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We discuss the maximum size of uniform intersecting families with covering num-
ber at least {. Among others, we construct a large k-uniform intersecting family
with covering number k, which provides a counterexample to a conjecture of
Lova� sz. The construction for odd k can be visualized on an annulus, while for even
k on a Mo� bius band. � 1996 Academic Press, Inc.

1. Introduction

Let X be a finite set. ( X
k ) denotes the family of all k-element subsets

of X. We always assume that |X| is sufficiently large with respect to k.
A family F/( X

k ) is called k-uniform. The vertex set of F is X and denoted
by V(F). An element of F is called an edge of F. F/( X

k ) is called inter-
secting if F & G{< holds for every F, G # F. A set C/X is called a cover
of F if it intersects every edge of F, i.e., C & F{< holds for all F # F.
A cover C is also called t-cover if |C|=t. The covering number {(F) of F
is the minimum cardinality of the covers of F. The degree of a vertex x is
defined by deg(x) :=*[F # F : x # F].
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For a family A/2X and vertices x, y # X, we define A(x) :=[A&
[x]: x # A # A], A(x� ) :=[A : x � A # A], A(x� y� ) :=[A : x, y � A # A],
etc., and for Y/X, A(Y) :=[A&Y : Y/A # A], A(Y� ) :=[A # A :
Y & A=<].

For a family F/( X
k ) and an integer t�1, define Ct (F)=[C # ( X

t ) : C &

F{< holds for all F # F]. Note that Ct (F)=< for t<{(F). Define

pt (k)=max { |Ct (F)| : F/\X
k+ is intersecting and {(F)�t= .

Let us first list some useful facts concerning pt (k). Choosing |F|=1, one
has p1(k)=k.

(1) pt+1(k)�kpt (k).

Proof. Take F/( X
k), F intersecting, {(F)=t+1 and |Ct+1(F)|=

pt+1(k). Define C=Ct+1(F). Let F # F be an arbitrary member of F. By
definition, F & C{< holds for every C # C. Thus |C|��x # F |C(x)| holds.
Therefore, in order to establish (1) it is sufficient to prove |C(x)|�pt (k)
for all x # F. Consider F(x� ). It is intersecting and t�{(F(x� ))�{(F)=
t+1. Moreover, C(x)/Ct (F(x� )) is immediate from the definitions. Thus
|C(x)|=0 holds if {(F(x� ))=t+1 and |C(x)|�pt (k), otherwise. K

(2) For F/( X
k ), intersecting, {(F)=t and an arbitrary set A # ( X

a ) with
a<t, one has |Ct (F)(A)|�pt&a (k).

Proof. This follows from Ct (F)(A)=Ct&a (F(A� )). K

The following was proved implicitly in [3]. For a simple proof, see [4].

(3) p2(k)=k2&k+1.

Using a construction described in the next section, it is not difficult to
check that p3(k)�(k&1)3+3(k&1) holds for all k�3. Actually, this
inequality is proved to be an equality if k�9 in [4]. (The proof is not
simple.) Later we prove p3(3)=14. The case 4�k�8 remains open.

The following is proved in [5].

(4) For k�k0 , p4(k)=k4&6k3+O(k2), p5(k)=k5&10k4+O(k3).

Let us define

r(k) :=max[ |F| : F is k-uniform and intersecting with {(F)=k].

For example, r(2)=3 and the only extremal configuration is a triangle.
Note that, Ck (F)#F for every intersecting k-uniform hypergraph, and
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equality must hold if |F|=r(k) holds (together with {(F)=k). Recall
also, that r(k)�kk was proved by Erdo� s and Lova� sz [2]. Clearly,
pk (k)�r(k). This inequality is likely to be strict for all k�3. E.g. for k=3
consider the family F=[[1, 2, 3], [3, 4, 5], [5, 6, 1], [2, 4, 5], [4, 6, 1],
[6, 2, 3]]. Then F/( [6]

3 ) and {(F)=3 imply |C3(F)|=( 6
3)&|F|=

14(G � C3(F) iff G is the complement of some F # F). On the other hand,
r(3)=10 is known. (See Appendix.)

(5) Suppose that F/( X
3 ) is an intersecting family with {(F)=3. Then

there exists x # X such that deg(x)�3, and |F|�6.

Proof. We can choose F, F $ # F such that F=[1, 2, 3], F $=[1, 4, 5].
There exists G # F such that G & [2, 4]=<. If 1 # G, then deg(1)�3.
Otherwise we may assume G=[3, 5, 6]. We can choose G$ # F such that
G$ & [3, 4]=<. Since F $ & G${<, we have G$ & [1, 5]{<. This implies
deg(1)�3 or deg(5)�3.

Next we prove |F|�6. Assume on the contrary that |F|�5. We choose
x # X such that deg(x)�3. Thus the number of edges which do not contain
x is at most 2. Let F and F $ be such edges. Choose y # F & F $. Then [x, y]
is a cover of F, which contradicts {(F)=3. K

(6) p3(3)=14.

Proof. First we consider the case that there exist F, F $ # F such that
|F & F $|=2. Let F=[1, 2, 3], F $=[1, 2, 4], and C=C3(F). By (2) and
(3), |C(1)|�7 and |C(2)|�7. Thus, since F, F $ # C(1) & C(2), we have
|C(1) _ C(2)|�7+7&2=12. Suppose |C|�15. Then |C(1� 2� )|�3. Every
member of C(1� 2� ) must meet F at [3] and F $ at [4], and hence [3, 4, 5],
[3, 4, 6], [3, 4, 7] # C. Since F(3� 4� ){<, we must have [5, 6, 7] # F(3� 4� ).
But F & [5, 6, 7]=<, a contradiction.

Now we assume that |F & F$|=1 holds for all distinct edges F, F $ # F.
Let C=C3(F). We may assume that deg(1)�3 (by (5)) and [1, 2, 3],
[1, 4, 5], [1, 6, 7] # F. Note that if F # F(1� ) then F # ( [2, 3]

1 ) _ ( [4, 5]
1 ) _

( [6, 7]
1 ). Consequently, there exist no other edges containing 1, i.e.,

deg(1)=3. Hence by (5), we have F(1� )�3. Thus, we have |C(1� )|�
23&|F(1� )|�5. Therefore, |C|=|C(1)|+|C(1� )|�7+5=12. K

It is not difficult to check pt+1(k+1)�(k+1) pt (k) holds for t<k and
pk+1(k+1)�(k+1) pk (k)+1 for t=k. Similarly r(k+1)�(k+1)
r(k)+1. This together with r(2)=3, we obtain

(7) r(k)�wk!(e&1)x.

Actually, (7) was proved by Erdo� s and Lova� sz [2].
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(8) Let k>k0({), |X|>n0(k). Suppose that F/( X
k ) is an intersecting

family with covering number {. Then, |F|�p{&1(k)( |X|&{
k&{ )+O( |X|k&{&1)

holds.

The above claim is proved in [4] for {=4. One can prove the general case
in the same way.

2. A Counterexample to a Conjecture of Lova� sz

Erdo� s and Lova� sz [2] proved that the maximum size of k-uniform inter-
secting families with covering number k is at least wk!(e&1)x and at most
kk. Lova� sz [10] conjectured that wk!(e&1)x is the exact bound. This con-
jecture is true for k=2, 3. However, for the case k�4, this conjecture turns
out to be false. In this section, we will construct k-uniform intersecting
family with covering number k whose size is greater than ((k+1)�2)k&1.

The constructions are rather complicated, therefore we first give an out-
line of them. There is a particular element x0 which will have the unique
highest degree in general. We construct an intersecting family G/( X&[x0]

k )
with {(G)={&1. ({=k in the Erdo� s�Lova� sz case, and {�k in general.)
Next we define B :=[[x0] _ C : C # �k&1

t={&1 Ct (G)]. Finally, the family
F0=F0(k, {) is defined as F0 :=G _ [F # ( X

k ), _B # B, B/F]. Now we give
the two examples, according to the parity of {.

Example 1 (The Case {=2s+2). Let h=k&s. First we define an
infinite k-uniform family G*=G*(h) as follows. Let

V(G*) :=[(2i, 2 j ) : i # Z, 0� j<h]

_ [(2i+1, 2 j+1) : i # Z, 0� j<h].

We define a broom structure Gi as follows. A broom Gi has a broomstick

Si :=[(i, j) : (i, j) # V(G*)], ( |Si |=h)

and tails

Ti :=[[(i, j0), (i+1, j1), (i+2, j2), ..., (i+s, js)] :

jt+1& jt # [1, &1] for 0�\t<s]

where

j0 :={h
h&1

if h+i is even
if h+i is odd.
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Set Gi :=[Si _ T : T # Ti]. Note that Gi is a k-uniform family with size
|Ti |=2s. Now define G* :=� i # Z Gi .

Next we define an equivalence relation R(s) on V(G*) induced by

(i, j )#(i+2s+1, 2h&1& j ) for all i # Z and 0� j�2h&1.

Note that this equivalence transforms the infinite tape into a Mo� bius
band. Finally, we define G as a quotient family of G* by R(s), that is,
G :=G*�R(s). Note that |V(G)|=(2s+1)h.

Example 2 (The Case {=2s+1). Let h=k&s, and

V(G) :=[(2i, 2 j ) : i # Z2s , 0�i<s, 0� j�h]

_ [(2i+1, 2 j+1) : i # Z2s , 0�i<S, 0� j�h]

&[(2i, 0) : i # Z2s , s�2i<2s]

&[(2i+1, 2h+1) : i # Z2s , s�2i+1<2s]

Note that |V(G)|=s(2h+1). We define a broom structure Gi as follows.
A broom Gi has a broomstick

Si :=[(i, j ) : (i, j ) # V(G)],

( |S0|= } } } =|Ss&1|=h+1, |Ss|= } } } =|S2s&1|=h)

and tails

Ti :=[[(i, j0), (i+1, j1), (i+2, j2), ..., (i+u, ju)] :

jt+1& jt # [1, &1] for 0�\t<u]

where

u :={s&1
s

if i # [0, 1, ..., s&1] (mod 2s)
if i # [s, s+1, ..., 2s&1] (mod 2s),

and

j0 :={h
h+1

if h+i is even
if h+i is odd.

Set Gi :=[Si _ T : T # Ti ], and define G :=�0�i<2s Gi .

Remark 1. In both examples, any edge of type [x0 , x1 , ..., x{&2] (xj # Sj

for all 0� j�{&2) is a cover of G. This implies that |C{&1(G)|�
>{&2

i=0 |Si | .
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Now we check that the above constructions satisfy the required condi-
tions. It is easy to see that the family G is intersecting. But {(G)={&1 is
not trivial. We only prove the case {=2s+2, because the proof for the case
{=2s+1 is very similar.

Let us consider properties of covers of T0 . Define It :=�T # T0
(St & T),

Jt :=� t
l=0 Il , and fix a cover C # C(T0). A vertex yi # Si is called suspicious

(under C) if there exists T=[y0 , y1 , ..., ys] # T0 (y j # Sj for all 0� j�s)
such that [y0 , y1 , ..., yi] & C=<. Let L=L(C) be the set of all suspicious
vertices.

Let us start with a trivial but useful fact.

Claim 1. If C & Ii+1=< then |L & Ii+1|�|L & Ii |+1 and equality
holds only if L & Ii consists of consecutive vertices on Ii .

The following fact is easily proved by induction on i.

Claim 2. Let a=|C & Ii | . Suppose that |C & Jl |�l for all 0�l<i. Then
|L & Ii |�i&a+1 and equality holds only if L & Ii consists of consecutive
vertices on Ii .

The following is a direct consequence of the above fact.

Proposition 1. Suppose that |C & Jl |�l for all 0�l<i and L & Ii=<.
Then |C & Ji |�i+1 and equality holds only if C & Ii consists of consecutive
vertices on Ii .

Proposition 2. {(G)=2s+1.

Proof. Let C be any cover for G. For each 0�i�2s, we define the
interval Wi=[i, i+r] (mod 2s+1) so that r is the minimum non-negative
integer satisfying |C & (Si _ Si+1 _ } } } _ Si+r)|�r+1. In fact, such an
integer r exists by Proposition 1. The following claim can be shown easily.

Claim 3. If Wi and Wj have non-empty intersection, then Wi/Wj or
Wj/Wi holds.

Using this, we can choose disjoint intervals from W0 , W1 , ..., W2s whose
union is exactly [0, 2s]. And so, |C|�2s+1. This completes the proof of
{(G)=2s+1. K

Now we know that F0 :=G _ [F # ( X
k ), _B # B, B/F] is intersecting,

and {&1�{(F0)�{. We can check that {(F0)={ using the following easy
fact.

Proposition 3. Let G/( X&[x0]
k ) be an intersecting family with {(G)=

{&1. Define B :=[[x0] _ C : C # �k&1
t={&1 Ct (G)], F :=G _ [F # ( X

k ),
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_B # B, B/F]. Then {(F)={ if and only if for all C # C{&1(G) there exists
C$ # C{&1(G) such that C & C$=<.

Lova� sz conjectured that r(k)=wk!(e&1)x<e2((k+1)�e)k+1. Our con-
struction beats this conjecture as follows. Let G be a k-uniform intersecting
family defined in Example 1 or Example 2. Then {(G)=k. By Remark 1, we
have the following lower bound.

Theorem 1.

r(k)>|Ck&1(G)|>{\
k
2

+1+
k&1

\k+3
2 +

(k&1)�2

\k+1
2 +

(k&1)�2

if k is even,

if k is odd.

Thus, our construction is exponentially larger than Erdo� s�Lova� sz construction.

3. Open Problems

Problem 1. Determine the maximum size of 4-uniform intersecting
families with covering number four. Does r(4)=42 hold?

Problem 2. Determine p3(k) for 4�k�8. Does p3(k)=k3&3k2+
6k&4 hold in these cases?

Conjecture 1. Let F/( X
k ) be an intersecting family with covering

number {. If k>k0({), |X|>n0(k), then we have |F|�(k{&1&( {&1
2 )k{&2+

c(k, {))( |X|&{
k&{ )+O( |X| k&{&1), where c(k, {) is a polynomial of k and {, and

the degree of k is at most {&3.

Using (8), the above conjecture would follow from the following conjec-
ture by setting {=t+1.

Conjecture 2. Let k�k0(t). Then pt (k)=kt&( t
2)kt&1+O(kt&2) holds.

K

This conjecture is true for t�5 [5]. It seems that the coefficient of kt&2

in the above conjecture is (t�4)w(t+1)(t2&4t+7)�2x.
For the case {=k, we conjecture the following.
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Conjecture 3. For some absolute constant 1
2�+<1, r(k)<(+k)k

holds. K

We close this section with a bold conjecture.

Conjecture 4. Let k�{�4 and n>n0(k). Let F0 be the family defined
in Example 1 or Example 2. Suppose that F/( X

k ) is an intersecting family
with covering number {, then |F|�|F0| holds. Equality holds if and only
if F is isomorphic to F0 . K

This conjecture is true if ``k�4 and {=2 [9],'' or ``k�4 and {=3 [3],''
or ``k�9 and {=4 [4].'' (Inequality holds even if ``k=3 and {=2,'' or
``k=3 and {=3,'' but the uniqueness of the extremal configuration does
not hold in these cases.) Of course, this conjecture is much stronger than
Conjecture 1. Note that for k={ this conjecture would give the solution to
the problem of Erdo� s�Lova� sz, and in particular, it would show that the
answer to Problem 1 is 42.

4. Appendix

4.1. Numerical Data

The following is a table of the size of k-uniform intersecting families with
covering number k, i.e., known lower bounds for r(k).

k Erdo� s�Lova� sz construction Example 1, Example 2

2 3 3
3 10 10
4 41 42
5 206 228
6 1, 237 1, 639
7 8, 660 13, 264
8 69, 281 128, 469
9 623, 530 1, 327, 677

10 6, 235, 301 15, 962, 373
11 68, 588, 312 202, 391, 317
12 823, 059, 745 2, 942, 955, 330
13 10, 699, 776, 686 44, 744, 668, 113
14 149, 796, 873, 605 770, 458, 315, 037
15 2, 246, 953, 104, 076 13, 752, 147, 069, 844
16 35, 951, 249, 665, 217 274, 736, 003, 372, 155

40 FRANKL, OTA, AND TOKUSHIGE



File: 582A 264609 . By:BV . Date:04:02:00 . Time:13:06 LOP8M. V8.0. Page 01:01
Codes: 2370 Signs: 1468 . Length: 45 pic 0 pts, 190 mm

4.2. k={=3

The maximum size of 3-uniform intersecting families with covering
number 3 is 10, i.e., r(3)=10. There are 7 configurations which attain the
maximum. The following is the list of these extremal configurations.

(*1) 123 (*2) 123 (*3) 123 (*4) 123
12 4 12 4 12 4 12 4
12 5 12 5 12 5 12 5

345 345 345 345
1 34 1 3 6 1 3 6 1 34
1 3 5 1 4 6 1 4 6 1 4 6
1 45 1 56 1 56 1 56

234 23 6 1 34 23 5
23 5 2 4 6 23 6 23 6
2 45 2 56 2 4 6 2 45

(*5) 123 (*6) 123 (*7) 123
12 4 12 4 12 4
12 5 12 5 12 5

345 345 345
1 34 1 34 1 34
1 3 5 1 3 6 1 3 6
1 56 1 56 1 4 7

23 5 23 5 234
2 45 23 6 23 7
23 6 2 4 6 2 4 6
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