Reflecting a Triangle in the Plane

Imre Bárány, ${ }^{1}$ Peter Frankl ${ }^{2}$ and, Hiroshi Maehara ${ }^{3}$
${ }^{1}$ Yale University, New York University, and the Mathematical Institute of the Hungarian Academy of Sciences
${ }^{2}$ CNRS, Paris, France
${ }^{3}$ Department of Mathematics, Faculty of Education, Ryukyu University, Nishihara-cho, Okinawa, 903-01 Japan

Abstract

We prove that if the three angles of a triangle T in the plane are different from $\left(60^{\circ}, 60^{\circ}, 60^{\circ}\right),\left(30^{\circ}, 30^{\circ}, 120^{\circ}\right),\left(45^{\circ}, 45^{\circ}, 90^{\circ}\right),\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)$, then the set of vertices of those triangles which are obtained from T by repeating 'edge-reflection' is everywhere dense in the plane.

Introduction

An edge-reflection of a triangle T_{1} is a triangle T_{2} which is symmetric to T_{1} with respect to the line determined by an edge of T_{1} (see Fig. 1). By a chain of triangles we mean a sequence of triangles

$$
T_{1}, T_{2}, T_{3}, \ldots
$$

such that $T_{i}(i \geq 2)$ is an edge-reflection of T_{i-1}, and $T_{i} \neq T_{i-2}$ for $i \geq 3$. Two triangles $A B C$ and $P Q R$ are equivalent to each other if $A B C=P Q R$ or there is a finite chain of triangles T_{1}, \ldots, T_{n} such that $T_{1}=A B C$ and $T_{n}=P Q R$. This is clearly an equivalence relation.

Let us denote by $\Omega_{A B C}$ (or simply by Ω) the set of vertices of the triangles equivalent to a given triangle $A B C$. Figure 2 shows part of Ω for four types of triangles with angles

$$
\begin{gathered}
\left(60^{\circ}, 60^{\circ}, 60^{\circ}\right),\left(30^{\circ}, 30^{\circ}, 120^{\circ}\right) \\
\left(45^{\circ}, 45^{\circ}, 90^{\circ}\right),\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)
\end{gathered}
$$

We are going to prove that except for the above four types of triangles, Ω is everywhere dense in the plane (Theorems 2 and 3).

The Angles of a Triangle

In this paper all angles are measured by degree $\left({ }^{\circ}\right)$. A triangle $A B C$ is called rational if its three angles are all rational angles, otherwise, $A B C$ is called irrational. It is obvious that if $A B C$ is irrational, then at least two angles are irrational.

Fig. 1

Fig. 2

Let α be a rational angle and m / n be the irreducible fraction equatl to $\alpha / 180^{\circ}$. If m is even, then the angle α is called even-type, otherwise it is called odd-type. Further, an odd-type angle is called (odd/odd)-type or (odd/even)-type accordingly as the denominator of the irreducible fraction is odd or even. For example, 30° is (odd/even)type and 60° is (odd/odd)-type. If 2α is odd-type, then clearly α is (odd/even)-type.

Theorem 1. Among the three angles α, β, γ of a rational triangle $A B C$:
(1) At least one angle is odd-type.
(2) The number of (odd/even)-type angles is $\neq 1$.
(3) The number of (odd/odd)-type angles is $\neq 2$.

Proof. First suppose that the three angles α, β, γ are all even-type. Then since $\alpha / 180^{\circ}+\beta / 180^{\circ}+\gamma / 180^{\circ}=1$, we have

$$
\text { even/odd }+ \text { even/odd }+ \text { even/odd }=1
$$

which implies even + even + even $=$ odd, a contradiction. Thus (1) follows.
Next, suppose that α is (odd/even)-type, but β, γ are not. Then, from $2 \alpha / 180^{\circ}+$ $2 \beta / 180^{\circ}+2 \gamma / 180^{\circ}=2$, we have

$$
\text { odd } / n+\text { even } / \text { odd }+ \text { even } / \text { odd }=2
$$

which implies odd $=n \cdot$ even, a contradiction. Thus (2) follows.
Finally, suppose α, β are (odd/odd)-type, but γ is even-type. Then we have

$$
\text { odd/odd }+ \text { odd/odd }+ \text { even } / \text { odd }=1
$$

which implies that even $=$ odd + odd + odd, a contradiction. Thus (3) follows.

Corollary 1. In a rational triangle $A B C$, one of the following three cases occurs:
(1) Two or three angles are (odd/even)-type.
(2) One angle is (odd/odd)-type, and the other two are even-type.
(3) Three angles are (odd/odd)-type.

Rational Triangles

Lemma 1. Let $A B C$ be a rational triangle. Let $A B^{\prime} C^{\prime}$ be the triangle symmetric to $A B C$ with respect to the point A, and let $A B^{\prime \prime} C^{\prime \prime}$ be the triangle symmetric to $A B^{\prime} C^{\prime}$ with respect to the bisector of the angle $\angle A=\alpha$ (see Fig. 3):
(1) If α is (odd/even)-type, then $A B^{\prime} C^{\prime}$ is equivalent to $A B C$.
(2) If α is (odd/odd)-type, then $A B^{\prime \prime} C^{\prime \prime}$ is equivalent to $A B C$.
(3) If α is even-type, then $A B^{\prime \prime} C^{\prime \prime}$ is equivalent to $A B^{\prime} C^{\prime}$.

Proof. Suppose α is (odd/even)-type, i.e., $\alpha / 180^{\circ}=(2 m+1) /(2 n)$. Then $2 n \alpha=$ $(2 m+1) 180^{\circ} \equiv 180^{\circ}\left(\bmod 360^{\circ}\right)$. Hence, in a chain of triangles

$$
A B C, A B C_{1}, A B_{1} C_{1}, A B_{1} C_{2}, A B_{2} C_{2}, \ldots, A B_{n} C_{n}
$$

Fig. 3
with common vertex A (Fig. 3), the last triangle $A B_{n} C_{n}$ will coincide with $A B^{\prime} C^{\prime}$ or $A B^{\prime \prime} C^{\prime \prime}$. However, since an even number of edge-reflections results in a congruent triangle of the same 'sense', we must have $A B_{n} C_{n}=A B^{\prime} C^{\prime}$. This proves (1). Similarly, we can get (2) (3).

If $\theta=60^{\circ}, 90^{\circ}, 120^{\circ}$, or 180°, then $\cos \theta=1 / 2,0,-1 / 2$, or -1 . And it is well known that if $|\cos \theta|$ is a rational number other than $0,1,1 / 2$, then θ is irrational (see, e.g., Hadwiger-Debrunner [1], problem 8).

Lemma 2. Let $\theta\left(0^{\circ}<\theta \leq 180^{\circ}\right)$ be a rational angle. Then $\cos \theta$ is a rational number if and only if $\theta=60^{\circ}, 90^{\circ}, 120^{\circ}$, or 180°.

Lemma 3. For a given angle α and a real number $r>0$, let $\Lambda(r, \alpha)$ denote the set of all points represented by linear combinations of plane-vectors

$$
(r \cdot \cos k \alpha, r \cdot \sin k \alpha), \quad k=-1,0,1,2,
$$

with integral coefficients. If $\cos \alpha$ is irrational, then $\Lambda(r, \alpha)$ is everywhere dense in the plane.
Proof. Suppose that $\lambda:=2 \cos \alpha$ is irrational. Since

$$
(r \cdot \cos \alpha, r \cdot \sin \alpha)+(r \cdot \cos (-\alpha), r \cdot \sin (-\alpha))=(\lambda r, 0)
$$

$\Lambda(r, \alpha)$ contains

$$
\{m(\lambda r, 0)+n(r, 0): m, n \in Z\}
$$

Hence the closure $\bar{\Lambda}(r, \alpha)$ of $\Lambda(r, \alpha)$ contains the x-axis. Similarly, $\bar{\Lambda}(r, \alpha)$ contains the line determined by the vector $(\cos \alpha, \sin \alpha)$. Further, $\operatorname{since} \Lambda(r, \alpha)$ is closed under the addition, we have the lemma.

In the rest of this section, let $A B C$ be a rational triangle with vertex A at the
origin. We use the same notation $\Lambda(r, \alpha)$ as in Lemma 3. The angles and edges of the triangle $A B C$ are denoted by α, β, γ and a, b, c, as usual.

Lemma 4. If α, β are (odd/even)-type, then Ω contains $\Lambda(2 c, 2 \alpha)$. Hence, if $\alpha \neq 30^{\circ}$, $45^{\circ}, 90^{\circ}$, then Ω is dense in the plane.

Proof. From Lemma 1(1) and Fig. 4, it follows that Ω contains $\Lambda(2 c, 2 \alpha)$. The latter part follows from Lemmas 2,3 and $\alpha \neq 60^{\circ}$.

Fig. 4
Lemma 5. If α, β, γ are all (odd/odd)-type, then Ω contains $\Lambda(a+b+c, \alpha)$. Hence, if $\alpha \neq 60^{\circ}$, then Ω is dense in the plane.

Proof. From Lemma 1(2) and Fig. 5, Ω contains $\Lambda(a+b+c, \alpha)$. The latter part follows from Lemmas 2, 3.

Lemma 6. If α, β are even-type and γ is (odd/odd)-type, then Ω contains $\Lambda(a+b-c, \alpha)$. Hence Ω is dense in the plane.

Proof. From Lemma 1(2), (3) and Fig. 6, Ω contains $\Lambda(a+b-c, \alpha)$. Since one of α, β is less than 120°, the latter part follows from Lemmas 2,3.

Theorem 2. Let $A B C$ be a rational triangle with angles $\alpha \leq \beta \leq \gamma$. If

$$
\begin{gathered}
(\alpha, \beta, \gamma) \neq\left(60^{\circ}, 60^{\circ}, 60^{\circ}\right), \quad\left(30^{\circ}, 30^{\circ}, 120^{\circ}\right) \\
\left(45^{\circ}, 45^{\circ}, 90^{\circ}\right), \quad\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)
\end{gathered}
$$

then $\Omega_{A B C}$ is everywhere dense in the plane.

Fig. 5

Fig. 6

Proof. Let us consider the three cases (1), (2), and (3) of Corollary 1.
Case (1). If $A B C$ has two (odd/even)-type angles different from $30^{\circ}, 45^{\circ}, 90^{\circ}$, then Ω is dense in the plane by Lemma 4. If the two angles are $30^{\circ}, 45^{\circ}$, then the third angle is 105°, which is (odd/even)-type. Hence, unless ($\left.\alpha, \beta, \gamma\right)=\left(30^{\circ}, 30^{\circ}, 120^{\circ}\right)$, ($45^{\circ}, 45^{\circ}, 90^{\circ}$), Ω is dense in this case.

Case (2). If $A B C$ has one (odd/odd)-type angle and two even-type angles then Ω is dense in the plane by Lemma 6 .

Case (3). If $A B C$ has three (odd/odd)-type angles, and $A B C$ is not equilateral, then Ω is dense in the plane by Lemma 5 .

Irrational Triangles

The following lemma will be obvious.
Lemma 7. Let

$$
P Q R, P Q R_{1}, P Q_{1} R_{1}, P Q_{1} R_{2}, P Q_{2} R_{2}, \ldots
$$

be an infinite chain of triangles with common vertex P. Then:
(1) for any point $X \neq P$, there exists an n such that

$$
\min \left(\angle X P Q_{n}, \angle X P R_{n}\right) \leq 60^{\circ}
$$

and
(2) if $\angle Q P R$ is irrational, then the closures of the sets

$$
\left\{Q, Q_{1}, Q_{2}, Q_{3}, \ldots\right\} \text { and }\left\{R, R_{1}, R_{2}, R_{3}, \ldots\right\}
$$

are concentric circles with center P.
Lemma 8. For any irrational triangle $P Q R$ and a point $Y \neq P$, there is a triangle $P U V$ equivalent to $P Q R$ with irrational angle $\angle U$ and $30^{\circ} \leq \angle Y P U \leq 150^{\circ}$.
Proof. Note that an irrational triangle has at least two irrational angles. Hence, if $\angle Q P R$ is irrational then the lemma follows from Lemma 7(2). In the case $\angle P$ rational, the two angles $\angle Q, \angle R$ are both irrational, whence, applying Lemma 7(1) for a point X such that $\angle X P Y=90^{\circ}$, we have the lemma.

Theorem 3. If $A B C$ is an irrational triangle, then $\Omega_{A B C}$ is everywhere dense in the plane.
Proof. Suppose there is a point Y in the plane for which

$$
d:=\inf \{|Y-W|: W \in \Omega\}
$$

is positive. Then for any $\varepsilon>0$, there is a triangle $P Q R$ which is equivalent to $A B C$ and

$$
|P-Y|<d+\varepsilon .
$$

By Lemma 8, we may always suppose that $\angle Q$ is irrational and $30^{\circ} \leq \angle Y P Q \leq$ 150°. Hence, if ε is sufficiently small, the circle with center Q and radius $P Q$ cuts the circle with center Y and radius d. Therefore, by Lemma $7(2)$, there is a point P^{\prime} of Ω with distance $<d$ from Y, a contradiction.

Remarks

Remark 1. For a triangle $T=A B C$, let $\Phi(T)$ denote the set of triangles obtained from T by repeated reflections. Describing a triangle $T^{\prime} \in \Phi(T)$ by its vertex $A^{\prime} \in R^{2}$, the angle of side $A^{\prime} B^{\prime}$ and x-axis, and its orientation, we can identify $\Phi(T)$ with a set in $R^{2} \times[0,360) \times\{-1,1\}$. Our result asserts.that except for the four exceptional cases, the canonical projection of $\Phi(T)$ into R^{2} is everywhere dense in R^{2}.

The same proof gives the following: If T is irrational, then $\Phi(T)$ is everywhere dense in $R^{2} \times[0,360) \times\{-1,1\}$. If T is rational, then the canonical projection of $\Phi(T)$ onto $[0,360)$ takes only finitely many values, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Further, except for the four exceptional cases, $\Phi(T) \cap\left(R^{2} \times\left\{\alpha_{i}\right\} \times\{-1,1\}\right)$ is everywhere dense in $R^{2} \times\left\{\alpha_{i}\right\} \times\{-1,1\}$ for every i.

Remark 2. In [2], Laczkovich studied the problem of tiling polygons with similar triangles. A triangle T is said to tile the polygon P, if P can be decomposed into finitely many non-overlapping triangles similar to T. Among others, he proved that, except right triangles, only three types of triangles with angles

$$
\left(22.5^{\circ}, 45^{\circ}, 112.5^{\circ}\right), \quad\left(45^{\circ}, 60^{\circ}, 75^{\circ}\right) \quad \text { or } \quad\left(15^{\circ}, 45^{\circ}, 120^{\circ}\right)
$$

can tile the square. Further, among rational right triangles, only two types of triangles with angles $\left(45^{\circ}, 45^{\circ}, 90^{\circ}\right),\left(15^{\circ}, 75^{\circ}, 90^{\circ}\right)$ can tile the square.

Remark 3. A sequence of (at least two) congruent regular tetrahedra in R^{3} is called a tetrahedral snake if two consecutive tetrahedra share exactly one face, and every three consecutive tetrahedra are distinct. In 1956, Steinhaus posed the question: In a tetrahedral snake of finite length, can the last tetrahedron be a translation of the first one? This problem was solved negatively by Swierczkowski (see Wagon [4], p. 68).

It was proved in [3] that the set of those points which are obtained as the vertices of tetrahedra in tetrahedral snakes starting from a fixed regular tetrahedron is everywhere dense in the space. Analogous results hold in any dimension $n \geq 3$.

Acknowledgment. The authors would like to thank the referee who pointed out that our result can also be proved by group theoretic arguments.

References

1. Hadwiger, H., Debrunner, H.: Combinatorial geometry in the plane. New York: Holt, Reinhart and Winston 1964
2. Laczkovich, M.: Tiling of polygons with similar triangles. Combinatorica 10, 281-306 (1990)
3. Maehara, H.: Extending a flexible unit-bar framework to a rigid one. Ann. Discrete Math.
4. Wagon, S.: The Banach-Tarski Paradox Cambridge: Cambridge University Press (1985)

Received: August 21, 1991
Revised: June 10, 1992

