NOTE

A SHORT PROOF FOR A THEOREM OF HARPER ABOUT HAMMING-SPHERES

P. FRANKL

CMS, 54 bd. Raspail, Paris 75007, France

Z. FÜREDI

Mathematical Institute of the Hungarian Academy of Sciences, Realtanoda u. 13-15, Budapest, Hungary

Received 27 June 1980

The Hamming-distance of two 0-1 sequences $\alpha = (\alpha_i)_{i=1,...,n}$ and $\beta = (\beta_i)_{i=1,...,n}$ is the number of different coordinates. In other terminology, the distance of two sets A and B is the cardinality of their symmetric difference, $d(A, B) = |A \Delta B|$. (With this distance the set-system P(X) consisting of all subsets of the finite set X is a metric space).

A Hamming-sphere with center C is a set system $\mathscr{G} \subset P(X)$ such that for some k:

$$\{S \subset X: d(S, C) \leq k\} \subset \mathcal{G} \subset \{S \subset X: d(S, C) \leq k+1\}.$$

The *d*-neighbourhood of a set-system $\mathcal{A} \subset P(X)$ is

$$\Gamma_d \mathscr{A} = \{ Y \subset X : \ d(Y, \mathscr{A}) = \min_{A \in \mathscr{A}} d(Y, A) \leq d \}.$$

It was Harrer who first proved that the cardinality of $\Gamma_d \mathscr{A}$ is at least as large as the *d*-neigl bourhood of some appropriate Hamming-sphere with the same cardinality $|\mathscr{A}|$. This theorem has important applications in information theory. Katona [3] gives a different proof. For a generalization see Margulis [5] (Blowing-up lemma). Here we give a new proof for Harper's theorem in an equivalent form.

Theorem. Let A and B be set-systems on X and

 $d(\mathcal{A}, \mathcal{B}) = \min\{d(A, B): A \in \mathcal{A}, B \in \mathcal{B}\} = d.$

Then there are two Hamming-spheres \mathcal{A}_0 with center X and \mathcal{B}_0 with center \emptyset such that $|\mathcal{A}_0| = |\mathcal{A}|, |\mathcal{B}_0| = |\mathcal{B}|$ and $d(\mathcal{A}_0, \mathcal{B}_0) \ge d(\mathcal{A}, \mathcal{B})$.

Proof. Consider the set of pairs

 $\{(A, A^{*}): A \in \mathcal{A}, A^{*} \notin \mathcal{A}, |A| < |A^{*}|\}$

0012-365X/31/0000-0000/\$02.50 © North-Holland Publishing Company

and

$$\{(B, B^*): B \in \mathcal{B}, B^* \notin \mathcal{B}, |B| > |B^*|\}.$$

If there are no such pairs, then \mathscr{A} is an X-centered and \mathscr{B} is an \emptyset -centered Hamming-sphere, and then there is nothing to prove.

Otherwise let us choose a pair (A, A^*) or (B, B^*) with minimal symmetric difference $|A \Delta A^*|$ or $|B \Delta B^*|$ resp. Assume this minimal pair is (A_0, A_0^*) .

Set

$$A_0 - A_0^* = U, \qquad A_0^* - A_0 = V, \qquad |U| < |V|.$$

For these sets U and V we define the following two operations (Up and Down).

$$\mathcal{U}(A) = \begin{cases} A - U + V & \text{if } U \subset A, V \cap A = \emptyset, A - U + V \notin \mathcal{A}, \\ A & \text{otherwise.} \end{cases}$$
$$\mathcal{D}(B) = \begin{cases} B - V + U & \text{if } V \subset B \ U \cap B = \emptyset, B - V + U \notin \mathcal{B}, \\ & \text{otherwise.} \end{cases}$$

It is clear that the mapping \mathcal{U} and \mathcal{D} are one-to-one and thus $|\mathcal{U}(\mathcal{A})| = |\mathcal{A}|$, $|\mathcal{B}\rangle| = |\mathcal{B}|$, further $|\mathcal{U}(\mathcal{A})| \ge |\mathcal{A}|$, $|\mathcal{D}(\mathcal{B})| \le |\mathcal{B}|$. Since $\mathcal{U}(\mathcal{A}_{0}) = \mathcal{A}_{0}^{*}$, the joint ap-

Lation \mathcal{U} and \mathcal{D} strictly increases the quantity $(\sum |A| - \sum |B|)$. We show $\mathcal{U}(\mathcal{A}), \mathcal{D}(\mathcal{B}) \ge d(\mathcal{A}, \mathcal{B})$, and thus the repeated applications of \mathcal{U} and \mathcal{D} finally lead to two Hamming-spheres.

 $A \in \mathcal{U}(\mathcal{A}) \cap \mathcal{A}$ and $B \in \mathcal{D}(\mathcal{B}) \cap \mathcal{B}$, then clearly $d(A, B) \ge d$. Similarly, if $A' \in \mathcal{U}(\mathcal{A}) - \mathcal{A}$, $B' \in \mathcal{D}(\mathcal{B}) - \mathcal{B}$, then A' = A - U + V, B' = B - V + U and thus $A' \Delta B' = A \Delta B$ where $A \in \mathcal{A}$, $B \in \mathcal{B}$. Therefore $|A' \Delta B'| = |A \Delta B| \ge d$. This settles the cases of two old or two new sets.

If one set is new and the other is unchanged, e.g.

$$A' \in \mathcal{U}(\mathcal{A}) - \mathcal{A}, \qquad B \in \mathcal{D}(\mathcal{B}) \cap \mathcal{B},$$

then A' = A - U + V where $A \in \mathcal{A}$.

If $V \subseteq B$ and $U \cap B = \emptyset$, then B has not been changed to a smaller set by the operation \mathcal{D} only because $\overline{B} = (B - V + U) \in \mathfrak{B}$. Thus $A' \Delta B = A \Delta \overline{B}$ whence $d(A', B) = d(A, \overline{B}) \ge d$.

If the condition ($V \subset B$, $U \cap B = \emptyset$) is not satisfied and $U = \emptyset$, then $V \not\subset B$. Further $A_0 \subset A_0^*$, thus the minimal choice of (A_0, A_0^*) implies |V| = 1. We infer

$$A' \Delta B = (A + V) \Delta B = (A \Delta B) + V,$$

consequently $|A' \Delta B| \ge d+1$.

Finally, if $1 \le |U| < |V|$ and the condition $(V \subseteq B, U \cap B = \emptyset)$ is not satisfied then there are two elements $u \in U$ $v \in V$ such that at least one of the inclusions $v \in V - B$, $u \in U \cap B$ holds. Since

$$|\bar{A}| = : |A - (U - u) + (V - v)| = |A'| > |A|$$
 and $|A \Delta \bar{A}| < |A_0 \Delta A_0^*|$,

the definition of A_0 implies that $\bar{A} \in \mathcal{A}$. Further $A' = (\bar{A} - u + v)$ and thus

 $A' \Delta B = (\bar{A} - u + v) \Delta B$. If we delete the element u from \bar{A} , then $|\bar{A} \Delta B|$ increases or decreases by 1 according to whether $u \in B$ or not. Further if we adjoin the element v to $(\bar{A} - u)$ then $|(\bar{A} - u) \Delta B|$ increases or decreases by 1 according to whether $v \notin B$ or not. Thus in any case

$$|A' \Delta B| = |(\bar{A} - u + v) \Delta B| \ge |\bar{A} \Delta B| \ge d. \quad \Box$$

If

$$\sum_{j=k+1}^n \binom{n}{j} < a \le \sum_{j=i}^n \binom{n}{j},$$

then the exact computation of $\min\{|\Gamma_d \mathscr{A}| : |\mathscr{A}| = a\}$ has been reduced to the following problem: Given a set-system \mathscr{F} of $(a - \sum_{j=k}^{n} {n \choose j})$ k-element sets, at least how many (k-d)-element subsets are contained in the sets of \mathscr{F} ? This well-known problem is answered by the theorem of Kruskal and Katona [2, 4] which states that if

$$|\mathscr{F}| = {a_k \choose k} + {a_{k-1} \choose k-1} + \cdots + {a_i \choose t}$$

where $a_k > a_{k-1} > \cdots > a_t \ge t$ (the representation of $|\mathcal{F}|$ in this form is unique), then

$$|\{\mathbf{Y}: |\mathbf{Y}| = k - d, \exists F \in \mathscr{F} \quad \mathbf{Y} \subset F\}| \ge \binom{c_k}{k - d} + \binom{a_{k-1}}{k - d - 1} + \cdots + \binom{a_t}{t - d}$$

References

- [1] K.H. Harper, Optimal numberings and insperimetric problems on graphs, J. Combinatorial Theory 1 (1966) 385-393.
- [2] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187-207, MR 45 #76.
- [3] G.O.H. Katona, The Hamming-sphere has minimum boundary, Studia Sci. Math. Hungar. 10 (1975) 131-140.
- [4] J.B. Kruskal, The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251-278, MR 27 #4771.
- [5] A.A. Margulis, Probabilistic properties of graphs with large connectivity, Probl. Peredachi Informacii 10 (2) (1974) 101-108.