NOTE

A SHORT PROOF FOR A THEOREM OF HARPER ABOUT HAMMING-SPFIERES

P. FRANKL
CMS, 54 bd. Raspail, Paris 75007, France

Z. FÜREDI

Mathematical Institute of the Hungarian Academy of Sciences, Realtanoda u. 13-15, Budapest, Hungary

Receiv ed 27 June 1980

The Hamming-distance of two $0-1$ sequences $\alpha=\left(\alpha_{i}\right)_{i=1, \ldots, n}$ and $\beta=\left(\beta_{i}\right)_{i=1, \ldots, n}$ is the number of different coordinates. In other terminology, the distance of two sets A and B is the rardinality of their symmetric difference, $d(A, B)=|A \Delta B|$. (With this distance the sei-system $\boldsymbol{P}(\boldsymbol{X})$ consisting of all subsets of the finite set \boldsymbol{X} is a metric space).

A Hamming-sphere with center C ' is a set system $\mathscr{S} \subset P(X)$ such tha: for some k :

$$
\{S \subset X: d(S, C) \leqslant k\} \subset \mathscr{S} \subset\{S \subset X: d(S, C) \leqslant k+1\}
$$

The d-neighbourhood of a set-system $\mathscr{A} \subset P(X)$ is

$$
\Gamma_{d} \mathscr{A}=\left\{Y \subset X: d(Y, \mathscr{A})=\min _{A \in \mathscr{A}} d(Y, A) \leqslant d\right\}
$$

It was Harrer who first proved that the cardinality of $\Gamma_{d} \mathscr{A}$ is at least as large as the d-neigl bourhood of some appropriate Hamming-sphere with the same cardinality $|\mathscr{A}|$. "his theorem has important applications in information theory. Katona [3] gives a different proof. For a generalization see Margulis [5] (Blowing-up lemma). Here we give a new proof for Harper's theorem in an equivalent form.

Theorem. Let \mathscr{A} and \mathscr{B} be set-systems on X and

$$
d(\mathscr{A}, \mathscr{B})=\min \{d(A, B): A \in \mathscr{A}, B \in \mathscr{B}\}=d .
$$

Then there are two Hamming-spheres \mathscr{A}_{0} with center X and \mathscr{B}_{0} with center \emptyset such that $\left|\mathscr{A}_{0}\right|=|\mathscr{A}|,\left|\mathscr{B}_{0}\right|=|\mathscr{B}|$ and $d\left(\mathscr{A}_{0}, \mathscr{B}_{0}\right) \geqslant d(\mathscr{A}, \mathscr{B})$.

Proof. Consider the set of pairs

$$
\left\{\left(A, A^{*}\right): A \in \mathscr{A}, A^{*} \notin \mathscr{A},|A|<\left|A^{*}\right|\right\}
$$

and

$$
\left\{\left(B, B^{*}\right): B \in \mathscr{B}, B^{*} \notin \mathscr{B},|B|>\left|B^{*}\right|\right\} .
$$

If there are no such pairs, then \mathscr{A} is an X-cerered and \mathscr{B} is an \emptyset-centered Hamming-sphere, and then there is nothing to prove.

Otherwise let us choose a pair $\left(A A^{*}\right)$ or ($B B^{* *}$) with minimal symmetric difference $\left|A \Delta A^{*}\right|$ or $\left|E \Delta B^{*}\right|$ resp. Assume this minimal pair is $\left(A_{0}, A_{0}^{*}\right)$.

Set

$$
A_{0}-A_{0}^{*}=U, \quad A_{0}^{*}-A_{0}=V, \quad|U|<|V|
$$

For these sets U and V we uefine the following two operations (Up and Down).

$$
\begin{aligned}
& \mathscr{U}(A)= \begin{cases}A-U+V & \text { if } U \subset A, V \cap A=\emptyset, A-U+V \notin \mathscr{A}, \\
A & \text { otherwise. }\end{cases} \\
& \mathscr{D}(B)= \begin{cases}B-V+U & \text { if } V \subset B U \cap B=\emptyset, B-V+U \notin \mathscr{B}, \\
\text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that the mapping \mathscr{U} and \mathscr{D} are one-to-one and thus $|\mathscr{U}(\mathscr{A})|=|\mathscr{A}|$, $\mathscr{B})|=|\mathscr{B}|$, further $| \mathscr{O A}(A)|\equiv| A\left|,|\mathscr{D}(B)| \leqslant|B|\right.$. Since $\operatorname{Gl}\left(A_{9}\right)=A_{0}^{*}$, the joint ap:ation \mathscr{U} and \mathscr{D} strictly increases the quantity $\left(\sum|A|-\sum|B|\right)$. We show $\cdot \mu(\mathscr{A}), \mathscr{D}(\mathscr{A})) \geqslant d(\mathscr{A}, \mathscr{B})$, and thus the repeated applications of \mathscr{U} and \mathscr{D} finally lead to two Hamming-spheres.
$\therefore A \in \mathscr{U}(\mathscr{A}) \cap \mathscr{A}$ and $B \in \mathscr{D}(\mathscr{B}) \cap \mathscr{B}$, then clearly $d(A, B) \geqslant d$. Simiarly, if $A^{\prime} \in$ $\mathscr{U}(\mathscr{A})-\mathscr{A}, B^{\prime} \in \mathscr{D}(\mathscr{B})-\mathscr{B}$, then $A^{\prime}=A \cdots U+V, B^{\prime}=B-V+U$ and thus $A^{\prime} \Delta B^{\prime}=$ $A \Delta B$ where $A \in \mathscr{A}, B \in \mathscr{B}$. Therefore $\left|A^{\prime} \Delta B^{\prime}\right|=|A \Delta B| \geqslant d$. This settles the cases of two old or two new sets.

If one set is new and the other is unchanged, e.g.

$$
A^{\prime} \in \mathscr{U}(\mathscr{A})-\mathscr{A}, \quad B \in \mathscr{D}(\mathscr{B}) \cap \mathscr{B},
$$

then $A^{\prime}=A-U+V$ where $A \in, x$.
If $V \subset B$ and $U \cap B=\emptyset$, then B has not been changed to a smaller set by the operation \mathscr{D} only because $\bar{B}=(B-V+U) \in \mathscr{B}$. Thus $A^{\prime} \Delta B=A \Delta \bar{B}$ whence $d\left(A^{\prime}, B\right)=d(A, \bar{B}) \geqslant d$.

If the condition ($V \subset B, U \cap B=:()$) is not satisfied and $U=\emptyset$, then $V \notin B$. Further $A_{0} \subset A_{0}^{*}$, thus the minimal choice of $\left(A_{0}, A_{0}^{*}\right)$ implies $|V|=1$. We infer

$$
A^{\prime} \Delta B=(A+V) \Delta B=(A \Delta B)+V
$$

consequently $\left|A^{\prime} \Delta B\right| \geqslant d+1$.
Finally, if $1 \leqslant|U|<|V|$ and the condition ($V \subset B, U \cap B=\emptyset$) is not satisfied then there are two elements $u \in L^{r}, \vartheta \in V$ such that at least one of the inclusions $v \in V-B, u \in U \cap B$ holds. Since

$$
|\bar{A}|=:|A-(U-u)+(V-v)|=\left|A^{\prime}\right|>|A| \text { and }|A \Delta \bar{A}|<\left|A_{0} \Delta A_{0}^{*}\right|
$$

the definition of A_{0} implies that $\bar{A} \in \mathscr{A}$. Further $A^{\prime}=(\bar{A}-u+v)$ and thus
$A^{\prime} \Delta B=(\bar{A}-u+v) \Delta B$. If we delete the element u from \bar{A}, then $|\bar{A} \Delta B|$ increases or decreases by 1 according to whether $u \in B$ or not. Further if we: adjoin the element v to $(\bar{A}-u)$ then $|(\bar{A}-u) \Delta B|$ increases or decreases by 1 . according to whether $v \notin B$ or not. Thus in any case

$$
\left|A^{\prime} \Delta B\right|=|(\bar{A}-u+v) \Delta B| \geqslant|\bar{A} \Delta B| \geqslant d
$$

If

$$
\sum_{i=k+1}^{n}\binom{n}{j}<a \leqslant \sum_{i=i}^{n}\binom{n}{i},
$$

then the exact computatio:. of $\min \left\{\left|\Gamma_{d} \mathscr{A}\right|:|\mathscr{A}|=a\right\}$ has been reduced to the following problem: Given a set-system \mathscr{F} of $\left(a-\sum_{j=k}^{n}\binom{n}{i}\right) k$-element sets, at least how many $(k-d)$-element subsets are contained in the sets of \mathscr{F} ? This wellknown problem is answered by the theorem of Kruskal and Katona [2, 4] which states that if

$$
|\mathscr{F}|=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{t}}{t}
$$

where $a_{k}>a_{k-1}>\cdots>a_{t} \geqslant t$ (the representation of $|\mathscr{F}|$ in this form is unique), then

$$
|\{Y:|Y|=k-d, \exists F \in \mathscr{F} \quad Y \subset F\}| \geqslant\binom{ c_{k}}{k-d}+\binom{a_{k-1}}{k-d-1}+\cdots+\binom{a_{t}}{t-d}
$$

References

[1] K.H. Harper, Optimal numberings and insperimetric problems on graphs, J. Combinatorial Theory 1 (1966) 385-393.
[2] G.O.H. Katona, A theorem of finite sets, in: Thecry of Graphs, Proc. Colloq. Tihany, 1966 (Akademiai Kiadó, 1968) 187-207, MR 45 \#76.
[3] G.O.H. Katona, The Hamming-sphere has minimun boundary, Studia Sci. Math. Hungar. 10 (1975) 131-140.
[4] J.B. Kruskal, The number of simplices in a complex, in: Math. Opt. Techniques (Univ. of Calif. Press, 1963) 251-278, MR 27 \#4771.
[5] A.A. Margulis, Probabilistic properties of graphs with large connectivity, Probl. Feredachi Informacii 10 (2) (1974) 101-108.

