An Erdós-Ko-Rado Theorem for Direct Products

P. Frankl

Abstract

Let n_{i}, k_{i} be positive integers, $i=1, \ldots, d$, satisfying $n_{i} \geqslant 2 k_{i}$. Let X_{1}, \ldots, X_{d} be pairwise disjoint sets with $\left|X_{i}\right|=n_{i}$. Let \mathscr{H} be the family of those $\left(k_{1}+\cdots+k_{d}\right)$-element sets which have exactly k_{i} elements in $X_{i}, i=1, \ldots, d$. It is shown that if $\mathscr{F} \subset \mathscr{H}$ is an intersecting family then $|\mathscr{F}| /|\mathscr{H}| \leqslant \max _{i} k_{i} / n_{i}$, and this is best possible. The proof is algebraic, although in the $d=2$ case a combinatorial argument is presented as well.

© 1995 Academic Press Limited

1. Introduction

Let X be an n-element set, and for $k<n$ let $\binom{X}{k}$ denote the family of all k-subsets of X. A family $\mathscr{F} \subset\binom{X}{k}$ is called t-intersecting if for all $F, F^{\prime} \in \mathscr{F}$ one has $\left|F \cap F^{\prime}\right| \geqslant t$. Also, intersecting stands for 1 -intersecting.

One of the oldest and most important results in extremal set theory is the following.

Erdős-Ko-Rado Theorem (cf. $[2,3,8])$. Suppose that $n \geqslant(k-t+1)(t+1)$ and let $\mathscr{F} \subset\binom{X}{k}$ be a -intersecting family. Then

$$
\begin{equation*}
|\mathscr{F}| \leqslant\binom{ n-t}{k-t} \tag{1}
\end{equation*}
$$

holds.

Over the years, many extensions and sharpenings of this result have proved: see [1] for survey. The following problem arose in connection with a recent result of Sali [7].

Suppose that $n=n_{1}+\cdots+n_{d}, \quad k=k_{1}+\cdots+k_{d}$, and $X=X_{1} \cup \cdots \cup X_{d}$, with $\left|X_{i}\right|=n_{i}$. Define

$$
\mathscr{H}=\left\{F \in\binom{X}{k}:\left|F \cap X_{i}\right|=k_{i} \text { for } i=1, \ldots, d\right\} .
$$

What is the maximal size of an intersecting subfamily of \mathscr{H} ?
For an arbitrary element $x \in X$ the family $\mathscr{H}_{x}=\{H \in \mathscr{H}: x \in H\}$ is obviously intersecting. Moreover, if $x \in X_{i}$ then $\left|\mathscr{H}_{x}\right| /|\mathscr{H}|=k_{i} / n_{i}$.

Theorem 1. Suppose that $\mathscr{F} \subset \mathscr{H}$ is intersecting and $k_{d} / n_{d} \leqslant \cdots \leqslant k_{d} / n_{d} \leqslant 1 / 2$. Then $\left|\mathscr{F} /|\mathscr{H}| \leqslant k_{1} / n_{1}\right.$ holds.

The proof of this result, which is presented in the next section, is based on the eigenvalue argument of Lovasz [5]. In Section 3, a combinatorial argument is provided for the case $d=2$. An application of this result is given in [4]. It is based on the cyclic permutation method of Katona [6].

2. Proof of Theorem 1

Let M_{i} denote the symmetric $0-1$ matrix the rows and columns of which are indexed by the k_{i}-subsets of X_{i}, and the entry being 1 iff the corresponding two sets are disjoint. It is well-known that the eigenvalues of M_{i} are

$$
(-1)^{j}\binom{n_{i}-k_{i}-j}{k_{i}-j}
$$

with corresponding multiplicities

$$
\binom{n_{i}}{j}-\binom{n_{i}}{j-j}, \quad j=0, \ldots, k_{i} .
$$

Let $M=M_{1} \oplus \cdots \oplus M_{d}$ be the tensor product of the matrices M_{i}. Then if a row (column) of M is indexed by $\left(F_{1}, \ldots, F_{d}\right)\left(\left(G_{1}, \ldots, G_{d}\right)\right)$, respectively, then the corresponding entry is 1 or 0 according to whether or not the intersection of $F_{1} \cup \cdots \cup F_{d}$ and $G_{1} \cup \cdots \cup G_{d}$ is empty. That is, M has its rows and columns indexed by the members of \mathscr{H}, and the corresponding entry is 1 or 0 according to whether or not the intersection of the sets is empty. Since the eigenvalues of M are the products of those of M_{i}, the largest eigenvalue of M is

$$
\lambda=\binom{n_{i}-k_{1}}{k_{i}} \times \cdots \times\binom{ n_{d}-k_{d}}{k_{d}},
$$

it corresponds to the all-one vector. The smallest eigenvalue is

$$
\mu=-\binom{n_{1}-k_{1}-1}{k_{1}-1}\binom{n_{2}-k_{2}}{k_{2}} \times \cdots \times\binom{ n_{d}-k_{d}}{k_{d}} .
$$

Let $I(J)$ denote the identity (all-one) matrices of order $|\mathscr{H}|$, respectively. Then

$$
N=M-\mu I-\frac{\lambda-\mu}{|\mathscr{H}|} J
$$

is positive semidefinite.
Let $\mathscr{F} \subset \mathscr{H}$ be an intersecting family and let $v=v(\mathscr{F})$ be its characteristic vector: it is a $0-1$ vector of length $|\mathscr{H}|$, with entries indexed by the members of \mathscr{H}, in the same order as the rows and columns of M.

Since N is positive semidefinite, we have the following inequality:

$$
\begin{equation*}
0 \leqslant v N v^{t}=v M v^{t}-\mu v I v^{t}-\frac{\lambda-\mu}{|\mathscr{H}|} v J v^{t}=-\mu|\mathscr{F}|-\frac{\lambda-\mu}{|\mathscr{H}|}|\mathscr{F}|^{2} . \tag{2}
\end{equation*}
$$

Consequently,

$$
|\mathscr{F}| /|\mathscr{H}| \leqslant-\mu /(\lambda-\mu)=\binom{n_{1}-k_{1}-1}{k_{1}-1} /\left(\binom{n_{1}-k_{1}}{k_{1}}+\binom{n_{1}-k_{1}-1}{k_{1}-1}\right)=k_{1} / n_{1} .
$$

Using the proof of (1) given by Wilson [8], one obtains the following, more general, result in the same way.

Theorem 2. Let n_{i}, k_{i} and t_{i} be positive integers satisfying $n_{i} \geqslant\left(k_{i}-t_{i}+1\right)\left(t_{i}+1\right)$, $i=1, \ldots, d$. Suppose that $\mathscr{F} \subset \mathscr{H}$ has the property that, for every $F, G \in \mathscr{F}$, there exists
$1 \leqslant i \leqslant d$ such that $\left|F \cap G \cap X_{i}\right| \geqslant t_{i}$ holds. Then

$$
\left|\mathscr{F} /|\mathscr{H}| \leqslant \max _{i}\binom{n_{i}-t_{i}}{k_{i}-t_{i}} /\binom{n_{i}}{k_{i}}\right.
$$

and this is best possible.

3. The Combinatorial Proof of Theorem 1 in the Case $d=2$

Let x_{1}, \ldots, x_{m} be a cyclic permutation, $1<r<m$ an integer. Consider a collection \mathscr{R} of cyclic intervals of length r. Let \mathscr{R}^{\prime} be the collection of those intervals of length $r-1$ which are contained in some member of \mathscr{R}. It is easy to see that $\left|\mathscr{R}^{\prime}\right| \geqslant \min \{m,|\mathscr{R}|+1\}$ holds. Applying this argument repeatedly implies that, for every $1 \leqslant i<r$, the number of cyclic intervals of length i which are contained in some member of \mathscr{R} is at least $\min \{m,|\mathscr{R}|+r-i\}$. This simple result can be called the Circular Kruskal-Katona Theorem.

Recall that two families of sets are called cross-intersecting if each member of one intersects each member of the other. We need the following.

Proposition. Suppose that \mathscr{C} and \mathscr{D} are a cross-intersecting families of cyclic intervals of respective lengths c and $d, c+d \leqslant m$. Then the following hold:
(a) $|\mathscr{C}|+|\mathscr{D}| \leqslant m$
(b) $|\mathscr{C}|+|\mathscr{D}| \leqslant c+d$ if both \mathscr{C} and \mathscr{D} are non-empty.

Proof. Set $r=m-c$ and let \mathscr{R} consist of the complements of the members of \mathscr{C}. Let \mathscr{G} consist of those cyclic intervals of length d which are contained in some member of \mathscr{R}. By the cross-intersecting property $\mathscr{G} \cap \mathscr{D}=\varnothing$, and by the Circular KruskalKatona Theorem,

$$
|\mathscr{D}| \leqslant m-\min \{m,|\mathscr{C}|+m-c-d\} .
$$

Using $|\mathscr{D}| \geqslant 1$,

$$
|\mathscr{C}|+|\mathscr{D}| \leqslant c+d
$$

follows.
Now (a) follows from (b) unless \mathscr{C} and \mathscr{D} is empty, in which case it is trivial.

Next we turn to the proof of Theorem 1, $d=2$.
Let $x_{1}, \ldots, x_{n_{i}}$ be a cyclic ordering of the elements of $X_{i}, i=1,2$. Let \mathscr{A}_{i} be the collection of the n_{i} cyclic intervals of length k_{i}. Define $\mathscr{A}=\left\{A_{1} \cup A_{2}\right.$: $\left.A_{i} \in \mathscr{A}_{i}\right\}$.

Lemma. $\| \mathscr{A} \cap \mathscr{F} \leqslant k_{1} n_{2}$.
Proof. Define $\mathscr{B}=\left\{B \in \mathscr{A}_{1}: \exists A_{2} \in \mathscr{A}_{2},\left(A_{1} \cup A_{2}\right) \in \mathscr{F}\right\}$. We distinguish two cases, as follows.
(i) $|\mathscr{B}| \leqslant 2 k_{i}$. Choose some family \mathscr{B}^{\prime}, such that $\mathscr{B} \subset \mathscr{B}^{\prime} \subset \mathscr{A}_{1},\left|\mathscr{B}^{\prime}\right|=2 k_{1}$. Let \mathscr{B}^{\prime} consist of the sets $B_{1}, B_{2}, \ldots, B_{2 k_{1}}$ in this order. Let b_{i} denote the number of those $A \in \mathscr{A}_{2}$ for which $\left(b_{i} \cup A\right) \in \mathscr{F}$ holds. Since $B_{i} \cap B_{i+k_{1}}=\varnothing, b_{i}+b_{i+k} \leqslant n_{2}$ follows for $1 \leqslant \mathrm{i} \leqslant \mathrm{k}_{1}$ from the proposition. Consequently,

$$
|\mathscr{A} \cap \mathscr{F}|=b_{1}+b_{2}+\cdots+b_{2 k_{1}} \leqslant k_{1} n_{2}
$$

holds.
(ii) $|\mathscr{B}|>2 k_{1}$. For $A \in \mathscr{A}_{1}$, let $\mathscr{D}(A)$ be the collection of those $D \in \mathscr{A}_{2}$ for which
$(A \cup D) \in \mathscr{F}$ holds. Note that, if $A \cap A^{\prime}=\varnothing$, then $\mathscr{D}(A)$ and $\mathscr{D}\left(A^{\prime}\right)$ are crossintersecting. Let $d_{1}, d_{2}, \ldots, d_{n_{1}}$ be the numbers $|\mathscr{D}(A)|, A \in \mathscr{A}_{1}$, in decreasing order.

CLaim. $d_{j}+d_{n_{1}+1-j} \leqslant 2 k_{2}, 1 \leqslant j \leqslant n_{1}$.
To prove the claim it is sufficient to consider the case $2 j \leqslant n_{1}$. First observe that every cyclic interval of length k_{i} intersects exactly $2 k_{i}-1$ cyclic intervals of length k_{i}. Thus $d_{1} \geqslant 2 k_{2}$ would imply $d_{2 k_{2}}=0$, contrary to our assumptions. Consequently, $d_{1}<2 k_{2}$. Thus the claim is true if $d_{n_{1}+1-j}=0$. Therefore we suppose that $d_{n_{1}+1-j} \geqslant 1$.

Let A_{i} be the cyclic interval corresponding to the number d_{i}. In view of the proposition $\left\{A_{1}, \ldots, A_{j}\right\}$ and $\left\{A_{1}, \ldots, A_{n_{1}+1-j}\right\}$ cannot be cross-intersecting. That is, there exist $1 \leqslant u \leqslant j$ and $1 \leqslant v \leqslant n_{1}+1-j$ such that $A_{u} \cap A_{v}=\varnothing$-a contradiction. By the proposition, we have $d_{j}+d_{n_{1}+1-j} \leqslant d_{u}+d_{v} \leqslant 2 k_{2}$, as desired.

Summing up the inequality in the claim for $1 \leqslant j \leqslant n_{1}$ gives $2|\mathscr{A} \cap \mathscr{F}|=2\left(d_{1}+\cdots+\right.$ $\left.d_{n_{1}}\right) \leqslant 2 k_{2} n_{1} \leqslant 2 k_{1} n_{2}$, concluding the proof of the lemma.

The lemma says that for each pair of cyclic permutations out of the possible $n_{1} n_{2}$ sets, at most $k_{1} n_{2}$ are in \mathscr{F} : that is, a proportion of at most k_{1} / n_{1}. Therefore, by averaging (see, e.g., [6]), $\left|\mathscr{F} /|\mathscr{H}| \leqslant k_{1} / n_{1}\right.$ follows.

References

1. M. Deza and P. Frankl, The Erdős-Ko-Rado Theorem-22 years later, SIAM J. Alg. Discr. Meth., 4 (1983), 419-431.
2. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. Oxford, 12 (1961), 313-320.
3. P. Frankl, The Erdős-Ko-Rado Theorem is true for $n=c k t$, Coll. Soc. Math. J. Bolyai, 18 (1978), 365-375.
4. P. Frankl and N. Tokushige, Weight functions on the Kneser graph and the solution of an intersection problem of Sali, Combinatorica, 13 (1993), 1-8.
5. L. Lovász, The Shannon capacity of graphs, IEEE Trans. Inform. Theory, 25 (1979), 1-11.
6. G. O. H. Katona, A simple proof of the Erdős-Ko-Rado Theorem, J. Combin. Theory, Ser. B, 13 (1972), 183-184.
7. A. Sali, Some intersection theorems, Combinatorica, 12 (1992), 351-361.
8. R. M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica, 4 (1984), 247-257.
