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We determine the maximum size of uniform intersecting families with covering 
number at least four. The unique extremal configuration turns out to be different 
from the one that was conjectured 12 years ago. At the same time it permits us to 
give a counterexample to a conjecture of Lovfisz. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Let X be a finite set. We denote  by (~) the family of all k-element subsets 

of X. A family ~-  satisfying ~ - c  (~) is called k-uniform. The vertex set of 
@ is X and  it is often denoted by V(Y).  An element of ~ is also called 
an edge of J~. The family ~ is called intersecting if Fc~ G ¢ 25 holds for 
every F, G ~ ~ .  

A set C c X is called a cover (or transversal  set) of Y if it intersects every 
edge of ~ ' .  A cover C is also called a t-cover if [C[ = t .  The set of all 
t-covers of ~ is denoted by cg,(~-). The covering n u m b e r  of Y is the mini-  
m u m  cardinal i ty of the covers and  is denoted by z ( ~ ) .  By the definition, 
r ( ~ )  = min{ t : c ~ , ( ~ ) #  ~ } .  
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For a family d ~ 2 x and vertices x~ .... , x i ,  Y l , . . . ,  yje X. we define 

~¢(xl • • • xi Yl""  Yj) := {A  ~ d : x l ,  ..., x i  e A,  Y l ,  ..., Yj ¢ A } ,  

and for Y c X ,  

d ( Y )  := {A : Y c A + s ~ } ,  

d ( Y )  := { A e d  : Y o g A = f 2 5 } .  

For fixed ]Y[ and k, the maximum size of an intersecting family ~ c (x) 
was determinhed by Erd6s et al. [ 1 ]. The covering number of the extremal 
configuration is one (if IX[ >2k) ,  which means that there exists a vertex 
x E X such that all edges of the family contain this vertex. Such families are 
called trivial. Hilton and Milner [ 9 ] determined the maximum size of non- 
trivial (i.e., the covering number is at least 2) intersecting families. Then, 
Frankl [3] determined the maximum size of intersecting families with 
covering number three. 

The main purpose of the present paper is to determine the maximum size 
of intersecting families with covering number four. We also prove the 
uniqueness of the extremal configuration. This turns out to be completely 
different from the one conjectured in [ 3 ]. This new construction permits us 
to give a counterexample to a conjecture of Lovfisz. 

Let us begin with an important example. 

EXAMPLE 1. We construct an intersecting family ~o c (x) with z(o~o) = 4 
as follows. First, fix 1 + 3 ( k -  1) vertices x0, xi, yi, z~ (1 ~ i ~< k -  1) in X. 
For i = 1, 2 we define 6 edges 

x ,  := {xl ,  ..., x k _ l ,  yi}, 

Y,:= {yl ,  ..., yk -1 ,  z;}, 

Z i := {Zl,---, 2k__l, Xi} ,  

and set ~o := {X1, )(2, Y1, Y2, Z1, Z2}. Next, we define Mo c (x) by 

~o:=  {{Xo, xi, yj, z,} : 1 <~i,j, l<.k-1} 

~{{Xo,  Xl, x2, Y i } : l ~ < i < ~ k - 1 }  

{{Xo, Yl, Y2, z,}: l ~ i ~ k -  1} 

u{{Xo, Zl, Za, X,}:l~<i~<k-l}.  
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Finally, ~ c ( x )  is defined by 

Let us examine ~0- By the definition it follows that IN01 = 6 Remark 1. 
and 

1~o1 = k3 - -  3k2  + 6 k -  4. 

If k = 4, then both -~o and No are k-uniform, and so is ~o = No w No as 
well. In this case, lYol = 42. Erd6s and Lov/tsz constructed k-uniform inter- 
secting family with covering number k which has Lk! ( e -  1 )_] edges. Lovfisz 
conjectured that this is the exact maximum size. For the case of k = 4 their 
family has size 41. Thus, our example is a counterexample to the conjecture 
of Lovfisz. 

For k ~> 4, we have 

( Yo ~ B w A ' B ~ N o ,  AE k - 4  WNo 

and 

Therefore, we have 

I~olk k - 4  / ~<1°'%l~<1"%1 k - 4  +6.  

For the case of covering number four, Frankl [3] conjectured that 
I g l  <~(k3-3k2+3k+ 1)( " -4  k - 4 ) - } - O ( n k - 4 )  holds if J = (x) is an intersecting 
family with covering number four. Thus, Example 1 is a counterexample to 
his conjecture. The above example is important, because it gives the maxi- 
mum size of intersecting families with covering number four and it is the 
unique extremal configuration, as is shown by our main result: 

THEOREM 1. Let k~>9, n >no(k), and ]XI =n. Suppose that o-j =(~)  is 
an intersecting family with v ( ~ )  >~ 4, then 

I~1 ~< I~ol 

holds. Equality holds i f  and only i f  ~ is isomorphic to ~o. 
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The essential part of our Proof  of Theorem 1 is to prove the following 
result. 

THEOREM 2. Let k>.9 and IX[ =n.  Suppose that f gc ( x )  is an inter- 
secting family with v( ~#) >~ 3. Then, 

leg3 (f#) ] ~< k 3 - 3k 2 + 6k - 4 

holds. Equality holds if  and only if  ~f is isomorphic to f#o. 

The Proof  of Theorem 2 is valid for a proof of the following. 

THEOREM 3. Let k ) 9  and [Xl=n.  Suppose that fgc(~)  is an inter- 
secting family with r(f¢) = z >i 3. Then, for every A ~ (~_x3) we have 

# { C e ( X ) ' A ~ C ,  C~Cg~(N)} < ~ k 3 - 3 k 2 + 6 k - 4 .  

2. THEOREM 2 IMPLIES THEOREM 1 

In this section, we assume Theorem 2 and prove Theorem 1. Let k i> 9, 
n > no(k), and [X[ =n.  Suppose that ~ c (x) is an intersecting family with 
~ (~ )  = ~ > 4 .  

Let xeFEo~ .  We define edge-shrinking (see [10])  4)(x, F, ~ )  as the 
following operation on a family ~-. If 25 # F '  : = F -  {x}, and ~,~' := (J~ - 
{F} vo {F'} is still intersecting, then we define ~b(x, F, ~ )  := ~-'; otherwise 
~b(x, F, ~-) := ~,~. (If we obtain multiple edges in this operation, we replace 
them by a single edge.) We continue this operation until we get a family 
~ "  such that 

~b(x, F, ~ ' ) = ~ - '  for all x s F ~ ' .  

Of course, o~' is not uniquely determined from ~- in general, it depends on 
the choice of operations. We fix one such shrink-invariant family ~".  ~-' is 
called a kernel of ~-. By the construction, ~ '  is intersecting and r(~- ')  = r. 
(Thus, [F'l ~>T holds for every F ' e Y ' . )  Note also that for every F e ~ -  
there exists F' ~ ~ '  such that F '  c F. Define 

which we call a base of ~-. N is intersecting and every edge of N is a 
>cover of ~ .  
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Let f# be the set of edges G e ~,~ such that B ¢ G for every B e ~ .  Finally, 
we define s/{ := ~ w ft. Clearly, we have 

which implies 

, : ~  \ k - I K I )  r 
1) 

It is known that I g (x ) l  is bounded by a function not depending on n, 1.e., 
I V(~ff)l <~f(k, r). So, we have If¢l ~ O(n~-~-l). Thus, in order to give an 
upper bound of I~l we estimate the size of the base ~ .  First we consider 
the covering number  of N. The following result is a slight extension of an 
inequality obtained in [2 ]. 

LEMMA 1. Let s:=z(~t). Then I~1 ~ s d  ~k ~-s 

Proof For  A=X,  we define ~ ( A ) : = { B ~ : A c B } .  Since z ( ~ ) = s .  
there exists an s-cover S of ~ .  So we can choose xl ~ S such that I~(X~)[ ~> 
[~l/s where X1 := {Xx}. 

Suppose that we could define X~= {Xl, ..., x~} ( i < s )  such that 

I~(~)1 ~ I~l/(sr i ~). 

X~ is not a cover of ~ ,  because Ix~l < r(N). So there exists B E ~ such that 
~ n B = ~ .  Since N is intersecting, every edge in N(X~) meets the 
r-element set B. Thus, we can find x~+ 1 e B such that 

I-~(Xi+ 1)1 ~ I~(X,)I/T ~ I~l/(sri),  

where Xi+~ = Xi u {xi+ 1}. Continuing this way, we obtain an s-element set 
Xs such that 

I~(Xs)l ~ I~l/(sd-1), 

If  s < r ,  X~ is not a cover of ~-. So there exists F ~ f f  such that 
X s n F =  ~ .  Since f f  is intersecting, every edge in N(Xs) meets the 
k-element set F. Thus, we can find x~ + 1 e F such that 

I~(Xs+ 1)1/> I~( Xs) l /k  >~ I~l / (srS-  l k ), 

582a/71/1-10 
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where X s + 1 = Xs w { xs + 1 }. Cont inuing this way, we finally get a r -e lement  
set X~ such tha t  

Clearly I~(X~)[ ~< 1, and  we have the desired inequality. | 

The RHS of (1) at tains its m a x i m u m  when z = 4. So, f rom now on, we 
assume tha t  v ( ~ ) = 4 .  In  this case, ~ consists  of  4-covers of  ~ ,  and it 
follows tha t  

Define b(k) :=  [~0l = k3 - 3k2 + 6k - 4. 

(2) 

Thus,  we have 

[%(ff(~37)) I <~k2-k  + 1. 

I f  {x, y, z, w} e ~ ,  then this edge is a cover  of  ~ ,  which implies 

{~, w} e%(:(~S)). 

I~(xy)l < I%(~(~Y))I <<. k 2 - k +  1. | 

The next  l e m m a  settles the case r(M)~> 2. 

LEMMA 3. I f  S := Z(2)  i> 2 then I~1 < b(k). 

Proof By L e m m a  1, we have  

I~1 < 48k if s = 3 

I~1 ~<256 if s = 4 .  

These uppe r  bounds  are less than  b(k) if k>~9. Fo r  s = 2 ,  we have 1~1 ~< 
8k 2 < b(k) if k ~> t 1. 

LEMMA 2. For every x, y e X ,  we have I~(xy)l <~k2-k  + 1. 

Proof Suppose v ( f f ( 2 f ) ) =  1 and  zeCgl ( f f (2y) ) .  Then {x, y , z }  is a 
cover  of  ~-,  which contradicts  T( f f )  = 4. So z(~-(ffy))  ~> 2 mus t  hold. Using 
Propos i t ion  1 (see Appendix) ,  we have 
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Finally, we settle the case 9 ~< k ~< 10 and s = 2. Suppose { 1, 2} ~ cgz(2 ). 
Since {1} is not a cover of 2 ,  we may suppose {2, 3, 4, 5} e 2 .  Every edge 
in 2(12)  meets {3, 4, 5}. Thus, using Lemma 2, we have 

12(12)[ ~< 12(13)1 + 12(14)[ + 12(15)1 ~< 3 ( k 2 - k +  1). 

In the same way, we also have 

12(i2)1 ~< 3(k 2 - k +  1). 

Therefore, we have 

12l ~< 12(12)1 + 12(12)1 + 12(i2)1 ~ < 7 ( k 2 - k +  1)<b(k) .  | 

The next lemma shows that ]2[ = b(k) must hold to attain I~-I/> I~ol. 

LEMMA 4. If  [21 <<, b(k) -- 1, then Ig l  < I~01. 

Proof Using the inequality (2), we obtain 

( n - 4 )  
1~1 ~ ( b ( k ) -  1) k - 4  + O(n~-S)" 

By the construction of ~0 (see Remark 1), we have 

('n- (3k+ 1)) 
b(k) \ k - 4  < Igol. 

If n > no(k), we have 

( b ( k ) - l )  k - 4  +O(nk-5)<b(k) k - 4  ' 

because this is equivalent to 

( ) / (  ) , k-4n-4 n-(3k+l)k_4 +O(n-1)<l+b(k)  
1 

Consequently, we get Ig l  < I~%l. I 

Now we return to the proof of Theorem 1. By Lemma 3 and Lemma 4, 
we have Ig l  < Ig01 if r (2 )> j2 .  Thus, we may assume that T ( 2 ) =  1. Let 
{Xo} be a 1-cover of 2 .  Then, we have 

: : = { G e ~  :XoCG}. 

is an intersecting family with V(N)=3. Using Theorem 2, we have 
1~3(~)1 ~< b(k). 
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If {Xo} w C e M  (and Xo¢ C), then Ce%(f~).  So, we have I%(~)1 > I~l- 
Hence we have I~1 ~< b(k). If I~1 < b(k), we have Igl < I~ol by Lemma 4. 
Thus, we may suppose I~1 = b(k). Then, by Theorem 2, N = ~0 and f# = f#o 
hold. That is, ~ c o~. This completes a proof of Theorem 1 assuming 
Theorem 2. 

3. PROOF OF THEOREM 2 

Throughout this section, we assume that k/> 9 and [XI = n. Suppose that 
f# c (~) is an intersecting family with r u g ) =  3. Recall the definition of f#o 
and ~o (see Example 1). Let (go := { B -  {Xo} : BeNo};  i.e., 

ego := {{x,, yi, z,}: l<~i,j, l<~k-1}  

U {{Xl, X2, Yi} : I ~ i ~ k - - 1 }  

va {{Yl, Y2, z,}: 1 ~ i < ~ k - 1 }  

,o {{Zl ,  z2, xi}: l<.i<.k-1}. 

Let cg :=%(f#).  The destination of this section is to prove [cg] ~< [ego[ = 
k 3 -  3k2+ 6 k -  4. We also determine the unique extremal configuration. 

For x e G e f¢, we define 

~(x, G) :=  # { C e C g ( x ) : l C ~ G I  = 1}, 

/~(x, G):= #{C~(x):lCc~GI =2},  

y(x, G):= #{C~(x): lCnGI =3}, 

e(x, a) := ~(x, G) + ½/~(x, ~) + ~(x, a). 

c(x, G) is called a contribution of x for G, because a simple enumeration 
shows the following. 

LEMMA 5. For any G~N, I~1 =Zx~G c(x, G) holds. 

The following inequality was implicitly proved by Frankl [3]. (We 
include a proof in the Appendix for self-completeness. We recommend the 
reader see this proof first, because it is short but contains several basic 
ideas for our lengthy proof of Theorem 2.) 

LENNA 6. For any x e X ,  IC~(x)[ < . k 2 - k  + 1 holds. 

LEMMA 7. Let x ~ G E ff. Then ~(x, G) <<. k 2 - 3k + 3 holds. 
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Proof C h o o s e  G l e N ( I f ) ,  x I ~ G C h G 1 ,  a n d  G 2 f f f ~ ( x ) c l ) .  

I G c~ G1 [, b : = I G c~ G21, c : = [(G1 ~ G2) - G I. T h e n  we have  

~(x, G) <. ( k -  a - c ) ( k -  b - c) + c ( k -  1). 

As a func t i on  of  c, the  R H S  a t t a ins  its m a x i m u m  w h e n  a = b = 1. So, 

Case 1. 
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Set a : =  

(3) 

~(x, G) ~ ( k -  c - 1)a + c ( k -  1) 

= c a - ( k -  1)c + ( k -  1) 2. 

1 ~< c ~< k -  2. In  this  case, ~(x,  G) a t t a ins  the  m a x i m u m  w h e n  

c = 1 or  c = k -  2, wh ich  impl ies  

c~(x, G ) < ~ ( k - 1 ) 2 - ( k - 1 ) c + ( k - 1 ) 2 = k 2 - 3 k + 3 .  

Case 2. c =  0. Since G1 n G 2 # ~ ,  we have  a ~>2. So the R H S  of  (3) 

t akes  m a x i m u m  w h e n  a = 2 a n d  b = 1. Thus ,  

c~(x, G) ~< (k - 2 ) (k  - 1 ) < k 2 - 3k + 3. 

N o w  we m a y  a s sume  tha t  

G l c ~ G z = G I - { X l } ,  Gc~G1~G2=;25 

h o l d  for every G 2 ff ~(-'Y?cl)" C h o o s e  y E G1 c~ G 2 a n d  G3 ~ ~(9~)7). Since 
GlW{Xl}  ¢ G3, we have  G 3 ¢ ~ ( Y £ 1 )  a n d  so x l ~ G  3. Hence  we have  

I(G3 c~ G2) - G[ -G< k - 2, because  x2, y ¢ (GB w G2)  - G. Thus ,  we can  app ly  
Case  1 aga in  ( replace  G1 by  G3). | 

LEMMA 8. Let x ~ G ~ ~. Then c(x, G) <-G k 2 - 2k + 2. 

Proof U s i n g  L e m m a  6 a n d  L e m m a  7, 

e(x, G)<~(x ,  G)+ ½(l~(x)l-~(x, ~)) 
: ½{(k 2 . k -  It + (k 2 -  3k + 3)} 

= k 2 - 2 k +  2. I 

I f  5 <~ [A c~ B[ <. k - 3 holds for some A, B ~ ~, then [cg I < 1%1 

Proof Suppose  tha t  5 ~< a : =  I A c~ B[ ~< k - 3. I f  x ~ A - B, t hen  we have  

~(x, A) ~< ( k -  a)(~- 1), 
c(x, A ) ~ ½ { ( k 2 - k +  1 ) + ( k - a ) ( k - 1 ) } .  

I f  x ~ A c~ B, by  L e m m a  8, we have  

c(x, A) <.Gk2-2k + 2. 

LEMMA 9. 
holds. 



136 FRANKL, OTA, AND TOKUSHIGE 

Using Lemma 5, we have 

I~1 = Y, c(x, A) 
x E A  

= ( k -  a) x ½{ (k 2 -  k + 1) + ( k -  a ) (k -  1)} + a(k 2 - 2k + 2) 

= l ( a - k ) {  ( k -  1)a-  ZkZ + Zk - 1} + a(k2- 2k + 2) 

=: f (a ) .  

A simple computation shows that f(a) attains the maximum when 
a = k - 3.  Thus, 

I~¢1 <~f(k- 3) 

= l % l - ½ { ( k - a ) ( k - 1 ) + l }  <1%1. I 

LEMMA 10. I f  IA nOl ,  IBn  CI, I C n A I  ~<4 holds for some A, B, C~N, 
then one of the following holds. 

( i )  leg[ < I%1.  

(ii) ] A n B I = [ B n C I = I C n A I = I  a n d A c ~ B n C = ~ .  

(iii) I A n B I = [ B n C I = I C n A I - - - I A n B n C ] = I .  

Proof Fix A, B, C e ~ such that each of the pairwise intersections 
consists of at most four vertices. We define 

D : = A n B n C ,  

U A : = ( B f ~ C ) - A  , U B : = ( C n A ) - B ,  U c : = ( A n B ) - C ,  

W : =  UA u UBu UcuD, 

A ' : = A - W ,  B ' :=B--W,  C ' : = C - W ,  

a:-- IUAI, b:=lUBI, c:=lUcl, d:=lDI. 

We distinguish three types of 3-covers in cg. Let ~gl : = U ~ D  Cg(v), 
cg2 := 0 w ~ w cg(u5), and cg 3 := cg _ cg 1 _ cg2. By Lemma 5, 

1~11~< ~ ICg(v)l<~d(k2-k+l). (4) 
v ~ D  

Since every 3-cover in cg 2 consists of three vertices each from A', B', and C', 
we have 

1~21~IA'I In'l I C ' l = ( k - d - a - - b ) ( k - d - b - c ) ( k - d - c - a ) .  (5) 

Now, we want to estimate the size of ~3. By the definition, each 3-cover 
TE (g3 contains some vertex in UA u U~ w Uc and no vertex in D. If T 
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contains a vertex in UA, it must also contain a vertex in A - D =  
A ' w  U~ u Uc. We define "contributions" of pairs of vertices to the size of 
~g3. For  u 1 ~ UA and x ~ A', we define 

c°(L/1, X ) : =  # { T e C g 3 ( U l X ) : l r n ( A - - D ) [  = 1} 

+ ½ # { 3 - ~ 3 ( ~ l X )  " I T ~ ( A -  D)I=2}. 

For ul ~ UA and u 2 ~ UB, we define 

C(Ul, //2) :=  # { T ~ C d 3 ( U l U 2 ) : I T ~ ( A u B ) [  =2} 

+ ½ # { T f f ~ 3 ( u l U z ) "  T = ( A - B ) u ( B - A ) }  

+ ½ # { TECg3(//1//2) : T A  Uc=/:;2~ }. 

We also define the contributions of the other pairs of vertices, symmetri- 
cally. Then, by the above argument, we can show the following. 

I%1 = ~ c(u~, x )  + ~ c(u 2. y )  + ~ c(b/3, z) 
ul ~ UA, x ~ A "  u2~  UB, N ~ B '  u3~ UC, z E C' 

+ Z c(//,,//2) + Z c(//~,//3) 
Ul ~ UA, u2 E UB u2 E UB, u3 ~ U c  

+ Y~ c(u3, ul) 
U3 ~ UC, Ul ~ UA 

From now on, we estimate the contribution of each pair of vertices. Fix 
Ul ~ UA and x ~ A'. Take an edge G e N(ffl ~). We note that G n A ¢ ~ ,  
and that every T~(d3 (u l x )  contains a vertex in G. Therefore, c(ul,  x)<~ 

l l G n ( A - - D ) l < . k  ½. I G - A I + 5  
Next, we fix ul e UA and u2e Ue, and take an edge G s N(ffIff2). We 

note that G n A ¢ ~  and G n B ¢ ~ .  I f G n (  A n B ) ¢ ~ ,  then it is easy 
to see that c(u~, u2)<~k - 2 .  Otherwise, we have G n ( A - B ) : ~  and 
G c ~ ( B - A ) ¢ ; 2 ~ ,  and hence c(ul ,  u 2 ) < , k - 1 .  Thus, we can estimate 
C(b/1, I/2) ~ k - -  2. 

Adding up these contributions, we get 

I%1 ~< a(k  - d -  b - c ) (k  - 1) + b(k  - d -  c - a ) (k  - ½) 

+ c(k - d -  a - b ) (k  - ½) + (ab + bc + ca)(k - 2). (6) 

By three inequalities (4), (5), and (6), we have 

I~1 <~d(k2-k + 1) + ( k - d - a - b ) ( k - d - b - c ) ( k - d - c - a )  

+ a(k  - d - b - c)(k  - ½) + b(k  - d -  c - a ) (k  - ½) 

+ c ( k - d - a - b ) ( k - ½ ) + ( a b + b c + c a ) ( k - Z ) = : q ( k ) .  (7) 
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Here q(k) is a cubic polynomial of k, where the coefficients of k 3 and k 2 are 
1 and - (a + b + c + 2d), respectively. Hence if a + b + c + 2d ~> 4 and k is 
sufficiently large, then q(k) is much less than I'%1 = k 3 - 3 ] c 2 +  6 k - 4 .  So, 
we must check the cases where a + b + c + 2d ~< 3. When d =  0, since A, B, 
and C are pairwise intersecting, we have a = b  = c = 1, and (ii) follows. 
When d = 1, we have a + b + c ~< 1. If  a = b = c = 0, then (iii) follows. So, we 
may assume that a =  1 and b = c =0 .  Then, the RHS of (7) is equal to 
k 3 - -  3k 2 ÷ ~ k -  I, and is less than ]%]. 

For  small value of k, one can check directly. Recall that for 1 ~< a + d, 
b + d, c + d~<4 there are only finitely many  possibilities for choosing a, b, 
c, d (164 ways). Checking them one by one (of course by computer),  one 
can show that the q(k) is less than [~o] i fk  ~> 9, except for the following two 
cases that imply (ii) or (iii): 

a = b = c = l  and d = 0  

o r  

a=b=c=O and d = l .  | 

LEMMA 11. I f  [Ac~BI>~k-2 holds for every A, B ~ #  ( A C B ) ,  then 
141 I%1 holds. 

Proof Fix G E f#. For  every x ~ G, we have 

~(x, G ) ~ < 2 × 2 = 4 ,  

c(x, =1 2 ~(k - k + 5 ) .  

Thus, 

1 2 
I 

LEMMA 12. Suppose that [A c~ BI ~ 4 holds for some A, B ~ f#. I f  
I G ~ A I ~ k - 2  or IGnBl>~k-2  holds for every GE~, then Icg1<1%1 
holds. 

Proof S e t a : = ] A c ~ B  I ( l ~ < a ~ < 4 ) . I f x ~ A - B ,  t h e n w e h a v e  

( k - a - l )  l { k 2 _ ( 2 a _ 3 ) k + a 2 _ 3 a }  ' c~(x,A)<,(k-a) 2 + ~  = ~  

c ( x , A ) < ~ { ( k Z - k +  l)+ ( k 2 - ( 2 a - 3 ) k + a a - 3 a ) }  

1 
= ~  { 3 k 2 -  (2a - 1)k+a2-3a+2} .  
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If x e A m B, we use c(x, A) ~< k 2 - 2k + 2 by Lemma 8. Thus, 

](gl <~¼(k-a){3k2- (2a-1)  k + a 2 - 3 a +  2} + a ( k Z - Z k  + 2) • 

The RHS is less than I~f01 when k~>9 and 1 ~<a~<4. | 

LEMMA 13. I f  2 < ~ l A c ~ B l ~ k - 3  holds for some A, B e g ,  then 
141 < I~ol holds. 

Proof Fix A, B ~ f# such that 2 ~< t A n B I ~< k - 3. By Lemma 9, we may 
assume that 2 ~< ]A n BI ~<4. By Lemma 12, we may assume that there 
exists G E N  such that IGc~AI, [ G n B I ~ 4 .  We use Lemma 10. In this 
situation, neither (ii) nor (iii) can happen. Then 141 < I%1 follows. I 

From now on, we may assume that IA c~ B] ~ { 1, k - 2 ,  k - 1 }  holds for 
every A, B e f# (A ¢ B). 

LEMMA 14. I f  I~l~>l~01 then there exists A, B, C e N  such that 
A n B n  C = ~  and IAc~BI = IBm CI = ICnAI  = 1. 

Proof By Lemma 11, we can choose G1, G 2 ~ N such that 
]G 1 (3G21 = 1. By Lemma 12, we can choose G 3 ~  such that IG1 r~G31 = 
[G 2 n G31 = 1. If GIn  GzG 3 = ~ then these are the desired edges. 

Let { x } = G I n G z m G 3 .  Choose AeN(2) .  Note that # { i : I A c ~ G i I =  
k -  2} ~< 1. So, we may assume that I A r~ G21 = tA r~ G31 = 1. Then, A, G2, 

and G3 are the desired edges. | 

F rom now on, we fix A, B, C~f¢ such that A n B = { z } ,  B ~ C = { x } ,  
and C n A = { y }  ( x C y ¢ z C x ) .  

LEMMA 15. I f  lCgl >>" I%1 then, for every a~f#, G contains A - { y ,  z} or 
{z, x} or C -  {x, y }  

Proof Fix any G ~ f # -  { A, B, C}. 

Case 1. I G n A [ = ] G n B I = I G c ~ C [ = I .  Let Gc~A={x '} ,  G n B =  
{y'}, Gc~ C =  {x'}. (We does not assume that x', y', and z' are distinct.) 
For  every K~Cg we have Kc~ {x, y, z, x', y', z'} 4 ~ .  Thus, 

141 ~< 6( / ,2-  k + 1) < I%1 

holds if k/> 8. 

Case 2. Otherwise. By symmetry, we may assume that t G c~ A [ ~> k -  2. 
In this case, [GnB[ = [Gc~ C[ = 1 holds. Suppose that G n A  75 A - {y, z}. 
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Choose  v s A - { y ,  z } - G .  Since [ G n A I  ~ > k - 2 ,  we have y s G  or z s G .  
We m a y  assume z s G, i.e., G c~ B = {z}. Then,  we have 

I~(xY~g)[ ~< IA - {y, z, v}l I O -  {z, x}l I C -  {x, y}[ = (k - 2) 2 (k - 3), 

1~(~)Tev)[ ~< I B -  {z, x} I ICc~ GI = k - 2 .  

By L e m m a 6 ,  bo th  I~(x)l, I~(y)l, and I~(z)l are at  mos t  k a - k + l .  
Therefore,  we can est imate 

I~1 <<.(k-2)2(k-3)+(k-2)+3(ke-k+ 1) 

= I % l - ( k - 1 ) ( k - 7 ) <  I%1. I 

LBMMA 16. (i) I~(xf~) l  ~ < k 2 - 3 k + 3 .  

(ii) I f  G c ~ A = { y }  or {z} holds for some Gs~.q(~), then I~¢(xye)l~< 
k 2 - 3k + 2. 

Proof F o r  u s A -  {y, z}, we define 

~'(u) := # {Ks  C~(xu.Y~) " IKc~ AI = 1 }, 

f l ' (u)  := # {Ks  C~(xuy~)" IKc~ AI = 2}, 

c'(u)  := ~(~) + 1,e(u). 

Note  tha t  I~(x2fZ)l=Zu~A_{y,z} c'(u). We est imate c'(u) for each 
u s A -  {y, z}. We use 

~'(u) +/~'(u) = I~(xuje)l ~ I~(xu)l ~ k, 

We also use the fact that  for every u s A  - {y, z} we have 0((u) ~ k -  1 and 
c'(u) <~ k -  ½. This follows f rom the fact tha t  we can choose G s N(Yff) and 
so ~ '(u)  ~< I G - A I  <<,k- 1. 

Case 1. There exists Gsf#( • )  such that  G m A  = { y } )  or  {z}. In this 
case, for every u s A - {y, z} we have fl'(u) = 0 which implies that  

c'(u)=o:'(u) <~k-1 .  

Thus,  ICg(xyZ)[ = Z~  ~a - (y ,  z} c'(u) <~ (k - 2)(k - 1). 

Case 2. Otherwise. Choose  G1Ef~(~ff). Using L e m m a  15 and 
uCG1, we have I a l c ~ A l = l .  Let { V l } = G l ~ A c A - { y , z  }. Choose  
G2 s ~ ( ~ a ) t h e n  Ia2 c~AI = 1. Let  {v2} = G 2 ~ A c A - - { y ,  z}. For  u s A -  
{y, z, vl ,  v2}, we have f l ' ( u ) = 0 ,  and  so c'(u)=og(u)<~k-1.  For  vl, v2, 
we est imate c'(vi) ~ k - 1/2. Thus,  
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Remark 2. 

I~(xff~)l = ~ c ' ( u ) < ~ ( k - 4 ) ( k - 1 ) + 2 ( k - 1 / 2 )  
u ~ A - { y , z }  

= k 2 - 3 k +  3. | 

With the above assumptions, we have the following. 

] cb°()~jTe) [ ~< (k - 2) 3, 

I~(x37e)[, I<g(•ye)[, [<g(•ffz)l ~<k 2 - 3k+  3, 

I<g(xye)[, Icg(2yz)l, [Cg(x)Tz)] ~<k, 

I~(xyz) l  <. L 

Thus, we gel 

I~1 ~ k  ~ - 3 k 2  + 6k+  2 =  1(6:ot +6.  

We shall improve this bound. To reduce the size of 3-covers by six more 
edges, we need more precise discussion as we will see in the following. 

LEMMA 17. I f  fg(X;f~) ~ ¢25 then [cg[ < [qfo[ holds. 

Proof. Fix G~N(~Z) .  By Lemma 15, we may assume that G c~A = 
a - { y , z } .  Let G o B = { N 1 }  and Gc~C={w2}. Fix u ~ A - { y , z }  
and G~ e.~()?tT). Using Lemma 15, and by symmetry, we may assume 
that G t c ~ B m B - { z , x } .  Since ]Gc~G~[=I and G l C ~ A ¢ ~ ,  we have 
I{y, z} ~ G , I  = 1. 

Case 1. yeG~. We have 

I~¢(x)Te)l ~<k2-3k+2 (by Lemma 16(ii)), 

I~(xyz)l ~<[C-{x ,  y, w2}l lGnG~l + IG~-{y}I  

= ( k -  3) x 1 + ( k -  1 ) = 2 k - 4 ,  

• I ( ¢ ( x p ) l  ~< 1, 

I<g(xyz)l = o. 

This together with Remark 2, we get [:gl ~< I%1 - ( k 2  - 4k + 2) < I%1. 

Case 2. z ~ G1. In this case, we have 

I<g(xy~)[ ~ < k Z - 3 k + 2  (by Lemma 16(ii)), 

I~¢(xye)l ~< 1, 

I~:(xyz)l =0. 

Thus, I~l ~ I%1 - ( k -  5) < I%1. I 
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From now on, we may assume that [G ~ {x, y, z} [ = 1 holds for every 
G Ef¢ - { A, B, C}. Edges G in f¢ - { A, B, C} are classified into two types. 

(i) TypeI:  IGm((AuBuC)-{x,y ,z})[=k-2.  For example, 
~ = ( A -  {y, ~})~ {x} ~ {w}, wCA ~ B ~  c. 

(ii) TypeII :  [G~((AwBuC)-{x,y ,z})[=k-1.  For example, 
G =  ( A -  {z}) u {z'}, z ' e  C -  {x, z}. 

LEMMA 18. If there exists a type-I edge Gs~f-{A, B, C}, then 141< 
I%1 holds. 

Proof By symmetry, we may assume that G=(A-{y , z} )u  
{x} u{w},  wCAuBuC. Choose ueA-{y , z }  and Gleff(2ff). Using 
Lemma 15, and by symmetry, we may assume that G I = B - { z ,  x}. If 
z e G1 then G c~ G1 = ~ ,  a contradiction. So G1 is type I, which implies 
GI=(B-{z, x } ) u  {y, w}. Then, we have 

I~(xy~)l, I~(~yS)l ~<k2-3k+2 (by Lemma 16(ii)), 

I~(~fz)l ~ I f -  {x, y}] ]Gc~ Gll = k - 2 ,  

I~(xy)l ~<k, 

I~(Nyz)l, I~(xyz)l ~ k -  1. 

Thus, Ic~l ~< I % 1 - ( k 2 - 4 k + 4 )  < I%1- I 

Now we are in the final stage. From now on, we may assume that all 
edges in (q - {A, B, C} are type II. Choose G 1 = (A - {z}) w {zl}, zl ~ B -  
{z,x}. Choose usA-{y , z }  and G2e(g(Xff). (Of course, G2 is also 
type II.) 

Case 1. G2=C-{x,y }. Choose x leB-{x , z ,  zl} and G2 = 
( C - { x } )  u {xl}. Then, we have 

I~(x2S)l, I~(~jz)l ~ < k 2 - 3 k + 2  (by Lemma 16(ii)), 

I~(xz)[ ~ 161 ~ G2I = 1. 

Thus, 141 ~ I%1-  ( k - 2 ) <  1%[. 

Case 2. G2=B-{z,x}. ChoosexlsC-{x,Y} a n d G 2 = ( B - - { x } ) u  
{Xl}. Choose v EB--{z ,  x} and G3 e (¢(yg). Applying the same argument 
in Case l to G2 and G3, we can choose y l sA - {y ,  z} and G 3 =  
(C-- {y}) u {Yl}. Then, we have 
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leg(Xfe)l, leg(~z)l, 

leg(xye)[, leg(~yz)l, 

By putting this together 

leg(~y~)l ~ < k 2 - 3 k +  2 (by Lemma 16(ii)), 

]eg(x2z)l < . k -  1. 

with Remark 2, we have leg[ ~ 1%1- 
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Here, we determine the extremal configuration. Suppose that ]egl = I%l. 
Then all equalities must hold in the above eight inequalities. Let 

A I = A - { y  , z}, 

In this situation, we have 

eg = {{a, b, c} 

u{{y ,b ,  

~, = , ~ -  {z, x},  c ,  = c -  {x, y}.  

: asAl ,  b~B1, cEC1} 

b } : a e A l ,  b s B w { x l } }  

c} :bEBl,  c~CvA{yl} } 

t,_) {{Z, C, g} ;C~ Ci, a~A w {zl}} 

,o ({x, y, b}: b ~e ,o  (x,}} 

,o {{y, z, z}: c~C,o {yl}} 

{{x, y, z}}. 

This is isomorphic to %. 
Finally, we consider (¢. At this point, we know that ff ~ {A, B, C, G1, 

G2, G3} =: ~ and a/g is isomorphic to (40. Suppose that G c f f -  Yg exists. 
If G = C - { x } ,  then G=Cw{x2},  x2EB--{x, xl, z}. This case is 
impossible, because there exists K =  {x, x l ,  a} ~eg, a e A1, which satisfies 
G c~ K =  595. By the same argument, we may assume that G does not 
contain A - { y } ,  B - { z } ,  or C - { x } .  But in this case, there exists 
K={a,b,c}~eg,  a ~ A - { y } ,  b e B - { z } ,  and c ~ C - { x }  such that 
G c~ K = 5Z5, a contradiction. Therefore, f¢ = J f  ~ (#0 must hold. 

Consequently, we have legl ~< I%1 and equality holds if and only if eg is 
isomorphic to eg o and ~ is isomorphic to f#o- This completes the proof of 
Theorem 2. 

APPENDIX; PROOF OF LEMMA 6 

First we prove the following proposition. 

PROPOSmON 1. Let ~ c (~) be an intersecting family with r(~-) >~2. 
Let E : =  cg2(~-). Then, JE] <~ k 2 -  k + 1 holds. 
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Proof Let x ~ F ~  ~-. We define 

~(x, F ) : =  # { x y ~ E  : y(EF}, 

fl(x, F):= # { x y ~ E  : y e r } ,  

e(x, F):= o~(x, F)+ ½fl(x, /9, 

e(x, F) is considered as a contribution of x for F, because 
[ E] = ~'xsF C(X, F) holds. Since ~ is non-trivial intersecting, we have 

~(x, F) + g (x , /9  ~< k Vx e F, 

o: ( x , /9 < k - 1  V x e F. 

If  fl(x, F) = 0 then we have e(x, F) = e (x ,  F)  ~< k - 1. If fl(x, F) >t 2 then 

e(x, F ) =  ½{~(x, F) + fl(x, /9} + ½o~(x, F) 

<~ ½(k - 1 ) + ½(k - 1 ) = k - 1. 

Thus, if fl(x, F ) ¢  1 holds for every x e F, we obtain 

IEI4 ~, c ( x , F ) E k ( k - 1 ) < k 2 - k + l .  
x ~ F  

So we may assume that f l ( x , /9  = 1 holds for some x e F. In this case, 

1 X c(x, F) <~ o~(x, F) + Eft( , F) <~ (k - 1 ) + 1 = k - 1. 

Let us define 

A : # { x e F :  0c(x, F) = k -  1 and f l ( x , / 9 =  1}. 

Then, we have 

[E' <~ IAI ( k - ~ )  + ( k - [ A [ ) ( k - 1 ) = k 2 - k  + [A[2 

Thus, in order to attain IE l>~k2- -k+l ,  we need IAI>~2. Let 
F =  {Xl ..... x,} and suppose that xl ,  x 2 s A .  Define the neighborhood o f x  i 
by N(xi) := { y : x i y ~ E  }. Note that N(Xl), N(x2) ~ .  

Case 1. x l x 2 e E .  If  y s F - { x l ,  x2} and yzEE,  then z e N ( x l ) n  
N(x2). This means xl x2 is the only edge which is contained in F. Thus, 
f l (xe, /9 = 0 holds if i ~> 3. Therefore, we have 

I E I <  ~ c(xi, F) + ~ c(xi, F) 
i = 1 , 2  i~>3 

~< 2(k - 1/2) + (k - 2)(k - 1 ) = k z - k + 1. 
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Case 2. x,x2¢E. Let X2X3ffE. If x2zeE then zEN(x,), which means 
N(x,) =N(x2) .  Further, N(xi)cN(x,) holds for every i~> 3. Thus, every 
edge which meets F has x3 as an endpoint. Therefore, we have 

[El ~< ~ c(xi, F) + {0~(x3, F) + lfl(x3, F)} 
i ~ 3  

<<.(k-1)Z+(k-2)+½xZ=kZ-k+l .  | 

Now we prove Lemma 6. Since ~¢ = ~¢(x) w ~(2)  has covering number 3, 
we see that ~(2)  is an intersecting family with r(~(2))~>2. Let 
E := Cgz(N()~)). Then we have 

= {x}  E, 

and leg(x)[ <.kZ-k+ l follows from the proposition. 
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