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Let a, b and n be integers with 2 6 a 6 b and n > a+ b. Suppose that A ⊂ ([n]
a

)
and B ⊂(

[n]
b

)
are nontrivial cross-intersecting families. Then |A|+ |B| 6 2 +

(
n
b

)− 2
(
n−a
b

)
+
(
n−2a
b

)
.

This result is best possible.

1. Introduction

Let [n] := {1, 2, . . . , n} be an n-element set. For an integer k, 0 6 k 6 n, we denote by(
[n]
k

)
the set of all k-element subsets of [n]. A family F ⊂ ([n]

k

)
is called nontrivial if⋂

F∈F F = ∅. Two families, A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
, are said to be cross-intersecting if

A ∩ B 6= ∅ holds for all A ∈ A and B ∈ B. A family F ⊂ ([n]
k

)
is called intersecting if A

and A are cross-intersecting.

Let us recall the following two fundamental results.

Theorem A (Erdős, Ko and Rado [1]). Let k and n be integers with n > 2k. If F ⊂ ([n]
k

)
is intersecting, then |F| 6 (n−1

k−1

)
.

Theorem B (Hilton and Milner [6]). Let k and n be integers with n > 2k. If F ⊂ ([n]
k

)
is

nontrivial intersecting, then |F| 6 (n−1
k−1

)− (n−k−1
k−1

)
+ 1.

In [4], Füredi proposed the following conjectures.

Conjecture 1. Let a, b and n be integers with n > a + b. Suppose that A ⊂ ([n]
a

)
and

B ⊂ ([n]
b

)
are cross-intersecting families. Then |A||B| 6 (n−1

a−1

)(
n−1
b−1

)
.
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Conjecture 2. Let a, b and n be integers with a 6 b and n > a+ b. Suppose that A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
are cross-intersecting families. If |A| > (n−1

a−1

)−(n−a−1
a−1

)
+1 andA is nontrivial,

then |B| 6 (n−1
b−1

)− (n−a−1
b−1

)
+
(
n−a−1
b−a

)
.

Conjecture 3. Let a, b and n be integers with a 6 b and n > a+ b. Suppose that A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
are nontrivial cross-intersecting families. Then

|A|+ |B| 6
∣∣∣([a+ 1]

a

)∣∣∣+
∣∣∣{B ∈ ([n]

b

)
: |[a+ 1] ∩ B| > 2

}∣∣∣.
Conjecture 1 was known to be true if n > max{2a, 2b} (see [10], [13]). But if n <

max{2a, 2b} then the conjecture is not true in general. A simple counterexample is given

in Section 2.

In Section 3, we show that Conjecture 2 is a direct consequence of a theorem of Mörs.

Conjecture 3 is false even if we fix |A| = a+ 1. In this case, the best construction is the

following. Let

Ai := {1, . . . , a− 1} ∪ {a+ i} for 0 6 i < a,

and set

A := {A0, . . . , Aa−1} ∪ {{a, . . . , 2a− 1}},
B :=

{
B ∈

(
[n]

b

)
: A ∩ B 6= ∅ for all A ∈ A

}
.

If we do not restrict |A|, the following construction is much better.

Example. Choose disjoint A0, A1 ∈ ([n]
a

)
, and set A0 := {A0, A1},

B0 :=
{
B ∈

(
[n]

b

)
: B ∩ A0 6= ∅, B ∩ A1 6= ∅

}
.

Then A0 and B0 are nontrivial cross-intersecting families. (A0 has size 2.)

Actually, if b > a+ 2 then we have the following result.

Theorem 1. Let a, b and n be integers with 2 6 a 6 b − 2 and n > a + b. Suppose that

two families A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
are cross-intersecting, and the family A is nontrivial.

Then, |A|+ |B| 6 |A0|+ |B0| holds. For n > a+ b, equality holds if and only if A ∼=A0

and B ∼= B0.

Note that in the above theorem it is not assumed that B is nontrivial. We prove

Theorem 1 in Section 5. If |A| is relatively small then the same inequality holds for the

cases b = a or b = a+ 1 as well.

Theorem 2. Let a, b and n be integers with 2 6 a 6 b and n > a + b. Suppose that two

families A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
are cross-intersecting, and the family A is nontrivial. Then

the following statements hold.
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(i) If b = a + 1 and |A| 6 (n−1
a−1

)
+
(
n−2
a−1

)
, then |A| + |B| 6 |A0| + |B0|. For n > a + b,

equality holds if and only if A ∼=A0 and B ∼= B0.

(ii) If b = a and |A| 6 (n−1
a−1

)− (n−a−1
a−1

)
+ 1 then |A|+ |B| 6 |A0|+ |B0|. For n > a+ b

and a > 3, equality holds if and only if A ∼=A0 and B ∼= B0.

Using Theorems 1 and 2, we have the following.

Theorem 3. Let a, b and n be integers with 2 6 a 6 b and n > a+b. Suppose thatA ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
are nontrivial cross-intersecting families. Then |A|+ |B| 6 |A0|+ |B0|. For

n > a+ b and b > 3, equality holds if and only if A ∼=A0 and B ∼= B0.

Since Theorems 1, 2, 3 are trivial if n = a + b, throughout this paper we consider the

case n > a+ b.

2. Counterexample to Conjecture 1

Define

A :=
{
A ∈

(
[n]

a

)
: {1, 2} ∩ A 6= ∅

}
,

B :=
{
B ∈

(
[n]

b

)
: {1, 2} ⊂ B

}
.

These two families are cross-intersecting, and

|A| =
(
n− 1

a− 1

)
+

(
n− 2

a− 1

)
, |B| =

(
n− 1

b− 1

)
−
(
n− 2

b− 1

)
.

Set δ := |A||B| − (n−1
a−1

)(
n−1
b−1

)
. Then δ > 0 is equivalent to

(n− 1)(b− a)
(n− b)(n− a) > 1. (2.1)

Let n = (2− α)b, a = (1− β)b, where

0 < α < β < 1. (2.2)

Then n > a+ b holds and condition (2.1) is equivalent to

(1− 1/b)β > (1− α)2. (2.3)

If we choose α, β and b so that (2.2) and (2.3) hold, then n > a + b, but δ > 0. For

example, choose an integer c > 5 and set n = 17c, a = 5c and b = 10c: then the pair of

A and B is a counterexample to Conjecture 1.

3. The Mörs theorem

Let F ⊂ ([n]
k

)
and 0 < l < k. The lth shadow ∆l(F) of F is defined by

∆l(F) := {G : |G| = l, G ⊂ F for some F ∈ F}.
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Let us define the colex order on
(

[n]
k

)
by

A < B if and only if max{A− B} < max{B − A}.
Define Colex(k, j) to be the first j sets in

(
N
k

)
with respect to the colex order. Let us define

‖F‖ :=
⋃
F∈F F . For given integers n, k, i, l, what is the minimum of |∆l(F)| ifF ⊂ ([n]

k

)
,

‖F‖ = n and |F| = i? The Mörs theorem (Theorem C below) gives the complete answer

to this question.

Let n, k, i be integers with n/k 6 i 6
(
n
k

)
. Let us construct a family F0 ⊂ (

[n]
k

)
with ‖F0‖ = n, |F| = i as follows. Define g := max{j : n − ‖Colex(k, j)‖ 6 (i − j)k},
h := ‖Colex(k, g)‖. For 1 6 j < i− g, define Fj := {(j − 1)k + h+ 1, . . . , jk + h}. Further,

define G := {(i− g − 1)k + h+ 1, . . . , n, 1, 2, . . . , k − (n− (i− g − 1)k − h)}. Finally, define

F0 := Colex(k, g) ∪ {F1, . . . , Fi−g−1, G}.

Theorem C (Mörs [12]). Let n, k, i, l be integers with 1 6 l < k 6 n, n/k 6 i 6
(
n
k

)
.

Suppose that F ⊂ ([n]
k

)
, ‖F‖ = n, |F| = i. Then |∆l(F)| > |∆l(F0)|.

If n 6 2k, the situation is much simpler. In this case, the optimal family F0 is given by

F0 := Colex(k, i− 1) ∪ {h+ 1, . . . , n, 1, 2, . . . , k + h− n}.
Let us show how Conjecture 2 follows from Theorem C (see also [5]). Note that

|A| >
(
n− 1

a− 1

)
−
(
n− a− 1

a− 1

)
+ 1

=

(
n− 2

n− a
)

+

(
n− 3

n− a− 1

)
+ · · ·+

(
n− a− 1

n− 2a+ 1

)
+

(
n− a− 1

n− a− 1

)
.

By the Mörs theorem, we have

|B| 6
(
n

b

)
−
(
n− 2

b

)
−
(
n− 3

b− 1

)
− · · · −

(
n− a− 1

b− a+ 1

)
−
(
n− a− 1

b− 1

)
=

(
n− 1

b− 1

)
+

(
n− a− 1

b− a
)
−
(
n− a− 1

b− 1

)
.

4. Tools for proofs

In this section, we list several inequalities concerning binomial coefficients (see [2], [3],

[10], [11]). These inequalities will be used in later sections.

Lemma 1. Let b > a, a > e+3 and n > a+b. Then inequality P (j, n) holds for 0 6 e 6 a−3

and 0 6 j 6 e+ 1,

P (j, n) :

(
n− a+ e

b− 1− j
)
−
(
n− 2a+ e

b− 1− j
)
>

(
n− a+ e

e+ 1− j
)
.

Proof. We prove P (j, n) by double induction on j and n. Fix a, b and e.
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If j = e+ 1, then the desired inequality is

P (e+ 1, n) :

(
n− a+ e

b− 2− e
)
−
(
n− 2a+ e

b− 2− e
)
> 1.

Since b > a > e+ 3, we have b− 2− e > 1. Thus P (e+ 1, n) holds for all n > a+ b.

Now fix 0 < j 6 e and assume that P (j, n) holds for all n > a+ b. We prove

P (j − 1, n) :

(
n− a+ e

b− j
)
−
(
n− 2a+ e

b− j
)
>

(
n− a+ e

e+ 2− j
)

using induction on n.

First we check the case n = a+ b, that is,

P (j − 1, a+ b) :

(
b+ e

b− j
)
−
(
b− a+ e

b− j
)
>

(
b+ e

e+ 2− j
)
.

The above inequality is trivial if b− a+ e 6 b− j. So assume a < e+ j. By the induction

hypothesis P (j, a+ b), it follows that(
b+ e

b− 1− j
)
−
(
b− a+ e

b− 1− j
)
>

(
b+ e

e+ 1− j
)

=
e+ 2− j
b− 1 + j

(
b+ e

e+ 2− j
)
.

Thus, to prove P (j − 1, a+ b), it suffices to show(
b+ e

b− j
)
−
(
b− a+ e

b− j
)
>
b− 1 + j

e+ 2− j
((

b+ e

b− 1− j
)
−
(
b− a+ e

b− 1− j
))

,

or, equivalently,(
b+ e

b− j
)(

1− b− 1 + j

e+ 2− j ·
b− j

e+ 1 + j

)
>

(
b− a+ e

b− j
)(

1− b− 1 + j

e+ 2− j ·
b− j

e+ 1 + j − a
)
.

The above inequality clearly holds.

Next we fix n and assume P (j − 1, n). We prove P (j − 1, n + 1). Using the induction

hypotheses P (j − 1, n) and P (j, n), we have(
n+ 1− a+ e

b− j
)
−
(
n+ 1− 2a+ e

b− j
)

=

{(
n− a+ e

b− j
)
−
(
n− 2a+ e

b− j
)}

+

{(
n− a+ e

b− j − 1

)
−
(
n− 2a+ e

b− j − 1

)}
>

(
n− a+ e

e+ 2− j
)

+

(
n− a+ e

e+ 1− j
)

=

(
n− a+ e+ 1

e+ 2− j
)

This proves P (j − 1, n+ 1), and by induction P (j − 1, n) holds for all n > a+ b.

Lemma 2. Let n and a be integers with n > 2a, a > 1. Define f(n, a) :=
(
n−1
a

)
+
(
n−2a
a

)−
2
(
n−a−1
a

)− (n−1
a−1

)
. Then we have f(n, a) > 0.

Proof. We prove f(n, a) > 0 by double induction on n and a. It is easily checked that

f(n, 1) = 0 and f(2a, a) = 0. Fix n and a, and assume f(n, a) > 0 and f(n, a−1) > 0. Using
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these assumptions, let us prove f(n, a+ 1) > 0. Since

f(n+ 1, a)

=

{(
n− 1

a

)
+

(
n− 2a

a

)
− 2

(
n− a− 1

a

)
−
(
n− 1

a− 1

)}
+{(

n− 1

a− 1

)
+

(
n− 2a

a− 1

)
− 2

(
n− a− 1

a− 1

)
−
(
n− 1

a− 2

)}
= f(n, a) + f(n, a− 1) + 2

(
n− a− 1

a− 2

)
− 2

(
n− 2a

a− 2

)(
1 +

a− 2

2(n− 3a+ 3)

)
,

it suffices to show that

(n− a− 1) · · · (n− 2a+ 2)

(n− 2a) · · · (n− 3a+ 3)
> 1 +

a− 2

2(n− 3a+ 3)
.

Let us check the above inequality:

LHS =

(
1 +

a− 1

n− 2a

)
· · ·
(

1 +
a− 1

n− 3a+ 3

)
> 1 +

a− 1

n− 2a
+ · · ·+ a− 1

n− 3a+ 3
> 1 +

a− 2

2(n− 3a+ 3)
= RHS.

This proves f(n+ 1, a) > 0.

Lemma 3. Let n and a be integers with n > 2a+ 1, a > 0. Define f(n, a) :=
(
n
a+1

)− (n
a

)−
2
(
n−a−1
a+1

)
+
(
n−2a
a+1

)− (n−2a−2
a

)
. Then f(n, a) > 0.

Proof. We prove f(n, a) > 0 by double induction on n and a. One can easily check that

f(n, 0) = 0 and f(2a+1, a) = 0. Fix n and a, and assume that f(n, a) > 0 and f(n, a−1) > 0.

Using these assumptions, let us prove f(n+ 1, a) > 0. In fact,

f(n+ 1, a) =

{(
n

a+ 1

)
−
(
n

a

)
− 2

(
n− a− 1

a+ 1

)
+

(
n− 2a

a+ 1

)
−
(
n− 2a− 2

a

)}
{(

n

a

)
−
(

n

a− 1

)
− 2

(
n− a− 1

a

)
+

(
n− 2a

a

)
−
(
n− 2a− 2

a− 1

)}
= f(n, a) + f(n, a− 1) + 2

{(
n− a
a

)
−
(
n− a− 1

a

)}
+{(

n− 2a

a

)
−
(
n− 2a− 2

a

)}
+

{(
n− 2a

a− 1

)
−
(
n− 2a− 2

a− 1

)}
> 0.

For an integer k and a real x > k, define
(
x
k

)
:=
∏k−1

i=0 (x− i)/k!.

Lemma 4. Let s, t and n be integers with n > s+ t. Define a real valued function f(x) :=

−(x
s

)
+
(
x
n−t
)
. Then the following statements hold.

(i) Suppose that 1 + (n−s−t)v
s(v−n+t+1)

<
(
v
s

)
/
(
v
n−t
)
. Then f′(x) < 0 holds for all real numbers

x 6 v.
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(ii) Let u, v be real numbers with u < v, and let w ∈ {u, v}. Suppose that f′(u) < 0 and

f(w) = max{f(u), f(v)}. Then f(w) > f(x) holds for all real numbers x, u 6 x 6 v.

Proof. (i) Since f′(x) = −(x
s

)∑s−1
j=0

1
x−j +

(
x
n−t
)∑n−t−1

j=0
1
x−j , f

′(x) < 0 is equivalent ton−t−1∑
j=0

1

x− j

/ s−1∑
j=0

1

x− j

 <

(
x

s

)/(
n

n− t
)

=
(n− t) · · · (s+ 1)

(x− s) · · · (x− n+ t+ 1)
. (4.1)

By simple estimation, we have

LHS = 1 +

n−t−1∑
j=s

1

x− j

/ s−1∑
j=0

1

x− j

 6 1 +
n− t− s

x− n+ t+ 1
· x
s
.

Thus, to prove (4.1), it suffices to show that

(x− s) · · · (x− n+ t+ 1)

(
1 +

n− t− s
x− n+ t+ 1

· x
s

)
< (n− t) · · · (s+ 1). (4.2)

Since the LHS of (4.2) is increasing with x, it suffices to show (4.2) for x = v, that is,

1 +
n− t− s

v − n+ t+ 1
· v
s
<

(
v

s

)/(
v

n− t
)
.

But this was our assumption.

(ii) Suppose on the contrary that f(w) < f(x) holds for some x, x > u. Then, we may

assume that there exist p, q which satisfy

u < p < q 6 v,

f′(p) = f′(q) = 0,

f(p) < f(w) < f(q).

If f′(x) = 0, it follows that(
x

s

)
=

(
x

n− t
)1 +

n−t−1∑
j=s

1

x− j

/ s−1∑
j=0

1

x− j

 .

Substituting this into f(x), we define a new function:

g(x) := −
(

x

n− t
)n−t−1∑

j=s

1

x− j

/ s−1∑
j=0

1

x− j

 .

Note that g(x) = f(x) holds if f′(x) = 0. Thus, f(w) < g(q) must hold. We derive a

contradiction by showing that f(w) > g(x) or, equivalently,{(
w

s

)
−
(

w

n− t
)} s−1∑

j=0

1

x− j 6
(

x

n− t
) n−t−1∑

j=s

1

x− j
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holds for all x > p. We may assume that
(
w
s

) − ( w
n−t
)

is nonnegative. Then the LHS is

decreasing with x. On the other hand, the RHS is increasing with x. Therefore, it suffices

to check the inequality for x = p, that is, f(w) > g(p) = f(p). But this was our assumption.

Lemma 5. Let a, b and n be integers with n > a+ b. Define a real valued function f(y) :=

−( y
b−1

)
+
(

y
n−a−1

)
. Then, the following hold.

(i) If b > a+ 3 then f(y) < f(n− a− 1) holds for n− a− 1 < y 6 n− 1.

(ii) If b = a+ e then f(y) < f(n− a− 1) holds for n− a− 1 < y 6 n− 3 + e, e = 0, 1, 2.

Proof. Set s := b− 1 and t := a+ 1.

(i) Set v := n− 1. Then, we have

1 +
(n− s− t)v

s(v − n+ t+ 1)
=

(n− a− 1)(n− b+ 1)− (n− a− b)
(b− 1)(a+ 1)

,(
v

s

)/(
v

n− t
)

=
(n− a− 1) · · · (n− b+ 1)

(b− 1) · · · (a+ 1)
>

(n− a− 1)(n− b− 1)

(b− 1)(a+ 1)
.

Using Lemma 4(i), we have f′(y) < 0 for y 6 n− 1.

(ii) Set v := n − 4 + e. Using Lemma 4(i), one can check f′(y) < 0 for y 6 n − 4 + e.

Next, define u := n − 4 + e, v := n − 3 + e, w := u. Using Lemma 4(ii), one can check

f(y) 6 f(n− 4 + e) = f(n− 3 + e) for n− 4 + e 6 y 6 n− 3 + e.

5. Proof of Theorem 1

Let n > a+ b and consider cross-intersecting families A ⊂ ([n]
a

)
and B ⊂ ([n]

b

)
. Define

P (t) := max{|A|+ |B| : |A| = t, A and B are cross-intersecting and A is nontrivial}.
Our goal is to show P (|A|) 6 P (2) for 2 6 |A| 6 (n

a

)
.

Define the complement of A by Ac := {[n] − A : A ∈ A} ⊂ ( [n]
n−a
)
, and recall from

Section 3 that the bth shadow of Ac is

∆b(Ac) :=
{
F ∈

(
[n]

b

)
: F ∩ A = ∅ for some A ∈ A

}
.

Since A is nontrivial, we have
⋃
F∈Ac F = [n]. The cross-intersecting property implies

∆b(Ac) ∩B = ∅.

Case 1. |A| 6 (n−1
a−1

)
.

In this case, we assume b > a+ 1 instead of b > a+ 2. (We will use this part of the proof

for a proof of Theorems 2 and 3 later.) Suppose that |A| = |Ac| 6 (n−1
a−1

)
is fixed. Then,

in order to maximize |A|+ |B|, we have to choose A so that |∆b(Ac)| is minimal. (Then
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B :=
(

[n]
b

) − ∆b(Ac) has the maximal size.) By the Mörs theorem, the optimal family is

the following. Let F ⊂ ( [n]
n−a
)

be the first |A| − 1 sets with respect to the colex order. Let⋃
E∈F E = {1, 2, . . . , x} and define F := {1, . . . , x− a} ∪ {x+ 1, . . . , n}. Finally, the optimal

family A is given by Ac =F∪ {F}. Then we have

P (|A|) = P (|F|+ 1) = |F|+ 1 +

(
n

b

)
− |∆b(F∪ {F})|.

Lemma 6. Let b > a. For any integer x, n− a < x 6 n− 2, we have P (2) > P (
(
x
n−a
)

+ 1).

Proof. Let Ac =F∪ {F} and |F| = (
x
n−a
)
. In this case, F =

(
[x]
n−a
)

and F = {1, . . . , x−
a} ∪ {x+ 1, . . . , n} hold. Thus, |∆b(Ac)| = (

x
b

)
+
(
n−a
b

)− (x−a
b

)
. Therefore, we have

P

((
x

n− a
)

+ 1

)
=

(
x

n− a
)

+ 1 +

(
n

b

)
−
(
x

b

)
−
(
n− a
b

)
+

(
x− a
b

)
.

Let f(x) :=
(
x
n−a
)− (x

b

)
+
(
x−a
b

)
. We want to show f(x) < f(n− a) for n− a < x 6 n− 2.

Let us define g(x) := f(x)− f(x+ 1). It suffices to show g(n− a+ e) > 0 for 0 6 e 6 a− 3.

This follows from Lemma 1 by setting j = 0.

Lemma 7. Let b > a. For any integer x, n − a < x 6 n − 2, we have P (
(
x
n−a
)

+ 1) >
P (
(
x
n−a
)

+ 2). Equality holds if and only if x = n− 2 and a = b = 2.

Proof. We calculated P (
(
x
n−a
)

+ 1) in the proof of Lemma 6. Now we consider the case

|Ac| = (
x
n−a
)
+2 =

(
x
n−a
)
+
(
n−a−1
n−a−1

)
+1. This time, we haveF =

(
[x]
n−a
)∪{1, . . . , n−a−1, x+1}

and F = {1, . . . , x− a+ 1} ∪ {x+ 2, . . . , n}. Thus,

P

((
x

n− a
)

+ 2

)
=

(
x

n− a
)

+2+

(
n

b

)
−
(
x

b

)
−
(
n− a− 1

b− 1

)
−
(
n− a
b

)
+

(
x− a+ 1

b

)
.

Therefore,

P

((
x

n− a
)

+ 1

)
− P

((
x

n− a
)

+ 2

)
=

(
n− a− 1

b− 1

)
−
(
x− a
b− 1

)
− 1 > 0.

Lemma 8. Let b > a + 1, and let x be an integer with n − a 6 x 6 n − 2. If(
x
n−a
)

+ 2 6 |A| 6 (
x+1
n−a
)

then P (
(
x
n−a
)

+ 2) > P (|A|). Equality holds if and only if

|A| = (
x
n−a
)

+ 2.

Proof. Choose a real y, n− a− 1 6 y < x, so that |A| = (
x
n−a
)

+
(

y
n−a−1

)
+ 1. In this case,

it follows that Ac =F∪ {F},

F ⊂
(

[x]

n− a
)
∪
{
G ∪ {x+ 1} : G ∈

(
[dye]

n− a− 1

)}
,

F = {1, . . . , x− a+ 1} ∪ {x+ 2, . . . , n}.
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Using the Kruskal–Katona theorem ([7], [8], [9]), we have

P (|A|) = |A|+
(
n

b

)
− |∆b(Ac)|

6

(
x

n− a
)

+

(
y

n− a− 1

)
+ 1 +(

n

b

)
−
(
x

b

)
−
(

y

b− 1

)
−
(
n− a
b

)
+

(
x− a+ 1

b

)
.

Now define a real valued function f(y) := −( y
b−1

)
+
(

y
n−a−1

)
for n− a− 1 6 y < n− 2. By

Lemma 5, we have f(y) 6 f(n − a − 1), that is, P (|A|) 6 P (
(
x
n−a
)

+ 2). Equality holds if

and only if y = n− a− 1, that is, |A| = (
x
n−a
)

+ 2.

By Lemmas 6, 7 and 8, we have P (2) > P (|A|) for 2 < |A| 6 (n−1
a−1

)
. Equality holds

only if a = b = 2. Since we have assumed b > a+ 1, we obtain P (2) > P (|A|).

Case 2. |A| > (n−1
a−1

)
.

By the Erdős–Ko–Rado theorem ([1]), A is nontrivial no matter how we choose A.

Suppose that |A| = |Ac| > (n−1
a−1

)
is fixed. Then, to maximize |A|+ |B|, we have to choose

A so that |∆b(Ac)| is minimal. By the Kruskal–Katona theorem, we may assume that Ac

is the first |A| sets with respect to the colex order. Choose a real y, n− a− 1 6 y 6 n− 1,

so that |Ac| = (
n−1
n−a
)

+
(

y
n−a−1

)
. Then we have

P (|A|) = |A|+
(
n

b

)
− |∆b(Ac)|

6

(
n− 1

n− a
)

+

(
y

n− a− 1

)
+

(
n

b

)
−
(
n− 1

b

)
−
(

y

b− 1

)
.

Let us define a real valued function f(y) := −( y
b−1

)
+
(

y
n−a−1

)
for n − a − 1 6 y 6 n − 1.

Then, by our assumption b > a+ 2 and Lemma 5, we have f(y) 6 f(n− a− 1). Thus,

P (|A|) 6 P
((

n− 1

a− 1

)
+ 1

)
= P

((
n− 1

a− 1

))
+ 1−

(
n− a− 1

b− 1

)
< P (2).

This completes the proof of Theorem 1.

6. Proof of Theorem 2

The proof is similar to the proof of Theorem 1. We leave some of the computations in

the proof of Theorem 2 to the reader. We use the same definitions and notation as in the

proof of Theorem 1.

Proof of Theorem 2 (i)

Case 1. |A| 6 (n−1
a−1

)
.

The proof of this case is exactly same as the proof of Theorem 1.
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Case 2.
(
n−1
a−1

)
< |A| 6 (n−1

a−1

)
+
(
n−2
a−1

)
.

Choose a real y, n− a− 1 6 y 6 n− 2, so that |Ac| = (
n−1
n−a
)

+
(

y
n−a−1

)
. Then we have

P (|A|) = |A|+
(
n

b

)
− |∆b(Ac)|

6

(
n− 1

n− a
)

+

(
y

n− a− 1

)
+

(
n

b

)
−
(
n− 1

b

)
−
(

y

b− 1

)
.

Let us define a real valued function f(y) := −( y
b−1

)
+
(

y
n−a−1

)
for n − a − 1 6 y 6 n − 2.

Then, by Lemma 5, we have f(y) 6 f(n− a− 1). Thus,

P (|A|) 6 P
((

n− 1

a− 1

)
+ 1

)
= P

((
n− 1

a− 1

))
+ 1−

(
n− a− 1

b− 1

)
< P (2).

Proof of Theorem 2 (ii)

Let us settle the case a = b = 2 first. In this case, it is not difficult to check that

|A|+ |B| 6 6 = |A0|+ |B0| by hand. Equality holds if and only if {A,B} ∼= {A0,B0} or

A = B = {12, 13, 23} or {A,B} ∼= {{12, 23, 34}, {13, 23, 24}}.

From now on, we assume a = b > 3.

Case 1. |A| 6 (n−2
a−2

)
+
(
n−3
a−2

)
.

We follow the proof of Theorem 1. This time, Lemmas 6 and 7 are still valid. Instead of

Lemma 8, we use the following.

Lemma 9. Let x be any integer with n− a 6 x 6 n− 3. If
(
x
n−a
)

+ 2 6 |A| 6 (x+1
n−a
)

then

P (
(
x
n−a
)

+ 2) > P (|A|) .

We can prove the above lemma in exactly the same way as in the proof of Lemma 8.

Now using Lemmas 6, 7, 9, it follows that P (2) < P (|A|) for 2 < |A| 6 (n−2
a−2

)
+
(
n−3
a−2

)
.

Case 2.
(
n−2
a−2

)
+
(
n−3
a−2

)
< |A| 6 (n−2

a−2

)
+ · · ·+ (n−a−1

a−2

)
+ 1 =

(
n−1
a−1

)− (n−a−1
a−1

)
+ 1.

For an integer x, 2 6 x 6 a+ 1, let us define

g(x) :=

(
n− 2

a− 2

)
+ · · ·

(
n− x
a− 2

)
+ 1,

h(x) :=

(
n

a

)
−
(

n− 2

n− a− 2

)
− · · · −

(
n− x

n− a− 2

)
−
(
n− a− 1

a− 1

)
.

Note that if |A| = g(x) then, by the Kruskal–Katona theorem, we have |B| 6 h(x).

Note also that h(a + 1) =
(
n−1
a−1

) − (n−a−1
a−1

)
+ 1 = g(a + 1). Thus, if |A| > g(a + 1) then

|B| 6 g(a+ 1).

Lemma 10. For any integer x, 2 6 x 6 a+ 1, we have P (2) > P (g(x)).
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Proof. Using the result of Case 1, we have P (2) > P (g(2)). Since

P (g(x))− P (g(x− 1)) = g(x) + h(x)− g(x− 1)− h(x− 1)

=

(
n− x
a− 2

)
−
(

n− x
a− x+ 2

)
,

we have

P (g(2)) > P (g(3)) = P (g(4)) 6 P (g(5)) 6 · · · 6 P (g(a+ 1)).

Thus, it suffices to show P (2) > P (g(a+ 1)). Note that

g(a+ 1) = h(a+ 1) =

(
n− 1

a− 1

)
−
(
n− a− 1

a− 1

)
+ 1,

and

P (a+ 1) = 2g(a+ 1) = 2

(
n− 1

a− 1

)
− 2

(
n− a− 1

a− 1

)
+ 2.

Therefore, the desired inequality P (2) > P (g(a+ 1)) is equivalent to(
n− 1

a

)
+

(
n− 2a

a

)
− 2

(
n− a− 1

a

)
−
(
n− 1

a− 1

)
> 0.

The above inequality follows from Lemma 2.

Lemma 11. For any integer x, 2 6 x 6 a, we have P (g(x)) > P (g(x) + 1).

Proof. If |A| = g(x) + 1 = g(x) +
(
n−x−a+1
n−x−a+1

)
, then by the Mörs theorem, we have

|B| 6 h(x) − (n−x−a+1
a−x+1

)
. Thus, P (g(x)) > P (g(x) + 1) is equivalent to

(
n−x−a+1
a−x+1

)
> 1. This

follows from our assumption n > 2a.

Lemma 12. Let x be an integer with 2 6 x 6 a. If g(x) + 1 6 |A| 6 g(x + 1) then

P (|A|) 6 max{P (g(x) + 1), P (g(x+ 1))}.

Proof. Choose a real y, n − x − a + 1 6 y 6 n − x − 1, so that |A| = g(x) +
(

y
n−x−a+1

)
.

(Note that if y = n− x− 1 then |A| = g(x+ 1).) Using the Kruskal–Katona theorem, we

have |B| 6 h(x)−( y
a−x+1

)
. Now define a real valued function f(y) := −( y

a−x−1

)
+
(

y
n−x−a+1

)
for n−x−a+1 6 n−x−1. Our goal is to show f(y) 6 max{f(n−x−a+1), f(n−x−1)}.

First we settle the case x = a. In this case, we have f(y) = −(y
1

)
+
(

y
n−2a+1

)
. Since n > 2a,

f(y) is an increasing function. Thus, f(y) 6 f(n− a− 1) holds.

From now on, we assume x < a. Set s := a − x + 1, t := x + a − 1, and v := n − 2x.

Using Lemma 4(i), one can check that f′(y) < 0 holds for y 6 n − 2x. Thus, we have

f′(n− x− a+ 1) < 0. Therefore, f(y) 6 max{f(n− x− a+ 1), f(n− x− 1)} follows from

Lemma 4(ii).

By Lemmas 10, 11, 12, we have

P (|A|) 6 max{P (g(2)), P (g(a+ 1))} < P (2).
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7. Proof of Theorem 3

Recall that P (|A|) = max{|A| + |B|} (see Section 5). If b > a + 2, then the theorem

follows from Theorem 1.

Case 1. b = a+ 1.

If |A| 6 (
n−1
a−1

)
+
(
n−2
a−1

)
then the desired inequality (P (2) > P (|A|) for 2 < |A| 6(

n−1
a−1

)
+
(
n−2
a−1

)
) follows from Theorem 2. So we may assume |Ac| > (n−1

n−a
)

+
(
n−2
n−a−1

)
. Then,

by the Kruskal–Katona theorem, we have

|B| 6
(
n

b

)
− |∆b(Ac)| 6

(
n

a+ 1

)
−
(
n− 1

a+ 1

)
−
(
n− 2

a

)
=

(
n− 2

n− (a+ 1)

)
.

Define

Q(t) := max{|A|+ |B| : |B| = t, A and B are cross-intersecting and B is nontrivial}.
Let |Bc| = (

y
n−(a+1)

)
+1 for n−a−1 6 y < n−2. Then we have Q(|B|) 6 f(y)+(constant),

where f(y) := −(y
a

)
+
(

y
n−a−1

)
. Using Lemma 5, one can check that f(y) < f(n− a− 1) for

n− a− 1 < y < n− 2, that is, Q(2) > Q(|B|) for 2 < |B| 6 ( n−2
n−(a+1)

)
. Using Lemma 3, we

have P (2) > Q(2). This completes the proof of this case.

Case 2. b = a.

Without loss of generality, we may assume that |A| 6 |B|. If |A| > (n−1
a−1

)−(n−a−1
a−1

)
+1 then

|B| 6 (n−1
a−1

)−(n−a−1
a−1

)
+1 (see the computation in the proof of Theorem 2(ii), Case 2). Thus

we may assume that |A| 6 (n−1
a−1

)−(n−a−1
a−1

)
+1. Then the result follows from Theorem 2.
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