DISCRETE

 MATHEMATICS
Note

On the section of a convex polyhedron

Peter Frankl ${ }^{\text {a }}$, Hiroshi Maehara ${ }^{\text {b }}$, Junichiro Nakashima ${ }^{\text {c }}$
${ }^{a}$ CNRS, Paris, France
${ }^{\text {b }}$ Ryukyu University, Okinawa, Japan
${ }^{\text {c }}$ Tokyo University, Tokyo. Japan

Received 1 February 1993

Abstract

Let P be a convex polyhedron in R^{3}, and E be a plane cutting P. Then the section $P_{E}=P \cap E$ is a convex polygon. We show a sharp inequality (the perimeter of $\left.P_{E}\right)<\frac{2}{3} L(P)$,

where $L(P)$ denotes the sum of the edge-lengths of P.

For a polyhedron (or a polygon) $X, L(X)$ denotes the sum of the edge-lengths of X. Thus if X is a polygon then $L(X)$ is the perimeter of X.

Let P be the surface of a convex polyhedron in R^{3}, and E be a plane cutting P. Then the section $P_{E}=P \cap E$ is a convex polygon, see Fig. 1. We prove the following theorem.

Theorem. $L\left(P_{E}\right)<\frac{2}{3} L(P)$.

We use the following lemma.

Lemma. If X is a convex polygon contained in another convex polygon Y, then $L(X) \leqslant L(Y)$.

Proof of the theorem. Let us denote by $f: P \rightarrow E$ the orthogonal projection into E. First we consider the case where the plane E satisfies that
(*) for every face F of $P, f(F)$ has positive area. Since $f(P)$ is a convex polygon containing P_{E}, we have $L\left(P_{E}\right) \leqslant L(f(P))$ by the above lemma. Therefore, it is sufficient to show that $L(f(P))<\frac{2}{3} L(P)$.

Fig. 1.

Fig. 2.
(1) For each edge b of $f(P)$, there is exactly one edge e of P such that $f(e)=b$.
(2) The interior of $f(P)$ is doubly covered by the projections $f(F)$ of the faces F of P.
(3) The polygon $f(P)$ is partitioned into small polygons Q by the projections $f(e)$ of the edges e of P.
(4) No small polygon Q is incident to more than one (boundary) edge b of the polygon $f(P)$.

To see (4), suppose that a small polygon Q is incident to two boundary edges $b_{1}=f\left(e_{1}\right)$ and $b_{2}=f\left(e_{2}\right)$ of $f(P)$. Connect the midpoint of b_{1} and the midpoint of b_{2} by a line segment γ. Then γ is contained in Q. By (2), there are exactly two faces F, F^{\prime} of P such that $f(F) \cap f\left(F^{\prime}\right)$ contains Q. Hence the inverse image $f^{-1}(\gamma)$ consists of two ${ }^{\prime}$ distinct line segments. However, these two distinct line segments must have the same endpoints, the midpoint of e_{1} and the midpoint of e_{2}. This is a contradiction.
(5) $2 L(f(P))<\sum_{Q} L(Q)$ (sum is over all Q). To see this, let b_{1}, \ldots, b_{n} be the edges of the polygon $f(P)$, and let Q_{i} be the small polygon incident to b_{i}. Then Q_{1}, \ldots, Q_{n} are all distinct by (4). Since

2 (the length of $\left.b_{i}\right)<L\left(Q_{i}\right)$,
we have

$$
2 L(f(P))<L\left(Q_{1}\right)+\cdots+L\left(Q_{n}\right) \leqslant \sum_{Q} L(Q) .
$$

Therefore we have (5).
Adding $L(f(P))$ to both sides of (5), we have

$$
3 L(f(P))<L(f(P))+\sum_{Q} L(Q) .
$$

On the right-hand side, the length of $f(e)$ appears exactly twice for every edge e of P. Hence the right-hand side is equal to

$$
\sum_{F} L(f(F))=L(f(P))+\sum_{Q} L(Q) .
$$

Therefore, we have

$$
\text { (\#) } 3 L(f(P))<\sum_{F} L(f(F))
$$

and since $L(f(F)) \leqslant L(F)$, we have

$$
3 L(f(P))<\sum_{F} L(F)=2 L(P) .
$$

Now, let us consider the case where the plane E does not satisfy (*). Denote by $L(f(F))$ the sum of the length of $f(e)$ for the edges e of a face F even if $f(F)$ degenerates to a line segment. Note that if we move the plane E continuously, then both $L\left(P_{E}\right)$ and $\sum_{F} L(f(F))$ change their values continuously. Let $\delta=\sum_{F} L(F)-\sum_{F} L(f(F))$. Since there must be an edge of P which is mapped by f to a shorter line segment, δ is positive. Hence it is possible to move the plane E so that (i) it comes to a position satisfying (*) and (ii) neither $L\left(P_{E}\right)$ nor $\sum_{F} L(f(F))$ changes its value more than $\delta / 2$. Then since (\#) holds for the plane in the new position, the theorem holds for the plane at the original position.

Remark. Fig. 2 shows that the inequality of the theorem is best possible.
Corollary. For any tetrahedron T contained in a convex polytope $P, L(T)<\frac{4}{3} L(P)$.
Proof. Let $F_{1}, F_{2}, F_{3}, F_{4}$ be the four faces of a tetrahedron T contained in a convex polyhedron P. Since F_{i} is a convex polygon contained in the section of P by the plane determined by F_{i}, we have $L\left(F_{i}\right)<\frac{2}{3} L(P)$. Hence,

$$
2 L(T)=L\left(F_{1}\right)+L\left(F_{2}\right)+L\left(F_{3}\right)+L\left(F_{4}\right)<\frac{8}{3} L(P),
$$

and the corollary follows.

Remark. The inequality of the corollary is best possible. To see this consider the tetrahedron $A B B^{\prime} C^{\prime}$ contained in the triangular prism in Fig. 2.

