Europ. J. Combinatorics (1996) 17, 727-730 @

An Erdos-Ko-Rado Theorem for Direct Products

P. FraNKL

Let n;, k; be positive integers, i =1, ..., d, satisfying n, =2k;. Let X,,..., X, be pairwise
disjoint sets with |X;| = n,. Let % be the family of those (k; + - - - + k,)-element sets which have
exactly k; elements in X;, i=1,...,d. It is shown that if #c  is an intersecting family then
| /19 < max; k;/n;, and this is best possible. The proof is algebraic, although in the d =2 case
a combinatorial argument is presented as well.
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1. INTRODUCTION

Let X be an n-element set, and for k <n let (¥) denote the family of all k-subsets of
X. A family F < (%) is called t-intersecting if for all F, F’ € & one has [FNF'|=1.
Also, intersecting stands for 1-intersecting.

One of the oldest and most important results in extremal set theory is the following.

Erp6s—Ko-Rapo THEOREM (cf. [2, 3, 8]). Suppose that n=(k —t+ 1)(t + 1) and let
F <= (%) be a t-intersecting family. Then

7=~ ®
holds.

Over the years, many extensions and sharpenings of this result have proved: see [1]
for survey. The following problem arose in connection with a recent result of Sali [7].

Suppose that n=n,+---+n,, k=k +---+k;, and X =X, U---UX,, with
|X;| = n;. Define

X
%={Fe<k>:|FﬂXi|=kifori:1,...,d}.

What is the maximal size of an intersecting subfamily of #7?
For an arbitrary element x € X the family 5, ={H € 3:x € H} is obviously
intersecting. Moreover, if x € X; then |#,|/|#| = k;/n;.

THEOREM 1. Suppose that F < 3 is intersecting and ky/ng < - - - <ky/n,<1/2. Then
| #1119 < ky/ny holds.

The proof of this result, which is presented in the next section, is based on the
eigenvalue argument of Lovasz [5]. In Section 3, a combinatorial argument is provided
for the case d =2. An application of this result is given in [4]. It is based on the cyclic
permutation method of Katona [6].
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2. Proor oF THEOREM 1

Let M; denote the symmetric 0—1 matrix the rows and columns of which are indexed
by the k;-subsets of X;, and the entry being 1 iff the corresponding two sets are disjoint.
It is well-known that the eigenvalues of M, are

(—1)’<"i,;’f]._j>

with corresponding multiplicities

(”)—(”) i=0,... k.
] J —J

Let M=M,®D---® M, be the tensor product of the matrices M;. Then if a row
(column) of M is indexed by (F,..., E)({(G,,...,G,)), respectively, then the
corresponding entry is 1 or 0 according to whether or not the intersection of
FU---UF;and G, U---U G, is empty. That is, M has its rows and columns indexed
by the members of 7, and the corresponding entry is 1 or 0 according to whether or
not the intersection of the sets is empty. Since the eigenvalues of M are the products of
those of M;, the largest eigenvalue of M is

= e )
k; k,

it corresponds to the all-one vector. The smallest eigenvalue is

M: _<n1_kl_1><n2_k2>x. . X(nd_kd>.
kl -1 k2 kd
Let I (J) denote the identity (all-one) matrices of order |#], respectively. Then

N=M-ul-2F;
ST
is positive semidefinite.
Let & < # be an intersecting family and let v = v(%) be its characteristic vector: it is
a 0-1 vector of length |7], with entries indexed by the members of 7, in the same
order as the rows and columns of M.

Since N is positive semidefinite, we have the following inequality:

o

A= A—
0<vNV' =vMv' — pvlv' — v = —u |F - —— |F~ 2
| 7] |70 @
Consequently,
nl_k1_1 nl_k1 n]_kl_l
am==uo=w=(" D" 5 (M)
|F/19¢6] r/( ©) ki —1 k, Kk —1 /ny

Using the proof of (1) given by Wilson [8], one obtains the following, more general,
result in the same way.

THEOREM 2. Let n;, k; and t; be positive integers satisfying n; = (k; —t; + 1)(t; + 1),
i=1,...,d Suppose that & c 3 has the property that, for every F, G € &%, there exists
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1=<i=<d such that |[F NG N X,| =t; holds. Then

. —t. .
i =max(; ") /().

and this is best possible.

3. THE CoMBINATORIAL PROOF OF THEOREM 1 IN THE CASE d =2

Let x4, ..., x,, be a cyclic permutation, 1 <r <m an integer. Consider a collection 2
of cyclic intervals of length r. Let &’ be the collection of those intervals of length r — 1
which are contained in some member of . It is easy to see that |%'| = min{m, |%| + 1}
holds. Applying this argument repeatedly implies that, for every 1 <i <r, the number
of cyclic intervals of length i which are contained in some member of # is at least
min{m, |R| +r —i}. This simple result can be called the Circular Kruskal-Katona
Theorem.

Recall that two families of sets are called cross-intersecting if each member of one
intersects each member of the other. We need the following.

ProrosiTION. Suppose that € and & are a cross-intersecting families of cyclic intervals
of respective lengths ¢ and d, ¢ +d <m. Then the following hold:
(a) 16| +|9|<m
(D) 16| +|9|<c +dif both € and & are non-empty.

ProoF. Set r =m — ¢ and let R consist of the complements of the members of €.
Let % consist of those cyclic intervals of length d which are contained in some member
of R. By the cross-intersecting property 4N %P =, and by the Circular Kruskal-
Katona Theorem,

|D| <m — min{m, |6| + m —c — d}.
Using |9 =1,
€|+ |9 <c+d
follows.
Now (a) follows from (b) unless € and & is empty, in which case it is trivial.

Next we turn to the proof of Theorem 1, d = 2.
Let x;,...,x, be a cyclic ordering of the elements of X;, i=1,2. Let & be the
collection of the n; cyclic intervals of length k;. Define of ={A,; U A,: A; € ;}.

LEMMA. || N F|<kn,.

Proor. Define B={B e «,: A, € &,, (A, UA,) € ;. We distinguish two cases,
as follows.
(i) |9B| <2k;. Choose some family %', such that B < B’ = of,, |B'| = 2k,. Let B’ consist
of the sets By, B,, ..., By, in this order. Let b; denote the number of those A € s, for
which (b;UA) e ¥ holds. Since B,N By, =&, b;+ b, <n, follows for 1<i<k,
from the proposition. Consequently,

|&¢ﬂ9;|=b1+b2+"'+b2k1$k1n2

holds.
(i) |B| >2k,. For A e o, let D(A) be the collection of those D e &, for which
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(AUD) e & holds. Note that, if ANA'=O, then P(A) and ZU(A') are cross-
intersecting. Let dy, d,, ..., d,, be the numbers |D(A)|, A € s, in decreasing order.

Cram. d; +d, <2k, 1<j<n,.

To prove the claim it is sufficient to consider the case 2j <n,. First observe that
every cyclic interval of length k; intersects exactly 2k; — 1 cyclic intervals of length k;.
Thus d, =2k, would imply d,, =0, contrary to our assumptions. Consequently,
dy <2k,. Thus the claim is true if d,, ,,_; = 0. Therefore we suppose that d,,, ,_;=1.

Let A; be the cyclic interval corresponding to the number d;. In view of the
proposition {A;, ..., A;} and {A;,..., A, .,_;} cannot be cross-intersecting. That is,
there exist 1 <u <jand 1 <v=<n,; +1—jsuch that A, N A, = J—a contradiction. By
the proposition, we have d; +d,, ,_;<d, + d, < 2k,, as desired.

Summing up the inequality in the claim for 1 <j<n, gives 2 |/ N F|=2(d, +- - - +
d,,) <2k,n, <2k, n,, concluding the proof of the lemma.

The lemma says that for each pair of cyclic permutations out of the possible n;n,
sets, at most k,n, are in %: that is, a proportion of at most k,/n;. Therefore, by
averaging (see, e.g., [0]), |#|/|#| < k,/n, follows.
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