DISCRETE
MATHEMATICS

Discrete Mathematics 140 (1995) 265-267

Note
On the section of a convex polyhedron

Peter Frankl?, Hiroshi Maehara®, Junichiro Nakashima®

2 CNRS, Paris, France
® Ryukyu University, Okinawa, Japan
¢ Tokyo University, Tokyo, Japan

Received 1 February 1993

Abstract

Let P be a convex polyhedron in R3, and E be a plane cutting P. Then the section Pp=P~E
is a convex polygon. We show a sharp inequality

(the perimeter of Pg)<3% L(P),

where L(P) denotes the sum of the edge-lengths of P.

For a polyhedron (or a polygon) X, L(X) denotes the sum of the edge-lengths of X.
Thus if X is a polygon then L(X) is the perimeter of X.

Let P be the surface of a convex polyhedron in R3, and E be a plane cutting P. Then
the section Pg=PnE is a convex polygon, see Fig. 1. We prove the following theorem.

Theorem. L(Pg)<%L(P).
We use the following lemma.

Lemma. If X is a convex polygon contained in another convex polygon Y, then
LX) L(Y).

Proof of the theorem. Let us denote by f: P— E the orthogonal projection into E. First
we consider the case where the plane E satisfies that

(*) for every face F of P, f(F) has positive area. Since f(P) is a convex polygon
containing Pg, we have L(Pg) < L(f(P)) by the above lemma. Therefore, it is sufficient
to show that L(f(P))<%L(P).
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Fig. 1. Fig. 2.

(1) For each edge b of f(P), there is exactly one edge ¢ of P such that f(e)=b.

(2) The interior of f(P) is doubly covered by the projections f(F) of the faces F of P.

(3) The polygon f(P) is partitioned into small polygons Q by the projections f'(e) of
the edges ¢ of P.

(4) No small polygon Q is incident to more than one (boundary) edge b of the
polygon f(P).

To see (4), suppose that a small polygon Q is incident to two boundary edges
by=f(e;)and b,=f(e,) of f(P). Connect the midpoint of b; and the midpoint of b, by
a line segment y. Then y is contained in Q. By (2), there are exactly two faces F, F’ of
P such that f(F)n f(F') contains Q. Hence the inverse image f~!(y) consists of two
/distinct line segments. However, these two distinct line segments must have the same
endpoints, the midpoint of ¢; and the midpoint of e,. This is a contradiction.

(5) 2L(f(P)) <Xy L(Q) (sum is over all Q). To see this, let by, ..., b, be the edges of
the polygon f(P), and let Q, be the small polygon incident to b;. Then Q,, ...,Q, are
all distinct by (4). Since

2 (the length of b;)< L(Q;),

we have

2L(f(P))<L(Q1)+ -'-+L(Qu)<% L(Q).

Therefore we have (5).
Adding L(f(P)) to both sides of (5), we have
BL(f(P)<L(f(P)+} L(Q).
0
On the right-hand side, the length of f(e) appears exactly twice for every edge e of P.
Hence the right-hand side is equal to

; L(f(F))=L(f(P)) +§ L(Q).
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Therefore, we have

(# )3L(f(P))<§. L(f(F)),

and since L{f(F))< L(F), we have
3L(f(P))<X L(F)=2L(P).
F

Now, let us consider the case where the plane E does not satisfy ( *). Denote by
L(f(F)) the sum of the length of f (e) for the edges e of a face F even if f (F) degenerates
to a line segment. Note that if we move the plane E continuously, then both L(P;) and
Y ¢ L(f(F)) change their values continuously. Let =Y, L(F)—3; L(f(F)). Since
there must be an edge of P which is mapped by fto a shorter line segment, d is positive.
Hence it is possible to move the plane E so that (i) it comes to a position satisfying ( *)
and (i1) neither L(Pg) nor Y L( f(F))changes its value more than /2. Then since ( # )
holds for the plane in the new position, the theorem holds for the plane at the original
position. [

Remark. Fig. 2 shows that the inequality of the theorem is best possible.
Corollary. For any tetrahedron T contained in a convex polytope P, L(T)<% L(P).

Proof. Let F,, F,, F5, F, be the four faces of a tetrahedron T contained in a convex
polyhedron P. Since F; is a convex polygon contained in the section of P by the plane
determined by F;, we have L(F;)<%L(P). Hence,

2L(T)=L(Fy)+ L(F,)+ L(F3)+ L(F,) <3 L(P),

and the corollary follows. [

Remark. The inequality of the corollary is best possible. To see this consider the
tetrahedron ABB’C’ contained in the triangular prism in Fig. 2.



