly same as the proof of Theorem 1.

Case 2. $\binom{n-1}{a-1}<|\mathscr{A}| \leqslant\binom{ n-1}{a-1}+\binom{n-2}{a-1}$.
Choose a real $y, n-a-1 \leqslant y \leqslant n-2$, so that $\left|\mathscr{A}^{c}\right|=\binom{n-1}{n-a}+\binom{y}{n-a-1}$. Then we have

$$
\begin{aligned}
P(|\mathscr{A}|) & =|\mathscr{A}|+\binom{n}{b}-\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right| \\
& \leqslant\binom{ n-1}{n-a}+\binom{y}{n-a-1}+\binom{n}{b}-\binom{n-1}{b}-\binom{y}{b-1}
\end{aligned}
$$

Let us define a real valued function $f(y):=-\binom{y}{b-1}+\binom{y}{n-a-1}$ for $n-a-1 \leqslant y \leqslant n-2$. Then, by Lemma 5 , we have $f(y) \leqslant f(n-a-1)$. Thus,

$$
P(|\mathscr{A}|) \leqslant P\left(\binom{n-1}{a-1}+1\right)=P\left(\binom{n-1}{a-1}\right)+1-\binom{n-a-1}{b-1}<P(2)
$$

Proof of Theorem 2 (ii)

Let us settle the case $a=b=2$ first. In this case, it is not difficult to check that $|\mathscr{A}|+|\mathscr{B}| \leqslant 6=\left|\mathscr{A}_{0}\right|+\left|\mathscr{B}_{0}\right|$ by hand. Equality holds if and only if $\{\mathscr{A}, \mathscr{B}\} \cong\left\{\mathscr{A}_{0}, \mathscr{B}_{0}\right\}$ or $\mathscr{A}=\mathscr{B}=\{12,13,23\}$ or $\{\mathscr{A}, \mathscr{B}\} \cong\{\{12,23,34\},\{13,23,24\}\}$.

From now on, we assume $a=b \geqslant 3$.
Case 1. $|\mathscr{A}| \leqslant\binom{ n-2}{a-2}+\binom{n-3}{a-2}$.
We follow the proof of Theorem 1. This time, Lemmas 6 and 7 are still valid. Instead of Lemma 8, we use the following.

Lemma 9. Let x be any integer with $n-a \leqslant x \leqslant n-3$. If $\binom{x}{n-a}+2 \leqslant|\mathscr{A}| \leqslant\binom{ x+1}{n-a}$ then $P\left(\binom{x}{n-a}+2\right) \geqslant P(|\mathscr{A}|)$

We can prove the above lemma in exactly the same way as in the proof of Lemma 8. Now using Lemmas 6, 7, 9, it follows that $P(2)<P(|\mathscr{A}|)$ for $2<|\mathscr{A}| \leqslant\binom{ n-2}{a-2}+\binom{n-3}{a-2}$.

Case 2. $\binom{n-2}{a-2}+\binom{n-3}{a-2}<|\mathscr{A}| \leqslant\binom{ n-2}{a-2}+\cdots+\binom{n-a-1}{a-2}+1=\binom{n-1}{a-1}-\binom{n-a-1}{a-1}+1$.
For an integer $x, 2 \leqslant x \leqslant a+1$, let us define

$$
\begin{aligned}
g(x) & :=\binom{n-2}{a-2}+\cdots\binom{n-x}{a-2}+1, \\
h(x) & :=\binom{n}{a}-\binom{n-2}{n-a-2}-\cdots-\binom{n-x}{n-a-2}-\binom{n-a-1}{a-1} .
\end{aligned}
$$

Note that if $|\mathscr{A}|=g(x)$ then, by the Kruskal-Katona theorem, we have $|\mathscr{B}| \leqslant h(x)$. Note also that $h(a+1)=\binom{n-1}{a-1}-\binom{n-a-1}{a-1}+1=g(a+1)$. Thus, if $|\mathscr{A}| \geqslant g(a+1)$ then $|\mathscr{B}| \leqslant g(a+1)$.

Lemma 10. For any integer $x, 2 \leqslant x \leqslant a+1$, we have $P(2)>P(g(x))$.

Proof. Using the result of Case 1, we have $P(2)>P(g(2))$. Since

$$
\begin{aligned}
P(g(x))-P(g(x-1)) & =g(x)+h(x)-g(x-1)-h(x-1) \\
& =\binom{n-x}{a-2}-\binom{n-x}{a-x+2},
\end{aligned}
$$

we have

$$
P(g(2)) \geqslant P(g(3))=P(g(4)) \leqslant P(g(5)) \leqslant \cdots \leqslant P(g(a+1)) .
$$

Thus, it suffices to show $P(2)>P(g(a+1))$. Note that

$$
g(a+1)=h(a+1)=\binom{n-1}{a-1}-\binom{n-a-1}{a-1}+1
$$

and

$$
P(a+1)=2 g(a+1)=2\binom{n-1}{a-1}-2\binom{n-a-1}{a-1}+2 .
$$

Therefore, the desired inequality $P(2)>P(g(a+1))$ is equivalent to

$$
\binom{n-1}{a}+\binom{n-2 a}{a}-2\binom{n-a-1}{a}-\binom{n-1}{a-1}>0
$$

The above inequality follows from Lemma 2.

Lemma 11. For any integer $x, 2 \leqslant x \leqslant a$, we have $P(g(x))>P(g(x)+1)$.
Proof. If $|\mathscr{A}|=g(x)+1=g(x)+\binom{n-x-a+1}{n-x-a+1}$, then by the Mörs theorem, we have $|\mathscr{B}| \leqslant h(x)-\binom{n-x-a+1}{a-x+1}$. Thus, $P(g(x))>P(g(x)+1)$ is equivalent to $\binom{n-x-a+1}{a-x+1}>1$. This follows from our assumption $n>2 a$.

Lemma 12. Let x be an integer with $2 \leqslant x \leqslant a$. If $g(x)+1 \leqslant|\mathscr{A}| \leqslant g(x+1)$ then $P(|\mathscr{A}|) \leqslant \max \{P(g(x)+1), P(g(x+1))\}$.

Proof. Choose a real $y, n-x-a+1 \leqslant y \leqslant n-x-1$, so that $|\mathscr{A}|=g(x)+\binom{y}{n-x-a+1}$. (Note that if $y=n-x-1$ then $|\mathscr{A}|=g(x+1)$.) Using the Kruskal-Katona theorem, we have $|\mathscr{B}| \leqslant h(x)-\binom{y}{a-x+1}$. Now define a real valued function $f(y):=-\binom{y}{a-x-1}+\binom{y}{n-x-a+1}$ for $n-x-a+1 \leqslant n-x-1$. Our goal is to show $f(y) \leqslant \max \{f(n-x-a+1), f(n-x-1)\}$.

First we settle the case $x=a$. In this case, we have $f(y)=-\binom{y}{1}+\binom{y}{n-2 a+1}$. Since $n>2 a$, $f(y)$ is an increasing function. Thus, $f(y) \leqslant f(n-a-1)$ holds.
From now on, we assume $x<a$. Set $s:=a-x+1, t:=x+a-1$, and $v:=n-2 x$. Using Lemma 4(i), one can check that $f^{\prime}(y)<0$ holds for $y \leqslant n-2 x$. Thus, we have $f^{\prime}(n-x-a+1)<0$. Therefore, $f(y) \leqslant \max \{f(n-x-a+1), f(n-x-1)\}$ follows from Lemma 4(ii).

By Lemmas $10,11,12$, we have

$$
P(|\mathscr{A}|) \leqslant \max \{P(g(2)), P(g(a+1))\}<P(2) .
$$

7. Proof of Theorem 3

Recall that $P(|\mathscr{A}|)=\max \{|\mathscr{A}|+|\mathscr{B}|\}$ (see Section 5). If $b \geqslant a+2$, then the theorem follows from Theorem 1.

Case 1. $b=a+1$.
If $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}+\binom{n-2}{a-1}$ then the desired inequality $(P(2)>P(|\mathscr{A}|)$ for $2<|\mathscr{A}| \leqslant$ $\binom{n-1}{a-1}+\binom{n-2}{a-1}$) follows from Theorem 2. So we may assume $\left|\mathscr{A}^{c}\right|>\binom{n-1}{n-a}+\binom{n-2}{n-a-1}$. Then, by the Kruskal-Katona theorem, we have

$$
|\mathscr{B}| \leqslant\binom{ n}{b}-\left|\Delta_{b}\left(\mathscr{A}^{c}\right)\right| \leqslant\binom{ n}{a+1}-\binom{n-1}{a+1}-\binom{n-2}{a}=\binom{n-2}{n-(a+1)}
$$

Define

$$
Q(t):=\max \{|\mathscr{A}|+|\mathscr{B}|:|\mathscr{B}|=t, \mathscr{A} \text { and } \mathscr{B} \text { are cross-intersecting and } \mathscr{B} \text { is nontrivial }\} .
$$

Let $\left|\mathscr{B}^{c}\right|=\left(\begin{array}{c}\left.\begin{array}{c}y \\ n-(a+1)\end{array}\right)\end{array}\right)+1$ for $n-a-1 \leqslant y<n-2$. Then we have $Q(|\mathscr{B}|) \leqslant f(y)+($ constant $)$, where $f(y):=-\binom{y}{a}+\binom{y}{n-a-1}$. Using Lemma 5, one can check that $f(y)<f(n-a-1)$ for $n-a-1<y<n-2$, that is, $Q(2)>Q(|\mathscr{B}|)$ for $2<|\mathscr{B}| \leqslant\binom{ n-2}{n-(a+1)}$. Using Lemma 3, we have $P(2)>Q(2)$. This completes the proof of this case.

Case 2. $b=a$.
Without loss of generality, we may assume that $|\mathscr{A}| \leqslant|\mathscr{B}|$. If $|\mathscr{A}| \geqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1$ then $|\mathscr{B}| \leqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1$ (see the computation in the proof of Theorem 2(ii), Case 2). Thus we may assume that $|\mathscr{A}| \leqslant\binom{ n-1}{a-1}-\binom{n-a-1}{a-1}+1$. Then the result follows from Theorem 2.

References

[1] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12 313-320.
[2] Frankl, P. and Tokushige, N. (1991) The Kruskal-Katona theorem, some of its analogues and applications. Conference on extremal problems for finite sets, Visegrád, Hungary, pp. 92-108.
[3] Frankl, P. and Tokushige, N. (1992) Some best possible inequalities concerning cross-intersecting families. J. Combin. Theory Ser. A 61 87-97.
[4] Füredi, Z. (1995) Cross-intersecting families of finite sets. J. Combin. Theory Ser. A 72 332-339.
[5] Füredi, Z. and Griggs, J. R. (1986) Families of finite sets with minimum shadows. Combinatorica 6 335-354.
[6] Hilton, A. J. W. and Milner, E. C. (1967) Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford 18 369-384.
[7] Katona, G. O. H. (1968) A theorem on finite sets. In Theory of Graphs, Proc. Colloq. Thihany, 1966, Akademiai Kiadó, pp. 187-207.
[8] Kruskal, J. B. (1963) The number of simplices in a complex. In Math. Opt. Techniques, Univ. of Calif. Press, pp. 251-278.
[9] Lovász, L. (1979) Problem 13.31. In Combinatorial Problems and Exercises, North Holland.
[10] Matsumoto, M. and Tokushige, N. (1989) The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families. J. Combin. Theory Ser. A 22 90-97.
[11] Matsumoto, M. and Tokushige, N. (1989) A generalization of the Katona theorem for cross-t-intersecting families. Graphs and Combinatorics 5 159-171.
[12] Mörs, M. (1985) A generalization of a theorem of Kruskal. Graphs and Combinatorics 1 167-183.
[13] Pyber, L. (1986) A new generalization of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. A 43 85-90.
[14] Simpson, J. E. (1993) A bipartite Erdős-Ko-Rado theorem. Discrete Math. 113 277-280.

