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The shadow function is closely related to the Kruskal-Katona Theorem. The 
Takagi function is a standard example of a nowhere differentiable continuous 
function. The purpose of this paper is to exhibit a rather surprising relationship 
between the shadow function and the Takagi function. Using this relationship, one 
can approximately compute the size of minimum shadows in uniform hypergraphs 
with a given number of edges. In order to describe the asymptotic behaviour of the 
size of shadows, we introduce a new, generalized Takagi function. The results 
explain the difficulties, often encountered when using the best possible bounds 
arising from the Kruskal-Katona Theorem. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

The shadow function is closely related to the Kruska l -Katona  Theorem. 
The Takagi function is a standard example of a nowhere differentiable 
continuous function. The purpose of this paper  is to exhibit a rather  
surprising relationship between the shadow function and the Takagi func- 
tion. 
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Let ( : ) =  {F c N: [F[ = k}. For a family 3 - c  ( : )  and an integer 

l < k, we define the lth (lower) shadow of Y by A1(3-) = {G ~ (7): 

3 F  ~ 9-  such that G c F}. We define the colex order on (~) by A <codex 

B ¢0 max{a ~ A  - B} < max{b ~ B - A }  for A , B  ~ (~). The family of 

the first m elements in ( ~ ) w i t h  respect to the colex order is denoted by 
Colex(k, m). For example, Colex(3, 5) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, 
{1, 2, 5}}. Kruskal and Katona independently determined the minimum size 
of shadows in a uniform hypergraph with a given number of edges. 

THEOREM 1 [4, 3]. F o r a l l 3 - c ( ~ ) a n d l < k o n e h a s  

# k , ( ~ )  > # k , (C o lex (k ,  13-1)). 

The complexity of the Colex(k, 13-[) often makes the Kruskal-  
Katona Theorem awkward for concrete applications. The following version 
due to Lovfisz is more handy for computations. 

> (;) wi,  x >  reo, THEOREM 2 [5]. Suppose that Y c k ' - 
Then 

{x) 
~ A k - l ( a ~ - )  ~ k - 1 

if and only if x is an integer and 9 - =  (x)  for some with equality homing 

x-element set X.  

This result shows the uniqueness of optimal families in the 
case [5~-[ = (~), n > k, integer. Apply- Kruskal-Katona Theorem for the 

ing the same result k - l times proves #At(3- )  > (7) and uniqueness for 
all 1 < l < k. 

The values of ] g [  = m for given k and l such that Colex(k, m) is the 
only optimal family in the Kruskal-Katona Theorem were determined 
independently by Fiiredi and Griggs [1] and M6rs [7]. 

Combining the Kruskal-Katona Theorem with its Lov~isz version gives 
the following. 

THEOREM 3. Suppose that ~ - c ( ~ ) ,  l g - I = ( a k ~ ) + ( a * - l ] +  
\k  1] 

"'ta'+'t +(:/ w't   ntegers an x real, s a t i . . , g  + l+1 



M I N I M U M  S H A D O W S  AND T H E  T A K A G I  F U N C T I O N  127 

a k > . . .  > al+ 1 >_x + 1 > l + l ,  t hen  

# , a ~ _ l (  y ) > + + . . .  + + 
- k - 1  k - 2  1 l - 1  " 

Now we define the Kruskal-Katona function by 

K f ( m )  = - m  + #A,(Colex(k ,  m ) ) .  

The following picture is the graph of the Kruskal-Katona function for 
k = 7 ,  l = 6 :  

250 500 50 i000 1250 iSO0 i~50 

One often encounters this function when dealing with intersecting 
families. 

~ x ~  1 ~ot ~ o  ~m~li~s ~ ~ t':'t a ~  ~ -~/~:~l bo c~os~-into~- 
secting, i.e., A c3 B :# O holds for all A ~ s~ and B ~ 2 .  Then by the 
Kruskal-Katona Theorem [4, 3], we have 

The shadow function S k is defined by normalizing K~, where l := k - h 

v-- x , f o r0  _<x N 1. 
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Next, we introduce the Takagi function. In 1903, Takagi constructed a 
nowhere differentiable continuous function [8, 9]. It is called the Takagi 
function and denoted by T, 

where 

T ( x )  := Y'. q~i(x)2 -i for 0 < x < 1, 
i = 1  

2x, 
¢ , (x)  := 2(1 - x ) ,  

(~n(x) : =  ~ g n - l ( ~ 9 1 ( X ) ) .  

The following picture is the graph of the Takagi function: 

i f 0 < x  < 1/2, 

i f l / 2 < x _ <  1, 
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This function has many interesting properties including self-similarity 
(see the Appendix). The first result of the present paper describes how the 
shadow functions are approximated by the Takagi function. 

THEOREM 4. The shadow functions uniformly converge to the Takagi 
function, i.e., 

lim sup ISk(X) -- T ( x ) l  = O. 
k ---~ oo 0<x_<<l 

Sometimes an estimation of the Kruskal-Katona function needs heavy 
computations. This situation is explained to some extent by the fact that 
this function converges to a nowhere differentiable function. 



M I N I M U M  S H A D O W S  A N D  T H E  T A K A G I  F U N C T I O N  129 

The following inequality is a direct consequence of the Kruskal-Katona 
Theorem and Theorem 4. 

real. Then  

1(2  1) 
#Ak- l (~"  ) >--- IJI + (T(x) + o(1) )~  k as k --+ m. 

The following is an easy application of Theorem 5. 

EXAMPLE 2. Let [XI = n = 2k + 1. Suppose that 

c ( ,x] are cross-intersecting families. Then, 
\ 

and 

( 2 )() 
min,, IsCl=xmaX ([aa¢[ + [21)  = 1 -  ~ - ( 1  + o ( 1 ) )  nk " 

For the analysis of the case l -- [ck], 0 < c < 1, we need two more 
functions T c and Sc, k defined below. We define the generalized Takagi 
function Tc, which is different from the one defined in [2]. For a fixed real 
c with 0 < c 4= 1, we can represent x, 0 < x < 1 in (1 + c)-nary form 

x= E c-j( c-5--I ~' 
j>_o , 1  + c ]  ' 

where {/3fl is a strictly increasing sequence of positive integers. There is 
only one ambiguity of representation, namely, 

j~_o c-j ~ + c -~ 

= ~ c - J  + ~ c -~+1 
iT0- j= i+ l  \ 1 + c J 

However, both representations give the same value in the following 
function To: 

1 + c ¢ 2 j  _ C/3j 

T~(x) := 2 ( 1 - c )  E 
j_>o cJ(1 + c) &" 
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The following picture is the graph of the generalized Takagi function for 
c = 1/2:  
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This function is a generalization of the Takagi function in the following 
sense. 

THEOREM 6. The generalized Takagi functions converge uniformly to the 
Takagi function as c ~ 1, i.e., 

lira sup 
c ~ l  0_<x_<l 

More precisely, 

holds. 

[ rc(X)  - r ( x ) [  = 0. 

( 1)3 
T ( x )  - Tc(X ) << [ c -  1] l o g i c _  1[ 

Finally, we define the c-shadow function. Let  c be a fixed real with 
0 < c < 1 and k be an integer. To consider lower shadows, set l := [ck]. 
The c-shadow function Sc, k is defined by 

1+c (k+,)1 ) l) 
Sc,~(x).- 2 ( 1 - c )  ~ k x fo r0  _<x _< 1. 

The following picture is the graph  of the Kruska l -Katona  function for 
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k = 10, l = 5. This is corresponding to the generalized Takagi function for 

c = 5 /10  = 1/2:  
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The c-shadow functions are approximated by the generalized Takagi 
function as follows. 

THEOREM 7. The c-shadow functions uniformly converge to the general- 
ized Takagi function, i.e., 

lim sup I S c , k ( X )  - T c ( x ) [  = 0 
k ~ o ~  O _ < x G 1  

holds for all c, 0 < c < 1. 

In this case, the inequality corresponding to Theorem 5 is the following. 

THEOREM 8 .  Let 0 < c < 1 and 0 < x < 1 be reals. Suppose that 

= x with l = [ck]. Then 
k 

2 ( 1 - C )  ( k  + l )  
>__ I g l  + ( L ( x )  + o (1) )  + c k a s k  ~ .  

The authors believe that these results on uniform convergence are 
interesting on their own sake. However, it would be nicer to have some 
concrete applications of the theorems to extremal problems. We hope to 
return to this in some future paper. 
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2. PROOF OF THEOREM 4 

In  this section, we assume tha t  0 < x <  1. In this case x can be 
r ep re sen t ed  in the fo rm x = E j>  o2-¢J, where  {3j} is a strictly increasing 
sequence  of positive integers.  F o r  x = F~=o2-¢J, we define R ( x ) : =  
E ~ = o ( / 3 j -  2 j ) 2 - ¢ q  and  for  x = ET=o2-&,  we  def ine  R ( x )  := 
lim s _ ~  E~=o(/3j - 2 j )2-~: .  

LEMMA 1. T(X) = R(x) .  

Proof. Let  x = ]ET=oaj2-i, aj = 0, 1. By the definit ion of q~j, we have 

i < j  

= ( , r . )  
- -  - -  ~ a i  2 - i  , if  a t = 1 .  2-J+a X i<j " 

First  we assume tha t  x = E~=0 2-¢j.  We  prove  T ( x )  = R ( x )  by induct ion 
on s. Since this clearly holds for  s = 0, we assume that  s > 0 and define 
x '  = F.~2012 -t~j. Then,  by (&),  we have 

[q~ t (x ' , )2 -~ i+2  - ~ ,  i f a t = O a n d j < ~ _ l ,  

q~t(x)2- j =  ~q~j(x)2 - s - 2  -/~', i r a  t =  l a n d j < / 3 s _  1, 

2 - ~ ,  i f f i s_  1 < j  < / 3  s, 

[ 0 ,  i f j  > /3s .  

So, we obta in  

T ( x )  = T ( x ' )  + ( 3 , - 1  - s)  2-t~' - s 2 - ~ '  + (/3, - / 3 , _ 1 ) 2  - G  

= R ( x ' )  + (/3s - 2s)  2 - ¢ '  (by the induct ion hypothesis)  

= R ( x ) .  

v '~ 2-¢~ By the definit ion of  R and the Next,  we consider  the case x = ,_,t=o . 
continuity of  T, we have 

R ( x )  = l i m R  2 -8,  = lira T 2 -t~, = T ( x ) .  | 
\ j = 0  s - - ~  \ j = 0  ] 

For  _x 1 = P.j>_02-¢q we define x s := E~j_<s2-~J, and  x , ( k )  := 

2kkl  Y~'[3j<_s k - j  . Note  tha t  #{xs:  0 < x  < 1} is finite for  any 

fixed s. To  prove  T h e o r e m  4 we need  a ra ther  technical  lemma.  
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LEMMA 2. (1) For every positive e there exists s o = So(e) such that 
max0_<x_<l[x - X s l  < e holds for s > s o . 

(2) For every positive e and every s there exists k o = ko(e, s) such that 
maXo<x<_a]xs(k) - xs[ < ~ holds f o r k  > k o. 

(3) For every positive e and every s there exists k a = kl(e,  s) such that 
SUPo<_x <alSk(x~(k)) -- R(x~)l  < e holds for  k > k v 

Proof. (1) This follows from Ix - x~[ < 2 -s°+a. 

(2) For  fixed Xs, we have 

IXs( ) -xsl 
= ~< ( {k  " ' ' ( k - j + l ) } { ( k - l ) ' ' ' ( k - ~ i + j ) }  - 2 - & ) < e  

&_,  ( 2 k  - 1) " "  (2k  - / 3 j )  

if k > k(x~).  For  a given s, x s assumes only finitely many values for 
0 < x _< 1. So we may choose k 0 := maxx,{k(xs)}. 

(3) For  fixed x, ,  we have 

( )) S k ( x s ( k ) )  = k  2 k k -  1} K~_I g 2 k - ~ i -  1 
" \ &_<s k - j 

(( )( )} 
&_s k - j  • k j -  1 

1 = £ ( 1 3 j - 2 J ) k - 1 3 j +  j k k - j  " 
&<_s 

Now it is easy to see that  for  k --+ ~ the limit of the RHS is 

(/3j - 2 j ) 2 - &  = R ( x ~ ) .  
/~j<s 

This means  ISk (x , (k ) )  - R(x, ) [  < e holds if k > k (x , ) .  Since x s assumes 
only a finite number  of  values, setting k s := max~{k(xs)} ,  (3) is proved.  

I 
The  p roof  of  the following lemma is ra ther  involved and will be 

p resen ted  at the end of  this section. 

LeMMA 3. The family o f  shadow functions {S k} is "uniformly equicontin- 
uous"; i.e., for  every positive e there exist k 2 = k 2 ( 8 )  and a positive 
6 = 6(e) such that ]Sk(x) - Sk(x')] < e holds f o r k  > k2, Ix - x ' [  < 6. 
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We assume the l e m m a  above,  and prove  the theorem.  

Proof o f  Theorem 4. Since the Takagi  funct ion is uni formly cont inuous,  
fR(x)  - R(x ' ) l  < e holds for  some positive c~ 0 = ~5(e) wheneve r  Ix - x ' l  
< 60. We  take  k 2, 6 > 0 f rom L e m m a  3, and define 61 := min{~50, 6}. By 
L e m m a  2 (1), there  exists s o = s0(~ 1) such that  m a x 0 < x < l l X  - x,I < 61 
holds for  s > s 0. Similarly, by L e m m a  2 (2), the re  exists k o = ko(61) such 
tha t  maxo<x<l[xso(k) -x~o[ < t51 holds for  k > k 0. Finally, by L e m m a  2 
(3), there  exists k 1 = kl(e, s o) such tha t  suPo<_~<_l[Sk(X~o(k)) -- R(Xso)[ < 
e holds for  k > k 1. Def ine  k 3 := max{k o, k 1, k2}. T h e n  for  k > k 3, 0 ~ x 
< 1, we have 

Is~(x) -n(~)[ <_]&(x)  - S~(X,o) [ + S~(~,  o) - & ( x d ~ ) )  

+ & ( x d k )  ) - R ( x ,  o) +[R(Xso) - R(x)[ 

< e + e + e + e = 4 e .  | 

Since we could not  prove  the un i form equicont inui ty  directly, we intro- 
duce a funct ion fk,," For  0 < x < 1, there  exists an (essentially) unique 

[( 1) 1 (2k-/3j--1) Using this sequence  {/3j} which satisfies 2k k- x = ~i>_o k - j  " 

sequence,  we define the s ' s  approx ima te  of  x as 

a p p r k , s ( x ) - ' =  2 k k - - 1  ~ 2 k - / 3 j - 1  

t3j_s k - j 

Fur ther ,  we define 

- ~ j - 2 j  ( 2 k - f l j -  1 
fk, s(X):=Sk(apprk,  s ( X ) ) = k ( 2 k k  1) 1 ~.~< k~--fij+j \ k - j  )" 

13~_s 

We need  two m o r e  lemmas .  

LEMMA 4. For every positive e there exists s o = So(e) such 
suP0 _< x _< l lSk(X) -- fk.~ (x)I  < e holds for every k and every s > s o. 

that 
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Proof. 
We have 

[Sk(x) - fk,,(x) I 

= k ( 2 k  k 1)  

We choose s o such that  En > son(3/4)n < e. Suppose that  s > s o. 

--1 

t~>, k - / 3 j  + j  k - j  

= • ( / 3 j - 2 j )  
/3j>s 

Note  that  for  fixed k and /3, 

{k . . - ( k - j +  1)}{k . . . ( k - / 3  + j +  1)} 

(k ')  2 ( 2k ~ j./3 
- (2k--- 7~} ! ) 

{k " . . ( k - r n  + 1)) 2, 

{k " " ( k - m +  1 ) } 2 ( k - m ) ,  

{k ""(k-J(21[__ + 1)}{ki;77."-(k-(i£_~513,+j + 1)} . 

if /3 = 2m,  

if/3 = 2 m  + 1. 

Case 1. 
Thus,  

{k . . . ( k - m  + 1)} 2 

/3 i = 2m. In this case, we have /3f < 2k - 2 and m < k - 1. 

_<{1 

( 2k  2 j -  1 ) ( 2 k  2 j  2) ,=u j=o . . . .  = 2k 2 j  - 2 

< 2k - 2m + 2 2 k ' - - - ~  -< " 12 = " 

Case 2. /3 i = 2m + 1. In this case, we have /3j _< 2k - 1 and 
m _ < k -  1. Thus,  

{k " '"  (k - rn + 1)}Z(k - m) 

( 2 k -  1 ) ' - ' ( 2 k - 2 m -  1) 

2 k - 2 - m  - 1 j=o 2 k - - 2 - / -  1 

k - m + 1  m-2 k - j  
1 - 1  

2 k -  2m !=1o 2 k -  2 j -  2 

. (3)m)(1 . (3)m-l} = (3)/3'-2 ' 

( e k  - . . .  ( 2 k  - 2 m )  
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Consequently,  in both cases we have 

] S k ( x ) - - f k ,  s ( X ) '  < ~ , / 3 , - - 2 j , ( 3 )  ~3~-2 
B j > s  

t3~> s 2/3j < <- 9 <-fie. ! 
n > s  4 - 

F o r / 3  = ( /30, /31, ' ' ' ' /3 i  ) '  1 </30 </31 < " ' "  -< /3 i  ~ 2k - 1, we define 

~ ( 2 k - / 3 j -  1) i 
and b( /3 )  := 2 2 -¢"  

j=o~ k - j  j=o 

Note that  b(/3) < b(/3') holds iff z(/3) < z(/3'). 

LEMMA 5. For every positive e there exists s t such that for  s > s 1 one 
can choose k I = kl(e), 6 = 6(e)  for  which Ifk,~(X) - - fk ,  s(X')l < e holds 
whenever k > k 1 and Ix - x ' l  < 8. 

Proof. Take 30 > 0 such that  Ix - x'l < 60 implies IR(x) - R(x ' ) l  < 
e. Choose s I such that  2 -sI < 8 0  . Suppose that  s > s  1. Let  B : = { / ~ =  
(/30,/31 . . . . .  /3): 1 <  i < s, 1 < 130 < /31 -~ " ' "  -~ /3i ~ S}. For every /3 
B, there exists k(/3) > s such that  

In fact, for x = 3Z}=o2-t~i we have x¢, = x = b(/~) and x t3 (k )=  z(/3+), 
which imply 

lim S ~ ( z ( f f ) )  = lim S~(xe~(k ) )  = R ( x ~ , ) .  
k ~ o o  ~ " k ~ o o  

The last equality follows from Lemma 2 (3). Define k 0 := maxd~B{k(/3-')}. 
Then,  

/~cB 

holds if k > k o. 
Next we define 6 := min~/ ,d ,~ ,  d,~, lz( /3)  - z(/3')l. Suppose that  0 _< 

x < x' < 1, Ix - x'l < 8. We define /3 and /3' by apprk.s(x) = z(/3) and 
appr~, ,(x ')  = z(/3~). Then ff  and if' are adjacent in B with respect to the 
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o r d e r  given by 

< < < b ( ¢ )  

H e n c e  Ib(/~) - b(/3')l  < 2 - '  < ~i 0 and  IR(b(/3)) - R(b(fl~'))[ < e hold.  

Thus,  

I f~,,(x) - f~,s(X')L 

= S k ( a p p r k , , ( X ) ) -  Sk(apprk, ,(x '))  ] = S k ( z ( ~ ) ) -  Sk ( z (~ ' ) )  

<3e.  | 

Final ly ,  we prove  L e m m a  3. 

Proof of  Lemma 3. Fix e > 0. Choose  s o f rom L e m m a  4 and s I f rom 
L e m m a  5, and  def ine  s := max{s0, Sl}. By L e m m a  4, suP0_<x<l lSk(x)  - 
f k , , ( x ) ]  < e .  By L e m m a  5, k > k  I and  I x - x ' l  < ~  imply I f ~ , , ( x ) -  
f~,,(x')] < e. The re fo re ,  

IS~(x) - S ~ ( x ' ) l  <-ISk(X) -- fk , , (X)[  +[fk,,(X) - fk, s(X')l 

+lfk ,s(X')  - Sk(x')l < 3e. I 

This  comple t e s  the  p r o o f  of  T h e o r e m  4. 

3. P R O O F  OF T H E O R E M  6 

Fi rs t  we es tabl i sh  a modu lus  of  cont inui ty  for T(x). Let  0 < x < y < 1, 
y - x = e. W e  wan t  to  e s t ima te  T(x)  - T ( y ) .  

Le t  x = F,2 -¢j ,  y = F2-~J .  Le t  k be  the  smal les t  n u m b e r  for  which 

/3k > 7k. W e  have /~k > 7~ + 1, hence  /3k+ i > Yk + J + 1 for all j .  Sup- 
pose  first tha t  t h e r e  exists a smal les t  n u m b e r  m satisfying 

/3k+m > Yk + m + 2. ( ¥ )  

W e  have 

y - x  > 2 -yk+l + 2 -yk m 1. 

In T(x)  - T(y), the  t e rms  up  to j = k - 1 cancel  each  other .  W e  shall  
c o m p a r e  the  t e rm  with 7k to the  te rms  wi th /3k , /3k+  1 . . . . .  To  this end  we 



138 FRANKL ET AL. 

use the identity 

( y - 2 k ) 2  r =  ~ ( 3 / + j +  1 - 2 ( k + j ) ) 2  - r - i - 1  
j=O 

This gives 

T ( y )  - T ( x )  
~ a  

= )--'. ( 3 ' , -  2 j ) 2 - "  
j = k + l  

o o  

+ Y'. {(y~ + j  - k + 1 - 2J12 -~ 'k- j+~-I  - (/3j - 2 j ) 2 - & } .  
j=k+m 

If  there  is no  m satisfying ( ¥ ) ,  then the second summand  is missing and 
our  task is simpler. 

We  have IT i - 2jl  < yj, hence  

lYj - 2 j l2  -~'j << Yj2 -v~. 

Now for j >_ k + 1 we have yj > 'Yk+l -I- ( j  - k - 1) and the funct ion 
x 2  -x  is decreasing,  thus with 3' = Yk+l we have 

c ~  

(y j  - 2 j ) Z - r J  << ~ ( y  + j + k + 1)2 - r - j + k  
j=k+l  

<< 72  -~ << e l o g ( l / e ) .  

The  second term can be est imated similarly and we obtain 

( k  + rn)2 -(~+m) << e l o g ( l / e )  

again. 
Now we compare  T ( x )  and Tc(x). Write  c = 1 + 6, where  tal < 1 /2 .  

Let  

 0(c) x = ~ 2 - &  = c - j  
j>_>o j 1 + c 

so that  

T ( x )  = )--~. (/3j - 2 j ) 2 - &  
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and 

1 + C C 2 j  - -  C y] 

re(X) 
2(1 - c) j~o c]( 1 + c) e~" 

We consider also the number y = E2 -yj. 
Let us estimate Ix - y[. We have 

I c-4 c I x -  yl < ~ 2 -~j - \ T - ~ c  ] I" 

Now consider the function 

C )Y. 
F ( j , T )  = 2 -;~ - c - J  

For a fixed y this is a monotone function of j (either increasing or 
decreasing), hence for every 0 _< j _< y we have 

[ F ( j , y ) [  _< max( lF(0 ,  y ) l ,  ] F ( y , y ) l )  _<lF(0, y) [  + ] F ( y , y ) [ .  

Now if c < 1, then F(0, y)  is positive and F(y ,  y) is negative, while for 
c > 1 it is just the opposite. In any case we have 

IF(O,w)I + I F ( w , y ) I  = sgn(c - 1) 
(c ~ -  1) 

(1 + c) v" 

This is an upper bound for I F ( j ,  y)[ independent of j, hence 

I x - y l  _< E I F ( j , y : ) I  _< E 
(c ej - 1)sgn(c - 1) 

(1 + c) ~ 

The yj are different positive integers, so we get an upper bound if we 
extend this sum for all integers, not just the y/s.  This yields 

( c " -  1)sgn(c - 1) 
rx-yt<_ E 

.=0 (1 + c) ~ 

]C 2 -  iI 
- _< 3[c - iI 

if c > 1/2.  

(C 2 -  1 ) s g n ( c  - 1 )  

This implies T ( x )  - T(y )  << 1611og(1/[~31). Since we have 

IT(x) - L ( x ) l  _<IT(x) - T(y)I  + I T ( y )  - L ( x ) l ,  
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it is now sufficient to estimate 

I T ( y )  - rc (x ) [  < ~,  (`/i - 2j)2-./J 

FRANKL ET AL. 

1 + c c 2 j  - c . / J  

2(1 Z c )  cJ(1 + c~./']" ( & )  

It is possible to do the same as above and maximize each term in j for a 
fixed "/i, but now this does not easily lead to a nice result. Instead we can 
just do a direct attack as follows. 

Since 0 < j < `/j, each term is smaller than (writing `/ for `/j) 

l + c  l + c . /  
2`/2-./ + 

2(1 - c) (1 + c )  ~" 

The sum of these terms for ` / >  L gives a contribution << L 2 - L +  
I&[-1(3/5)L = O(1~5[) say with L = K log(IBI-1) with a suitable absolute 
constant K. For the terms with 3, < L we apply a Taylor expansion. We 
have 

c k = 1 + k ~  + O ( k 2 ~  : )  = 1 + k ~  + O ( ¢ ~  : )  

uniformly for [k] < y _ 1 /16 [ ,  and also 

(1 + c ) . / =  2"/(1 + 0 ( ` / 8 ) ) .  

These yield 

- c , J  _ _ ` / J )  + 

c;(1 + c) "~ 

Hence each term in ( ~ )  is 0(3,26), and summing these errors for all the 
summands with 3, < L we get a total error of size 

L36 << I~ l ( log(1 / [6 [ ) )  3. 

4. PROOF OF THEOREM 7 

In this section, we assume that 0 _< x _< 1 and 0 < c < 1. We always 
represent x in the form 

x= E c-4 c--5-t 
j>_o ~1 + c ]  

where {/3i} is a strictly increasing sequence of positive integers. Recall that 
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Tc(x) is def ined by 

1 + C C 2j -- c 'Sj 

Tc(X) "- 2 ( 1 -  c)  ~2 
j_>o cJ(1 + c)  &" 

Fur ther ,  we set l := [ck] and define the c-shadow funct ion Sc. ~ by 

1 + c  )1) S c ' k ( x )  := 2 ( 1 - c )  k K k + l  k x , f o r 0  < x  < 1. 

For  x = E~>_oC-i(c/(1 + c))&, and a positive integer  s, we define 

x s := Et~,<,c-~(c / (1  + c))&, and x , ( k ) : =  ( k / l ~ - l z  ( k + l - 1 3 J t .  N o t e  
_ ) &_<s~ ~ - s  ! 

tha t  # { x /  0 < x < 1} is finite for fixed s. 

LEMMA 6. (1) For every positive e there exists s o = So(e) such that 
maxo_<x_llX - x s l  < e holds for  s > s o . 

(2) For every positive e and every s there exists k o = ko(e , s) such that 
maxo_<,_<llxs(k) - x~l < e holds for  k > k o. 

(3) For every positive e and every s there exists k t = k l (e  , s) such that 

SUpo<x<llSc, k ( x s ( k ) )  - Tc(xs)[ < e holds for  k > k 1. 

Proof. (1) This  follows f rom 

IX -- Xs] = 

< 

E C -  J _ _  _~_ 
t~j>s ( l + c )  &>s t l + c  ] 

1 ~& 
E - -  --+ 0 

&>s 1 + c )  s-+~ ' 

(2) For  fixed x , ,  we have 

Ix,(k) -xsl 

(( /( ) k + l - / 3 j  k l -1 c 

&_s k - j  ~ 1 + c 

= 5 , ( { k  " " ( k - j + l ) } { l " ' ( l - f l ] + J + l ) }  

( k + l )  " ' "  ( k + l - / 3 ~ +  1) 

--c~J--J ) 

(1 + c) 
< E  

if k > k (x s ) .  So we may  choose k 0 := m a x x { k ( x , )  }. 

582a/69/1-10 
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(3) For  fixed Xs, w e  have 

Sc,~(xs(k) )  

_ l + c  ( 

2G-  c) 
- 1  

k K~ & -s  k - j 

t t1 {( 1 + c  k + l  k + l - f i i  + 
- 2('-1 --  c )  k - k - j  l - j  &_s 

1 + c c j - c [ 3 j - j  

-~ ~ rc(Xs). 
k- .~  2(1 -- C) (1 + c)  & /3j_s 

This means  ISc, k (xs (k ) ) -  Z¢(xs)] < e holds if k >_ k(x,). So we put  

k l  := maXxs{k(xs)}. I 

The  p roof  of  the following lemma is ra ther  involved and will be 
p resen ted  at the end of  this section. 

LEMMA 7. The c-shadow functions {S¢, k} are uniformly equicontinuous; 
i.e., for every positive e there exist k 2 = k'2(e) and a positive 6 = 6(e) such 
that ISc, k(x) - S~,k(X')l < e holds fork  > k2, Ix - x'l < 6. 

Assuming validity of  the above lemma, we prove the theorem.  

Proof of Theorem 7. Since Tc is uniformly continuous,  ITc(x) - Tc(x')l 
< e holds for some positive 60 = 6(e) whenever  Ix - x'l < 60. We  take 

k2, 6 > 0 f rom L e m m a  7, and define 61 := min{6o, 6}. By L e m m a  6 (1), 
there  exists s o = s0(61) such that  max0_<x_<llX - x s] < 61 holds for s >__ s o. 
Similarly, by L e m m a  6 (2), there  exists k 0 = k0(61) such that  
maxo_<,_<llx,0(k) - xsol < 61 holds for k > k 0. Finally, by L e m m a  6 (3), 
there  exists k I = kl(e, s o) such that  suPo<_x<_llSc, k(xso(k)) - T~(xso)l < e 
holds for k > k 1. Define k 3 := max{k o, ka, k2}. Then  for k > k3, 0 < x < 
1, we have 

ISc ,~(x )  - T¢(x ) l  <_lsc,~(x)  - s~,~(Xso)l + [s~,~(Xso) - s~,~(X~o(~))] 

+lsc, (Xso(k))- T¢(Xso)l + IT (X o - 
< e + e + e + e = 4 e .  | 

To prove L e m m a  7, we in t roduce a funct ion gk, s" For  0 < x _< 1, 

~k l jX  = ), we define the s 's  approximate  of  x as 

apprk , s (x  ) ( k T l ) - 1  ~ ( k + l - C t J  }. 
~i_s k - j 
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Further ,  we define 

g k , , ( X )  := S c , k ( a p p G , , ( x ) )  

k+, ( 

We need  two more  lemmas. 

LEMMA 8. 
such that 

For every positive e there exist s o = So(e) and k o = 

sup Sc, k ( x  ) --gk,,(x)l < E  
0_<x_<l 

ko(e)  

holds whenever s >_ s o and k > k o. 

Proof. First note  that  for every k >_ 2 we have 

(k +l-fl)( ; l )  -1" 

l " " ( l - j + 1 )  

( k  + l) . - .  ( k  + l - j  + 1) 

< = 
< k + l - j  - 

) C J 
< k + c k - 1  1 + c  ( l / k )  < 

k - " ( k - / 3  + j +  1) 

( k  + l - j ) ' " ( k  + l - [ 3  + j )  

[ c k ]  

k + t c k ]  

C )J 
c + ( 1 / 2 )  

Next, fix a positive real e with 0 < e < c. Then  there exists k o such that  
c - ( l / k )  > e holds for all k >__ k 0. Thus,  we have 

k . . . ( k - j +  1) l . "  ( l - f i  + j  + 1) 

( k + l ) . . . ( k + l - j + l )  ( k + l - j ) . . . ( k + l - f l + j )  

< ~ k + l - j  - 

<- l + c - ( 1 /  k ) <- ~+--ee ' 
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Define Jo := min{j : /3 j  > s}. Then,  we have 

ISc, (x) - 

k l k + l - / 3  + 

< ; s l - j  k - j  

-<2E. jo_  o. I 
J ~>d0 

F o r / 3  = (/30,/31,-.- , /3i) ,  1 _~ /30 ~ /31 ~ " ' "  ~ /3i -~< k + l, we define 

Z(~) := (k ; l)-1 ~ ( k -~- l /£ - J  

and 

. c )/3j. 

Note  that  b(/3) < b(/3') holds iff z(/3) < z(/3'). 

LEMMA 9. For every positive e there exists s 1 such that for s > s I one 
can choose k I = kl(e),  8 = 8(e)  for which Iga, s(X) - gk,~(x')l < e holds 
whenever k > k 1 and Ix - x'l < 8. 

Proof. Take  8 o > 0 such that  Ix - x' l  </~o implies [To(x) - L(x')l < 
e. Choose  s 1 such that  (1 / (1  + c)) sl < 8 o. Suppose that  s > s 1. Let  B := 

= (gO,  / 3 1 , ' ' ' '  /3i ): 1 < i < s, 1 < / 3  0 < / 3 1  ~ " ' "  -~ fli -~ s}. For  every 
/3 ~ B, there  exists k(ff)  > s such that  

In fact, for x = E~.=oC-J(c/(1 + c)) ~i we have xt3 i = x  = b(/3) and 
xt3i(k) = z(/3), which imply 

l i m S c  k ( z ( f f ) ) =  l i m S  c k ( x ~ i ( k ) ) =  Tc(Xt3,)= T c ( z ( f f ) ) .  
k ---~ oo ' ~ / k ---~ o~ ' 

Define k o := max~B{k( /3 )} .  Then,  maxt~B[Sc,  k ( z ( / f f ) ) -  Tc(b(ff))l < e 
holds if k >__ k o. 
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Next  we define 6 := minLfi ,~B ' t~.~,lz(/3) - z(/3')[. Suppose that  0 _< 
x < x ' <  1, Ix-x'l_.  < 6. W 2 define / 3 a n d  / 3 ' b y  apprk, s ( X ) = z ( ~ )  and 
apprk, s(X') = z(/3'). Then  fi = /3 ' ,  or  /3 and /3' are adjacent  in B, i.e., 
[b(/3) - b(/3')l = ( c / ( 1  + c)) s < 6 o. So Ir~(b(/3)) - rc(b(/3~))l < e holds. 
Thus,  

Igk,s(X) --gk,s(X')[ 

=lSc, k(apprk,,(X)) - Sc, k(apprk,,(X')) [ -=lSc, k ( z ( f l  )) - Sc, k(Z(~'))  I 

<3e.  I 

Finally, we prove L e m m a  7. 

Proof. Fix e > 0. Choose  So, k o f rom Lemma  8 and s 1 f rom L e m m a  9, 
and define s := max{s o, Sl}. By L e m m a  8, SUPo<_x<_lISc, k(X) -- gk, s(X)l < e 
holds if k > k o. Choose  k I and 6 f rom L e m m a  9. By L e m m a  9, k > 
max{k o, k 1} and Ix - x'[ < 6 imply Igk, s(X) -- gk, s(X')] < e. There fore ,  

ISc, k (X)  - Sc, k(X' ) l  <--ISc, k (X)  -- g~, , (x )  I + l g k , , ( x )  - gk, s(X')l  

+lgk,,(X') -- Sc, k(X')I < 3e. I 

This completes  the proof  of  T h e o r e m  7. 

APPENDIX 

It is known that  Takagi  function, is not  fractal; i.e., the Hausdor f f  
dimension of  the graph of  the Takagi  funct ion is one (see [2]). However ,  
Mande lb ro t  [6] t reats  curves like the Takagi  funct ion as border l ine  cases. 
The  following example shows the self-similarity in the Takagi  function. 

EXAMPLE 3. Define /~, A: R 2 ~ R 2 by 

(4 4) /x (x ,  y)  = + ~ - , ~  + , 

A ( x , y )  = + ~ , ~  + . 
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Further, define 

C := { ( x , T ( x ) )  ~ R2:0 < x < 1}, 

C 0:= { ( x , y )  e C : 0  < x <  1/4 ,  3 / 4 < x <  1}. 

Then C = /x(C)  u A ( C ) u  C o holds. In human language, this says that 
enlarging the graph of the Takagi function on [1/4, 1/2] by a factor of 4, 
one gets back the graph of the original Takagi function. The same holds 
for [1/2, 3/4]  as well. 

The shadow function has a property in the same flavor, that is, 

Sk 2(2-k -22 1) + 2(2k -~- 1) = Sk 2 k ~ - i  + 2(2/~ 2_ 1) 

k-l( Sk_I(X) ) 
- - - -  1 +  

2 k -  1 2 " 

Let us define U~: [0, 1] ~ [0, 1] by 

U~{j>~o2-& ) := j_>~oa&(l ~ a ) ]  

Note that 

f o r 0 < a <  1. 

Uc/(1+c)(j~>o2-t3J) j>_o~ C-J[ l + c 

holds for 0 < c < 1. This means U~(x) gives the (1 + c)-nary expansion of 
x when a = c/(1 + c). U~(x) is a kind of "Lebesgue singular function." In 
fact, it is a strictly increasing continuous function of bounded variation 
whose derivative vanishes almost everywhere if a ¢ 1/2. The Takagi 
function and U~ have the following relation [2]: 

10uo(x)~= =r(x). 
20a  1/2 

The generalized Takagi function has the following self-similarity. 

EXAMPLE 4. Let c be a fixed real with 0 < c < 1. Define /x c, Ac: 
R 2 ~ R 2 by  

((1+C)2 CX 1 
IXc(X'Y) = + (1 + c )  2 ' 2  

c cx 1 
+ + 

hc(X,y)  = 1 + c  ( 1 + c )  2' 2 

c,) 
+ (1 + c )  2 ' 

c, t 
(1  + c )  2 " 
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Further, define 

C : =  {(x, Tc(x)) ~ R2:0  _<x _< 1}, 

C o :=  { ( x , y )  ~ C : 0 _ < x  < ( c / ( 1  + c ) )  2 , c ( 2 + c ) / ( 1  + c )  2 < x _ <  1}. 

Then C = txc(C) U A~(C) u C o holds. 

The generalized Takagi function can be expanded into series in the 
following way. 

EXAMPLE 5. Let us define 

Zj :=  gc / ( l+c  ) 

p ( ~ )  := n - E 
j_>l 

C p(2i  + 1) 

hi, j :=  
2c(1 + c) j '  

' 0 ,  

h,,, (x -  z;), 
2i~- i - -  i 

Zj+ 1 -- Zj 

q c ' j ' i ( X )  '= i+l-hi'j----2i+l ( x  - z j + I ) ,  
z j  - z j+ 1 

O, 

2 J - 1  

q~c,j(x) := Y'~ qc,j,i(x) for 0 _< x _< 1. 
i = o  

Then, the generalized Takagi function satisfies 

L(x)  = E ~c,j(x). 
j = o  

Note  that T ( x )  = Y~=oq~l,/(x). 

f o r 0  < x < z j ,  

i ~ x  _~ _2i+1 for z /  _ Zj+l , 

for 2 i + 1  i + 1  Zj+l <_X <_ Zj , 

i+1  for x _< zj < 1, 
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