

MATHEMATICS

DISCRETE

Discrete Mathematics 140 (1995) 265-267

Note

On the section of a convex polyhedron

Peter Frankl^a, Hiroshi Maehara^b, Junichiro Nakashima^c

^a CNRS, Paris, France ^b Ryukyu University, Okinawa, Japan [°] Tokyo University, Tokyo, Japan

Received 1 February 1993

Abstract

Let P be a convex polyhedron in R^3 , and E be a plane cutting P. Then the section $P_E = P \cap E$ is a convex polygon. We show a sharp inequality

(the perimeter of P_E) $< \frac{2}{3}L(P)$,

where L(P) denotes the sum of the edge-lengths of P.

For a polyhedron (or a polygon) X, L(X) denotes the sum of the edge-lengths of X. Thus if X is a polygon then L(X) is the perimeter of X.

Let P be the surface of a convex polyhedron in R^3 , and E be a plane cutting P. Then the section $P_E = P \cap E$ is a convex polygon, see Fig. 1. We prove the following theorem.

Theorem. $L(P_E) < \frac{2}{3}L(P)$.

We use the following lemma.

Lemma. If X is a convex polygon contained in another convex polygon Y, then $L(X) \leq L(Y)$.

Proof of the theorem. Let us denote by $f: P \rightarrow E$ the orthogonal projection into E. First we consider the case where the plane E satisfies that

(*) for every face F of P, f(F) has positive area. Since f(P) is a convex polygon containing P_E , we have $L(P_E) \leq L(f(P))$ by the above lemma. Therefore, it is sufficient to show that $L(f(P)) < \frac{2}{3}L(P)$.

0012-365X/95/\$09.50 © 1995—Elsevier Science B.V. All rights reserved SSDI 0012-365X(93)E0172-Z

(1) For each edge b of f(P), there is exactly one edge e of P such that f(e) = b.

(2) The interior of f(P) is doubly covered by the projections f(F) of the faces F of P.

(3) The polygon f(P) is partitioned into small polygons Q by the projections f(e) of the edges e of P.

(4) No small polygon Q is incident to more than one (boundary) edge b of the polygon f(P).

To see (4), suppose that a small polygon Q is incident to two boundary edges $b_1 = f(e_1)$ and $b_2 = f(e_2)$ of f(P). Connect the midpoint of b_1 and the midpoint of b_2 by a line segment γ . Then γ is contained in Q. By (2), there are exactly two faces F, F' of P such that $f(F) \cap f(F')$ contains Q. Hence the inverse image $f^{-1}(\gamma)$ consists of two *distinct* line segments. However, these two distinct line segments must have the same endpoints, the midpoint of e_1 and the midpoint of e_2 . This is a contradiction.

(5) $2L(f(P)) < \sum_Q L(Q)$ (sum is over all Q). To see this, let $b_1, ..., b_n$ be the edges of the polygon f(P), and let Q_i be the small polygon incident to b_i . Then $Q_1, ..., Q_n$ are all distinct by (4). Since

2 (the length of b_i) < $L(Q_i)$,

we have

$$2L(f(P)) < L(Q_1) + \dots + L(Q_n) \leq \sum_{Q} L(Q).$$

Therefore we have (5).

Adding L(f(P)) to both sides of (5), we have

$$3L(f(P)) < L(f(P)) + \sum_{Q} L(Q).$$

On the right-hand side, the length of f(e) appears exactly twice for every edge e of P. Hence the right-hand side is equal to

$$\sum_{F} L(f(F)) = L(f(P)) + \sum_{Q} L(Q).$$

Therefore, we have

$$(\#)3L(f(P)) < \sum_{F} L(f(F)),$$

and since $L(f(F)) \leq L(F)$, we have

$$3L(f(P)) < \sum_{F} L(F) = 2L(P).$$

Now, let us consider the case where the plane E does not satisfy (*). Denote by L(f(F)) the sum of the length of f(e) for the edges e of a face F even if f(F) degenerates to a line segment. Note that if we move the plane E continuously, then both $L(P_E)$ and $\sum_F L(f(F))$ change their values continuously. Let $\delta = \sum_F L(F) - \sum_F L(f(F))$. Since there must be an edge of P which is mapped by f to a shorter line segment, δ is positive. Hence it is possible to move the plane E so that (i) it comes to a position satisfying (*) and (ii) neither $L(P_E)$ nor $\sum_F L(f(F))$ changes its value more than $\delta/2$. Then since (#) holds for the plane in the new position, the theorem holds for the plane at the original position. \Box

Remark. Fig. 2 shows that the inequality of the theorem is best possible.

Corollary. For any tetrahedron T contained in a convex polytope P, $L(T) < \frac{4}{3}L(P)$.

Proof. Let F_1, F_2, F_3, F_4 be the four faces of a tetrahedron T contained in a convex polyhedron P. Since F_i is a convex polygon contained in the section of P by the plane determined by F_i , we have $L(F_i) < \frac{2}{3}L(P)$. Hence,

$$2L(T) = L(F_1) + L(F_2) + L(F_3) + L(F_4) < \frac{8}{3}L(P),$$

and the corollary follows. \Box

Remark. The inequality of the corollary is best possible. To see this consider the tetrahedron ABB'C' contained in the triangular prism in Fig. 2.