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 An Erdo U s – Ko – Rado Theorem for Direct Products

 P .  F RANKL

 Let  n i  ,  k i   be positive integers ,   i  5  1 ,  .  .  .  ,  d ,  satisfying  n i  >  2 k i  .  Let  X  1  ,  .  .  .  ,  X d   be pairwise
 disjoint sets with  u X i u  5  n i .  Let  *   be the family of those ( k 1  1  ?  ?  ?  1  k d )-element sets which have
 exactly  k i   elements in  X i  , i  5  1 ,  .  .  .  ,  d .  It is shown that if  ̂  ’  *   is an intersecting family then
 u ̂  u / u * u  <  max i  k i  / n i  ,  and this is best possible .  The proof is algebraic ,  although in the  d  5  2 case
 a combinatorial argument is presented as well .
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 1 .  I NTRODUCTION

 Let  X  be an  n -element set ,  and for  k  ,  n  let ( X
 k  ) denote the family of all  k -subsets of

 X .  A family  ̂  ’  ( X
 k  ) is called  t - intersecting  if for all  F ,  F  9  P  ̂    one has  u F  >  F  9 u  >  t .

 Also ,  intersecting stands for 1-intersecting .
 One of the oldest and most important results in extremal set theory is the following .

 E RDO U  S – K O – R ADO  T HEOREM  (cf .  [2 ,  3 ,  8]) .  Suppose that n  >  ( k  2  t  1  1)( t  1  1)  and let
 ̂  ’  ( X

 k  )  be a t - intersecting family . Then

 u ̂  u  < S n  2  t
 k  2  t

 D  (1)

 holds .

 Over the years ,  many extensions and sharpenings of this result have proved :  see [1]
 for survey .  The following problem arose in connection with a recent result of Sali [7] .

 Suppose that  n  5  n 1  1  ?  ?  ?  1  n d  , k  5  k 1  1  ?  ?  ?  1  k d  ,  and  X  5  X  1  <  ?  ?  ?  <  X d ,  with
 u X i u  5  n i  .  Define

 *  5 H F  P S X

 k
 D :  u F  >  X i u  5  k i  for  i  5  1 ,  .  .  .  ,  d J .

 What is the maximal size of an intersecting subfamily of  * ?
 For an arbitrary element  x  P  X  the family  * x  5  h H  P  * :  x  P  H j   is obviously

 intersecting .  Moreover ,  if  x  P  X i   then  u * x u / u * u  5  k i  / n i  .

 T HEOREM  1 .  Suppose that  ̂  ’  *   is intersecting and k d  / n d  <  ?  ?  ?  <  k d  / n d  <  1 / 2 . Then
 u ̂  u / u * u  <  k 1 / n 1  holds .

 The proof of this result ,  which is presented in the next section ,  is based on the
 eigenvalue argument of Lovasz [5] .  In Section 3 ,  a combinatorial argument is provided
 for the case  d  5  2 .  An application of this result is given in [4] .  It is based on the cyclic
 permutation method of Katona [6] .
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 2 .  P ROOF OF  T HEOREM  1

 Let  M i   denote the symmetric 0 – 1 matrix the rows and columns of which are indexed
 by the  k i -subsets of  X i  ,  and the entry being 1 if f the corresponding two sets are disjoint .
 It is well-known that the eigenvalues of  M i   are

 ( 2 1) j S n i  2  k i  2  j

 k i  2  j
 D

 with corresponding multiplicities

 S n i

 j
 D  2 S  n i

 j  2  j
 D ,  j  5  0 ,  .  .  .  ,  k i  .

 Let  M  5  M 1  %  ?  ?  ?  %  M d   be the tensor product of the matrices  M i .  Then if a row
 (column) of  M  is indexed by ( F 1  ,  .  .  .  ,  F d )(( G 1  ,  .  .  .  ,  G d )) ,  respectively ,  then the
 corresponding entry is 1 or 0 according to whether or not the intersection of
 F 1  <  ?  ?  ?  <  F d   and  G 1  <  ?  ?  ?  <  G d   is empty .  That is ,   M  has its rows and columns indexed
 by the members of  * ,  and the corresponding entry is 1 or 0 according to whether or
 not the intersection of the sets is empty .  Since the eigenvalues of  M  are the products of
 those of  M i  ,  the largest eigenvalue of  M  is

 l  5 S n i  2  k 1

 k i
 D  3  ?  ?  ?  3 S n d  2  k d

 k d
 D ,

 it corresponds to the all-one vector .  The smallest eigenvalue is

 m  5  2 S n 1  2  k 1  2  1
 k 1  2  1

 D S n 2  2  k 2

 k 2
 D  3  ?  ?  ?  3 S n d  2  k d

 k d
 D .

 Let  I  ( J ) denote the identity (all-one) matrices of order  u * u ,  respectively .  Then

 N  5  M  2  m I  2
 l  2  m

 u * u
 J

 is positive semidefinite .
 Let  ̂  ’  *   be an intersecting family and let  y  5  y  ( ̂  ) be its characteristic vector :  it is

 a 0 – 1 vector of length  u * u ,  with entries indexed by the members of  * ,  in the same
 order as the rows and columns of  M .

 Since  N  is positive semidefinite ,  we have the following inequality :

 0  <  y  N y  t  5  y  M y  t  2  m y  I y  t  2
 l  2  m

 u * u
 y  J y  t  5  2 m  u ̂  u  2

 l  2  m

 u * u
 u ̂  u 2 .  (2)

 Consequently ,

 u ̂  u / u * u  <  2 m  / ( l  2  m  )  5 S n 1  2  k 1  2  1
 k 1  2  1

 D Y S S n 1  2  k 1

 k 1
 D  1 S n 1  2  k 1  2  1

 k 1  2  1
 D D  5  k 1 / n 1  .

 Using the proof of (1) given by Wilson [8] ,  one obtains the following ,  more general ,
 result in the same way .

 T HEOREM  2 .  Let n i  ,  k i  and t i  be positi y  e integers satisfying n i  >  ( k i  2  t i  1  1)( t i  1  1) ,
 i  5  1 ,  .  .  .  ,  d . Suppose that  ̂  ’  *   has the property that , for e y  ery F ,  G  P  ̂  , there exists
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 1  <  i  <  d such that  u F  >  G  >  X i u  >  t i  holds . Then

 u ̂  u / u * u  <  max
 i
 S n i  2  t i

 k i  2  t i
 D Y S n i

 k i
 D ,

 and this is best possible .

 3 .  T HE  C OMBINATORIAL  P ROOF OF  T HEOREM  1  IN THE  C ASE   d  5  2

 Let  x 1  ,  .  .  .  ,  x m   be a cyclic permutation ,  1  ,  r  ,  m  an integer .  Consider a collection  5
 of cyclic intervals of length  r .  Let  5 9  be the collection of those intervals of length  r  2  1
 which are contained in some member of  5 .  It is easy to see that  u 5 9 u  >  min h m ,  u 5 u  1  1 j
 holds .  Applying this argument repeatedly implies that ,  for every 1  <  i  ,  r ,  the number
 of cyclic intervals of length  i  which are contained in some member of  5   is at least
 min h m ,  u 5 u  1  r  2  i j .  This simple result can be called the Circular Kruskal – Katona
 Theorem .

 Recall that two families of sets are called cross-intersecting if each member of one
 intersects each member of the other .  We need the following .

 P ROPOSITION .  Suppose that  #   and  $   are a cross - intersecting families of cyclic inter y  als
 of respecti y  e lengths c and d , c  1  d  <  m . Then the following hold :
 ( a )  u # u  1  u $ u  <  m
 ( b )  u # u  1  u $ u  <  c  1  d if both  #   and  $   are non - empty .

 P ROOF .  Set  r  5  m  2  c  and let  5   consist of the complements of the members of  # .
 Let  &   consist of those cyclic intervals of length  d  which are contained in some member
 of  5 .  By the cross-intersecting property  &  >  $  5  [ ,  and by the Circular Kruskal –
 Katona Theorem ,

 u $ u  <  m  2  min h m ,  u # u  1  m  2  c  2  d j .
 Using  u $ u  >  1 ,

 u # u  1  u $ u  <  c  1  d

 follows .
 Now (a) follows from (b) unless  #   and  $   is empty ,  in which case it is trivial .

 Next we turn to the proof of Theorem 1 ,   d  5  2 .
 Let  x 1  ,  .  .  .  ,  x n i

   be a cyclic ordering of the elements of  X i  , i  5  1 ,  2 .  Let  ! i   be the
 collection of the  n i   cyclic intervals of length  k i  .  Define  !  5  h A 1  <  A 2 :  A i  P  ! i j .

 L EMMA .  i  !  >  ̂  u  <  k 1 n 2  .

 P ROOF .  Define  @  5  h B  P  ! 1 :  ' A 2  P  ! 2  ,  ( A 1  <  A 2 )  P  ̂  j .  We distinguish two cases ,
 as follows .
 (i)  u @ u  <  2 k i  .  Choose some family  @ 9 ,  such that  @  ’  @ 9  ’  ! 1  ,  u @ 9 u  5  2 k 1  .  Let  @ 9  consist
 of the sets  B 1  ,  B 2  ,  .  .  .  ,  B 2 k 1  in this order .  Let  b i   denote the number of those  A  P  ! 2  for
 which ( b i  <  A )  P  ̂    holds .  Since  B i  >  B i 1 k 1  5  [ , b i  1  b i 1 k  <  n 2  follows for 1  <  i  <  k 1
 from the proposition .  Consequently ,

 u !  >  ̂  u  5  b 1  1  b 2  1  ?  ?  ?  1  b 2 k 1  <  k 1 n 2

 holds .
 (ii)  u @ u  .  2 k 1  .  For  A  P  ! 1  ,  let  $ ( A ) be the collection of those  D  P  ! 2  for which
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 ( A  <  D )  P  ̂    holds .  Note that ,  if  A  >  A 9  5  [ ,  then  $ ( A ) and  $ ( A 9 ) are cross-
 intersecting .  Let  d 1  ,  d 2  ,  .  .  .  ,  d n 1

  be the numbers  u $ ( A ) u , A  P  ! 1  ,  in decreasing order .

 C LAIM .  d j  1  d n 1 1 1 2 j  <  2 k 2  ,  1  <  j  <  n 1  .

 To prove the claim it is suf ficient to consider the case 2 j  <  n 1  .  First observe that
 every cyclic interval of length  k i   intersects exactly 2 k i  2  1 cyclic intervals of length  k i  .
 Thus  d 1  >  2 k 2  would imply  d 2 k 2

 5  0 ,  contrary to our assumptions .  Consequently ,
 d 1  ,  2 k 2 .  Thus the claim is true if  d n 1 1 1 2 j  5  0 .  Therefore we suppose that  d n 1 1 1 2 j  >  1 .

 Let  A i   be the cyclic interval corresponding to the number  d i  .  In view of the
 proposition  h A 1  ,  .  .  .  ,  A j j   and  h A 1  ,  .  .  .  ,  A n 1 1 1 2 j j   cannot be cross-intersecting .  That is ,
 there exist 1  <  u  <  j  and 1  <  y  <  n 1  1  1  2  j  such that  A u  >  A y  5  [ —a contradiction .  By
 the proposition ,  we have  d j  1  d n 1 1 1 2 j  <  d u  1  d y  <  2 k 2 ,  as desired .

 Summing up the inequality in the claim for 1  <  j  <  n 1  gives 2  u !  >  ̂  u  5  2( d 1  1  ?  ?  ?  1
 d n 1

 )  <  2 k 2 n 1  <  2 k 1 n 2 ,  concluding the proof of the lemma .

 The lemma says that for each pair of cyclic permutations out of the possible  n 1 n 2

 sets ,  at most  k 1 n 2  are in  ̂  :  that is ,  a proportion of at most  k 1 / n 1 .  Therefore ,  by
 averaging (see ,  e . g .,  [6]) ,   u ̂  u / u * u  <  k 1 / n 1  follows .
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