

An Erdős-Ko-Rado Theorem for Direct Products

P. FRANKL

Let n_i, k_i be positive integers, $i=1,\ldots,d$, satisfying $n_i \ge 2k_i$. Let X_1,\ldots,X_d be pairwise disjoint sets with $|X_i|=n_i$. Let $\mathcal H$ be the family of those $(k_1+\cdots+k_d)$ -element sets which have exactly k_i elements in X_i , $i=1,\ldots,d$. It is shown that if $\mathcal F\subset \mathcal H$ is an intersecting family then $|\mathcal F|/|\mathcal H| \le \max_i k_i/n_i$, and this is best possible. The proof is algebraic, although in the d=2 case a combinatorial argument is presented as well.

© 1995 Academic Press Limited

1. Introduction

Let X be an n-element set, and for k < n let $\binom{X}{k}$ denote the family of all k-subsets of X. A family $\mathcal{F} \subset \binom{X}{k}$ is called *t-intersecting* if for all $F, F' \in \mathcal{F}$ one has $|F \cap F'| \ge t$. Also, intersecting stands for 1-intersecting.

One of the oldest and most important results in extremal set theory is the following.

ERDŐS-KO-RADO THEOREM (cf. [2, 3, 8]). Suppose that $n \ge (k - t + 1)(t + 1)$ and let $\mathcal{F} \subset \binom{X}{k}$ be a t-intersecting family. Then

$$|\mathcal{F}| \le \binom{n-t}{k-t} \tag{1}$$

holds.

Over the years, many extensions and sharpenings of this result have proved: see [1] for survey. The following problem arose in connection with a recent result of Sali [7]. Suppose that $n = n_1 + \cdots + n_d$, $k = k_1 + \cdots + k_d$, and $X = X_1 \cup \cdots \cup X_d$, with $|X_i| = n_i$. Define

$$\mathcal{H} = \left\{ F \in \binom{X}{k} : |F \cap X_i| = k_i \text{ for } i = 1, \dots, d \right\}.$$

What is the maximal size of an intersecting subfamily of \mathcal{H} ?

For an arbitrary element $x \in X$ the family $\mathcal{H}_x = \{H \in \mathcal{H}: x \in H\}$ is obviously intersecting. Moreover, if $x \in X_i$ then $|\mathcal{H}_x|/|\mathcal{H}| = k_i/n_i$.

Theorem 1. Suppose that $\mathcal{F} \subset \mathcal{H}$ is intersecting and $k_d/n_d \leq \cdots \leq k_d/n_d \leq 1/2$. Then $|\mathcal{F}|/|\mathcal{H}| \leq k_1/n_1$ holds.

The proof of this result, which is presented in the next section, is based on the eigenvalue argument of Lovasz [5]. In Section 3, a combinatorial argument is provided for the case d = 2. An application of this result is given in [4]. It is based on the cyclic permutation method of Katona [6].

728 P. Frankl

2. Proof of Theorem 1

Let M_i denote the symmetric 0–1 matrix the rows and columns of which are indexed by the k_i -subsets of X_i , and the entry being 1 iff the corresponding two sets are disjoint. It is well-known that the eigenvalues of M_i are

$$(-1)^{j} \binom{n_i - k_i - j}{k_i - j}$$

with corresponding multiplicities

$$\binom{n_i}{j} - \binom{n_i}{j-j}, \quad j=0,\ldots,k_i.$$

Let $M = M_1 \oplus \cdots \oplus M_d$ be the tensor product of the matrices M_i . Then if a row (column) of M is indexed by $(F_1, \ldots, F_d)((G_1, \ldots, G_d))$, respectively, then the corresponding entry is 1 or 0 according to whether or not the intersection of $F_1 \cup \cdots \cup F_d$ and $G_1 \cup \cdots \cup G_d$ is empty. That is, M has its rows and columns indexed by the members of \mathcal{H} , and the corresponding entry is 1 or 0 according to whether or not the intersection of the sets is empty. Since the eigenvalues of M are the products of those of M_i , the largest eigenvalue of M is

$$\lambda = \binom{n_i - k_1}{k_i} \times \cdots \times \binom{n_d - k_d}{k_d},$$

it corresponds to the all-one vector. The smallest eigenvalue is

$$\mu = -\binom{n_1 - k_1 - 1}{k_1 - 1} \binom{n_2 - k_2}{k_2} \times \cdots \times \binom{n_d - k_d}{k_d}.$$

Let I(J) denote the identity (all-one) matrices of order $|\mathcal{H}|$, respectively. Then

$$N = M - \mu I - \frac{\lambda - \mu}{|\mathcal{H}|} J$$

is positive semidefinite.

Let $\mathcal{F} \subset \mathcal{H}$ be an intersecting family and let $v = v(\mathcal{F})$ be its characteristic vector: it is a 0-1 vector of length $|\mathcal{H}|$, with entries indexed by the members of \mathcal{H} , in the same order as the rows and columns of M.

Since N is positive semidefinite, we have the following inequality:

$$0 \le vNv^{t} = vMv^{t} - \mu vIv^{t} - \frac{\lambda - \mu}{|\mathcal{H}|}vJv^{t} = -\mu |\mathcal{F}| - \frac{\lambda - \mu}{|\mathcal{H}|}|\mathcal{F}|^{2}.$$
 (2)

Consequently,

$$|\mathcal{F}|/|\mathcal{H}| \leq -\mu/(\lambda-\mu) = \binom{n_1-k_1-1}{k_1-1} / \left(\binom{n_1-k_1}{k_1} + \binom{n_1-k_1-1}{k_1-1} \right) = k_1/n_1.$$

Using the proof of (1) given by Wilson [8], one obtains the following, more general, result in the same way.

THEOREM 2. Let n_i , k_i and t_i be positive integers satisfying $n_i \ge (k_i - t_i + 1)(t_i + 1)$, i = 1, ..., d. Suppose that $\mathcal{F} \subset \mathcal{H}$ has the property that, for every $F, G \in \mathcal{F}$, there exists

 $1 \le i \le d$ such that $|F \cap G \cap X_i| \ge t_i$ holds. Then

$$|\mathcal{F}|/|\mathcal{H}| \leq \max_{i} {n_i - t_i \choose k_i - t_i} / {n_i \choose k_i},$$

and this is best possible.

3. The Combinatorial Proof of Theorem 1 in the Case d=2

Let x_1, \ldots, x_m be a cyclic permutation, 1 < r < m an integer. Consider a collection \mathcal{R} of cyclic intervals of length r. Let \mathcal{R}' be the collection of those intervals of length r-1 which are contained in some member of \mathcal{R} . It is easy to see that $|\mathcal{R}'| \ge \min\{m, |\mathcal{R}| + 1\}$ holds. Applying this argument repeatedly implies that, for every $1 \le i < r$, the number of cyclic intervals of length i which are contained in some member of \mathcal{R} is at least $\min\{m, |\mathcal{R}| + r - i\}$. This simple result can be called the Circular Kruskal–Katona Theorem.

Recall that two families of sets are called cross-intersecting if each member of one intersects each member of the other. We need the following.

PROPOSITION. Suppose that \mathscr{C} and \mathscr{D} are a cross-intersecting families of cyclic intervals of respective lengths c and d, $c+d \leq m$. Then the following hold:

- (a) $|\mathscr{C}| + |\mathscr{D}| \leq m$
- (b) $|\mathcal{C}| + |\mathcal{D}| \le c + d$ if both \mathcal{C} and \mathcal{D} are non-empty.

PROOF. Set r = m - c and let \mathcal{R} consist of the complements of the members of \mathcal{C} . Let \mathcal{G} consist of those cyclic intervals of length d which are contained in some member of \mathcal{R} . By the cross-intersecting property $\mathcal{G} \cap \mathcal{D} = \emptyset$, and by the Circular Kruskal–Katona Theorem,

$$|\mathcal{D}| \leq m - \min\{m, |\mathcal{C}| + m - c - d\}.$$

Using $|\mathcal{D}| \ge 1$,

$$|\mathscr{C}| + |\mathscr{D}| \le c + d$$

follows.

Now (a) follows from (b) unless $\mathscr C$ and $\mathscr D$ is empty, in which case it is trivial.

Next we turn to the proof of Theorem 1, d = 2.

Let x_1, \ldots, x_{n_i} be a cyclic ordering of the elements of X_i , i = 1, 2. Let \mathcal{A}_i be the collection of the n_i cyclic intervals of length k_i . Define $\mathcal{A} = \{A_1 \cup A_2 : A_i \in \mathcal{A}_i\}$.

LEMMA. $\|\mathcal{A} \cap \mathcal{F}\| \leq k_1 n_2$.

PROOF. Define $\mathcal{B} = \{B \in \mathcal{A}_1: \exists A_2 \in \mathcal{A}_2, (A_1 \cup A_2) \in \mathcal{F}\}$. We distinguish two cases, as follows.

(i) $|\mathcal{B}| \leq 2k_i$. Choose some family \mathcal{B}' , such that $\mathcal{B} \subset \mathcal{B}' \subset \mathcal{A}_1$, $|\mathcal{B}'| = 2k_1$. Let \mathcal{B}' consist of the sets $B_1, B_2, \ldots, B_{2k_1}$ in this order. Let b_i denote the number of those $A \in \mathcal{A}_2$ for which $(b_i \cup A) \in \mathcal{F}$ holds. Since $B_i \cap B_{i+k_1} = \emptyset$, $b_i + b_{i+k} \leq n_2$ follows for $1 \leq i \leq k_1$ from the proposition. Consequently,

$$|\mathcal{A} \cap \mathcal{F}| = b_1 + b_2 + \dots + b_{2k_1} \leq k_1 n_2$$

holds.

(ii) $|\mathcal{B}| > 2k_1$. For $A \in \mathcal{A}_1$, let $\mathcal{D}(A)$ be the collection of those $D \in \mathcal{A}_2$ for which

730 P. Frankl

 $(A \cup D) \in \mathcal{F}$ holds. Note that, if $A \cap A' = \emptyset$, then $\mathfrak{D}(A)$ and $\mathfrak{D}(A')$ are cross-intersecting. Let $d_1, d_2, \ldots, d_{n_1}$ be the numbers $|\mathfrak{D}(A)|$, $A \in \mathcal{A}_1$, in decreasing order.

CLAIM.
$$d_i + d_{n_1+1-j} \le 2k_2$$
, $1 \le j \le n_1$.

To prove the claim it is sufficient to consider the case $2j \le n_1$. First observe that every cyclic interval of length k_i intersects exactly $2k_i-1$ cyclic intervals of length k_i . Thus $d_1 \ge 2k_2$ would imply $d_{2k_2} = 0$, contrary to our assumptions. Consequently, $d_1 < 2k_2$. Thus the claim is true if $d_{n_1+1-j} = 0$. Therefore we suppose that $d_{n_1+1-j} \ge 1$. Let A_i be the cyclic interval corresponding to the number d_i . In view of the

Let A_i be the cyclic interval corresponding to the number d_i . In view of the proposition $\{A_1,\ldots,A_j\}$ and $\{A_1,\ldots,A_{n_1+1-j}\}$ cannot be cross-intersecting. That is, there exist $1 \le u \le j$ and $1 \le v \le n_1 + 1 - j$ such that $A_u \cap A_v = \emptyset$ —a contradiction. By the proposition, we have $d_j + d_{n_1+1-j} \le d_u + d_v \le 2k_2$, as desired.

Summing up the inequality in the claim for $1 \le j \le n_1$ gives $2 | \mathcal{A} \cap \mathcal{F}| = 2(d_1 + \cdots + d_{n_1}) \le 2k_2n_1 \le 2k_1n_2$, concluding the proof of the lemma.

The lemma says that for each pair of cyclic permutations out of the possible n_1n_2 sets, at most k_1n_2 are in \mathcal{F} : that is, a proportion of at most k_1/n_1 . Therefore, by averaging (see, e.g., [6]), $|\mathcal{F}|/|\mathcal{H}| \leq k_1/n_1$ follows.

REFERENCES

- M. Deza and P. Frankl, The Erdős-Ko-Rado Theorem—22 years later, SIAM J. Alg. Discr. Meth., 4 (1983), 419–431.
- 2. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. Oxford, 12 (1961), 313-320.
- 3. P. Frankl, The Erdős-Ko-Rado Theorem is true for n = ckt, Coll. Soc. Math. J. Bolyai, 18 (1978), 365-375
- 4. P. Frankl and N. Tokushige, Weight functions on the Kneser graph and the solution of an intersection problem of Sali, *Combinatorica*, **13** (1993), 1–8.
- 5. L. Lovász, The Shannon capacity of graphs, IEEE Trans. Inform. Theory, 25 (1979), 1-11.
- G. O. H. Katona, A simple proof of the Erdős–Ko–Rado Theorem, J. Combin. Theory, Ser. B, 13 (1972), 183–184
- 7. A. Sali, Some intersection theorems, Combinatorica, 12 (1992), 351-361.
- 8. R. M. Wilson, The exact bound in the Erdős-Ko-Rado Theorem, Combinatorica, 4 (1984), 247-257.

Received 7 June 1990 and accepted 23 June 1995

P. Frankl Université Paris 6, Combinatoire, 4 place Jussieu, 75005 Paris, France