Some Best Possible Inequalities Concerning Cross-Intersecting Families

Peter Frankl
C.N.R.S., Paris, France
AND
Norihide Tokushige
Meiji Univ., Kànagawa, Japan
Communicated by the Managing Editors
Received July 30, 1990

Abstract

Let \mathscr{A} be a non-empty family of a-subsets of an n-element set and \mathscr{B} a non-empty family of b-subsets satisfying $A \cap B \neq \varnothing$ for all $A \in \mathscr{A}, B \in \mathscr{B}$. Suppose that $n \geqslant a+b, b \geqslant a$. It is proved that in this case $|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ n}{b}-\binom{n-a}{b}+1$ holds. Various extensions of this result are proved. Two new proofs of the Hilton-Milner theorem on non-trivial intersection families are given as well. © 1992 Academic Press, Inc.

1. Introduction

Let $X:=\{1,2, \ldots, n\}$ be an n-element set. For an integer $k, 0 \leqslant k \leqslant n$, we denote by $\binom{X}{k}$ the set of all k-element subsets of X. A family $\mathscr{F} \subset\binom{X}{k}$ is called intersecting if $F \cap F^{\prime} \neq \varnothing$ for all $F, F^{\prime} \in \mathscr{F}$. One of the best known results in extremal set theory is the following.

Theorem [EKR]. Let $\mathscr{F} \subset\binom{X}{k}$ be an intersecting family with $n=|X| \geqslant 2 k$. Then, $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}$.

Two families $\mathscr{A} \subset\binom{X}{a}$ and $\mathscr{B} \subset\binom{X}{b}$ are said to be cross-intersecting if and only if $A \cap B \neq \varnothing$ holds for all $A \in \mathscr{A}$ and $B \in \mathscr{B}$. Recall the following result of Hilton and Milner.

Theorem A [HM]. Let $\mathscr{A} \subset\binom{X}{a}$ and $\mathscr{B} \subset\binom{X}{a}$ be non-empty crossintersecting families with $n=|X| \geqslant 2 a$. Then, $|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ n}{a}-\binom{n-a}{a}+1$.

Recently, Simpson [S] rediscovered this theorem. In this paper, we generalize the above result in various ways. Probably the following is the most natural extension of Theorem A.

Theorem 1. Let $\mathscr{A} \subset\binom{x}{a}$ and $\mathscr{B} \subset\binom{X}{b}$ be non-empty cross-intersecting families with $n=|X| \geqslant a+b, a \leqslant b$. Then the following hold:
(i) $|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ n}{b}-\left(\begin{array}{c}n \\ b\end{array}{ }^{a}\right)+1$.
(ii) If $|\mathscr{A}| \geqslant\binom{ n-1}{n-a}$, then

$$
|\mathscr{A}|+|\mathscr{B}| \leqslant \begin{cases}\binom{n}{a}-\binom{n-a}{a}+1 & \text { if } a=b \geqslant 2 \\ \binom{n-1}{a-1}+\binom{n-1}{b-1} & \text { otherwise. }\end{cases}
$$

Putting restrictions on the size of \mathscr{A} we can obtain stronger bounds.
THEOREM 2. Let $\mathscr{A} \subset\binom{x}{a}$ and $\mathscr{B} \subset\binom{x}{b}$ be non-empty cross-intersecting families with $n=|X| \geqslant a+b, a \leqslant b$. Suppose taht $\binom{\alpha}{n-a} \leqslant|\mathscr{A}| \leqslant\binom{ n-1}{n-a}$ holds for some real number α with $n-a \leqslant \alpha \leqslant n-1$. Then the following holds:

$$
|\mathscr{A}|+|\mathscr{B}| \leqslant \begin{cases}\binom{n}{b}-\binom{\alpha}{b}+\binom{\alpha}{n-a} & \text { if } a<b \text { or } \alpha \leqslant n-2 \\ 2\binom{n-1}{a-1} & \text { if } a=b \text { and } \alpha \geqslant n-2\end{cases}
$$

The next result is of similar flavor, and it will be used for one of the new proofs for the Hilton-Milner theorem (see Section 4).

THEOREM 3. Let $\mathscr{A} \subset\binom{\gamma}{a}, \mathscr{B} \subset\binom{Y}{a-1}$ be non-empty cross-intersecting families with $m=|Y| \geqslant 2 a-1$. Suppose that $|\mathscr{A}|<\binom{m-1}{a-1}$, then $|\mathscr{A}|+|\mathscr{B}| \leqslant$ $\binom{m}{a-1}-\binom{m-a}{a-1}+1$.

2. Proof of Theorem 1

To prove the theorem, we start with an easy inequality.
Lemma 1. Let a, b, and n be integers. Suppose that $n \geqslant a+b$ and $a \leqslant b$. Then, it follows that

$$
\binom{n-1}{a-1}+\binom{n-1}{b-1} \leqslant\binom{ n}{b}-\binom{n-a}{b}+1
$$

or equivalently,

$$
\binom{n-1}{n-a}-\binom{n-1}{b} \leqslant\binom{ n-a}{n-a}-\binom{n-a}{b}
$$

Proof. To prove the above inequality, it suffices to show that

$$
\binom{x}{n-a}-\binom{x}{b} \leqslant\binom{ x-1}{n-a}-\binom{x-1}{b}
$$

holds for all real numbers $x, n-a+1 \leqslant x \leqslant n-1$. This is equivalent to

$$
\begin{aligned}
\binom{x-1}{n-a-1} & \leqslant\binom{ x-1}{b-1} \\
& \leftrightarrow(x-b) \cdots \cdots(x-n+a+1) \leqslant(n-a-1) \cdots \cdots b \\
& \leftrightarrow x-b \leqslant n-a-1 \leftrightarrow x \leqslant n-1+(b-a) .
\end{aligned}
$$

The above inequality follows from $x \leqslant n-1$ and $a \leqslant b$.
Proof of Theorem 1. We prove the theorem by induction on n. Since the theorem clearly holds for $n=a+b$, we assume that $n>a+b$. Further, by the Kruskal-Katona theorem [Kr,Ka1], we may assume that $\mathscr{A}^{c}:=\{X-A: A \in \mathscr{A}\}$ is the collection of the smallest $|\mathscr{A}|$ sets in $\binom{X}{n-a}$ with respect to the colex order (see Appendix). Let us define

$$
\begin{aligned}
& \mathscr{A}(n):=\{A-\{n\}: n \in A \in \mathscr{A}\} \subset\binom{X-\{n\}}{a-1}, \\
& \mathscr{A}(\bar{n}):=\{A: n \notin A \in \mathscr{A}\} \subset\binom{X-\{n\}}{a} .
\end{aligned}
$$

We also define $\mathscr{B}(n)$ and $\mathscr{B}(\bar{n})$ in the same way.
Proof of (i). Since the RHS of the inequality in (ii) does not exceed the RHS of that of (i) we may suppose that $|\mathscr{A}|<\binom{n-1}{a-1}$ and therefore $\mathscr{A}(\bar{n})=\varnothing$.

Case 1. $\mathscr{B}(\bar{n}) \neq \varnothing$. By the induction hypothesis, we have

$$
|\mathscr{A}(n)|+|\mathscr{B}(\bar{n})| \leqslant\binom{ n-1}{b}-\binom{(n-1)-(a-1)}{b}+1 .
$$

This, together with $|\mathscr{B}(n)| \leqslant\binom{ n-1}{b-1}$, gives

$$
|\mathscr{A}|+|\mathscr{B}|=|\mathscr{A}(n)|+|\mathscr{B}(\bar{n})|+|\mathscr{B}(n)| \leqslant\binom{ n}{b}-\binom{n-a}{b}+1 .
$$

Case 2. $\mathscr{B}(\bar{n})=\varnothing$. In this case, we have

$$
|\mathscr{A}|+|\mathscr{B}|=|\mathscr{A}(n)|+|\mathscr{B}(n)| \leqslant\binom{ n-1}{a-1}+\binom{n-1}{b-1} .
$$

Using Lemma 1, we obtain the desired inequality.
Proof of (ii). Since the theorem holds if $|\mathscr{A}|=\binom{n-1}{a-1}$, we assume that $|\mathscr{A}(n)|=\binom{n-1}{a-1}$ and $|\mathscr{A}(\bar{n})|>0$. Note that $|\mathscr{A}(n)|=\binom{n-1}{a-1}$ implies $|\mathscr{B}(\bar{n})|=0$.

Case 1. $a<b$. By the induction hypothesis, we have

$$
|\mathscr{A}(\bar{n})|+|\mathscr{B}(n)| \leqslant\binom{ n-1}{b-1}-\left(\begin{array}{c}
\binom{n-1)-a}{b-1}+1
\end{array}\right.
$$

So we obtain

$$
\begin{aligned}
|\mathscr{A}|+|\mathscr{B}| & =|\mathscr{A}(n)|+|\mathscr{A}(\bar{n})|+|\mathscr{B}(n)| \\
& \leqslant\left\{\binom{n-1}{a-1}+\binom{n-1}{b-1}\right\}+\left\{1-\binom{n-a-1}{b-1}\right\} \\
& <\binom{n-1}{a-1}+\binom{n-1}{b-1} .
\end{aligned}
$$

Using Lemma 1, we obtain the desired inequality.
Case 2. $a=b$. By the induction hypothesis, we have

$$
|\mathscr{A}(\bar{n})|+|\mathscr{B}(n)| \leqslant\binom{ n-1}{a}-\binom{(n-1)-(a-1)}{a}+1 .
$$

This, together with $|\mathscr{A}(n)|=\binom{n-1}{a-1}$, gives

$$
|\mathscr{A}|+|\mathscr{B}|=|\mathscr{A}(n)|+|\mathscr{A}(\bar{n})|+|\mathscr{B}(n)| \leqslant\binom{ n}{a}-\binom{n-a}{a}+1 .
$$

This completes the proof of (ii).

3. Proofs of Theorem 2 and Theorem 3

In this section, we use Lovász' version of the Kruskal-Katona theorem, and so we need the following technical lemma.

Lemma 2. Let s, t, and n be integers with $n>s+t$. Define a real valued function $f(x):=\binom{n}{s}-\binom{x}{s}+\binom{n}{n-t}$. Then, the following hold:
(i) Suppose that $1+(n-s-t) v / s(v-n+t+1)<\binom{v}{s} /\binom{v}{n-1}$, then $f^{\prime}(x)<0$ holds for all real numbers $x \leqslant v$.
(ii) Let u, v be real numbers with $u<v, u<n-t+s$. Suppose that $f^{\prime}(u)<0$ and $f(u) \geqslant f(v)$, then $f(u) \geqslant f(x)$ holds for all real numbers x, $u \leqslant x \leqslant v$.

Proof. Proof of (i). Since

$$
f^{\prime}(x)=-\binom{x}{s} \sum_{j=0}^{s-1} \frac{1}{x-j}+\binom{x}{n-t}^{n-t-1} \sum_{j=0}^{x-j}
$$

the inequality $f^{\prime}(x)<0$ is equivalent to

$$
\begin{align*}
\left(\sum_{j=0}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{i=0}^{s-1} \frac{1}{x-j}\right) & <\binom{x}{s} /\binom{n}{n-t} \\
& =\frac{(n-t) \cdot \cdots \cdot(s+1)}{(x-s) \cdot \cdots \cdot(x-n+t+1)} \tag{1}
\end{align*}
$$

By simple estimation, we have

$$
\mathrm{LHS}=1+\left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right) \leqslant 1+\frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s} .
$$

Thus, to prove (1), it suffices to show that

$$
\begin{equation*}
(x-s) \cdot \cdots \cdot(x-n+t+1)\left(1+\frac{n-t-s}{x-n+t+1} \cdot \frac{x}{s}\right)<(n-t) \cdot \cdots \cdot(s+1) . \tag{2}
\end{equation*}
$$

Since the LHS of (2) is increasing with x, it suffices to show (2) for $x=v$, that is,

$$
1+\frac{n-t-s}{v-n+t+1} \cdot \frac{v}{s}<\binom{v}{s} /\binom{v}{n-t}
$$

This was exactly our assumption.
Proof of (ii). Suppose on the contrary that $f(u)<f(x)$ holds for some $x, x>u$. Then, we may assume that there exist p, q which satisfy

$$
\begin{gathered}
u<p<q \leqslant v \\
f^{\prime}(p)=f^{\prime}(q)=0 \\
f(p)<f(u)<f(q)
\end{gathered}
$$

If $f^{\prime}(x)=0$, it follows that

$$
\binom{x}{s}=\binom{x}{n-t}\left\{1+\left(\sum_{j=s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j=0}^{s-1} \frac{1}{x-j}\right)\right\} .
$$

Substituting this into $f(x)$, we define a new function:

$$
g(x):=\binom{n}{s}-\binom{x}{n-t}\left(\sum_{j-s}^{n-t-1} \frac{1}{x-j}\right) /\left(\sum_{j-0}^{s-1} \frac{1}{x-j}\right) .
$$

Note that $g(x)=f(x)$ holds if $f^{\prime}(x)=0$. Thus, $f(u)<g(q)$ must hold. We derive a contradiction by showing that $f(u) \geqslant g(x)$, or equivalently.

$$
\left\{\binom{u}{s}-\binom{u}{n-t}\right\} \sum_{j=0}^{s-1} \frac{1}{x-j} \leqslant\binom{ x}{n-t} \sum_{j=s}^{n-t-1} \frac{1}{x-j}
$$

holds for all $x \geqslant p$. Since $u<n-t+s,\binom{u}{s}-\binom{u}{n-t}$ is positive, and so the LHS is decreasing with x. On the other hand, the RHS is increasing with x. Therefore, it suffices to check the inequality for $x=p$, that is $f(u) \geqslant g(p)=f(p)$, This was our assumption.

Using the above lemma, we prove Theorem 2, which contains Theorem 1 (i).

Proof of Theorem 2. Since the theorem holds for $n=a+b$, we assume that $n>a+b$. Let $|\mathscr{A}|=\binom{x}{n-a}, n-a \leqslant \alpha \leqslant x \leqslant n-1$. Then, by the Kruskal-Katona theorem we have $|\mathscr{B}| \leqslant\binom{ n}{b}-\binom{x}{b}$. Define $f(x):=\binom{n}{b}-$ $\binom{x}{b}+\binom{x}{n-a}$.

Case 1. $a<b$. In this case, we prove that $f^{\prime}(x)<0$ holds for $n-a \leqslant$ $x \leqslant n-1$. By Lemma 2 (i), it suffices to show that

$$
\begin{equation*}
1+\frac{(n-a-b)(n-1)}{b a}<\binom{n-1}{b} /\binom{n-1}{n-a} \tag{1}
\end{equation*}
$$

This holds for $n=a+b+1$. So we may assume that $n \geqslant a+b+2$. Then,

$$
\begin{aligned}
\text { RHS } & =\frac{(n-a) \cdot \cdots \cdot(n-b)}{b \cdot \cdots \cdot a} \\
& =\frac{(n-a)(n-a-1)}{a(a+1)} \cdot \frac{(n-a-2) \cdot \cdots \cdot(n-b)}{b \cdot \cdots \cdot(a+2)} \\
& \geqslant \frac{(n-a)(n-a-1)}{a(a+1)}, \\
\text { LHS } & =1+\frac{n-a-(a+1)}{a+1} \cdot \frac{n-1}{a} .
\end{aligned}
$$

To prove (1), it suffices to show that

$$
1+\frac{(n-2 a-1)(n-1)}{a(a+1)}<\frac{(n-a)(n-a-1)}{a(a+1)},
$$

or equivalently, $n>2 a+1$, and this was our assumption.
Case 2. $a=b$.
Subcase 2.1. $\alpha \leqslant n-2$. In this case, we prove that $f^{\prime}(x)<0$ holds for $n-a \leqslant x \leqslant n-2$. By Lemma 2 (i), it suffices to show that

$$
\begin{equation*}
1+\frac{(n-2 a)(n-2)}{a(a-1)}<\binom{n-2}{a} /\binom{n-2}{n-a} \tag{2}
\end{equation*}
$$

This holds for $n=2 a+1$. So we assume that $n \geqslant 2 a+2$. Then,

$$
\text { (2) } \leftrightarrow 1+\frac{(n-2 a)(n-2)}{a(a-1)}<\frac{(n-a)(n-a-1)}{a(a-1)} \leftrightarrow n>2 a \text {. }
$$

This was our assumption.
Subcase 2.2. $\alpha \geqslant n-2$. Note that $f(n-2)=f(n-1)=2\binom{n-1}{a-1}$. So by Lemma 2 (ii), $f(x)<2\binom{n-1}{a-1}$ holds for $n-2<x \leqslant n-1$.
Next we prove Theorem 3, which will be used to prove the HiltonMilner theorem.

Proof of Theorem 3. Since the theorem clearly holds for $m=2 a-1$, we assume that $m \geqslant 2 a$. We distinguish two cases according to the size of \mathscr{A}.

Case 1. $1 \leqslant|\mathscr{A}| \leqslant\binom{ m-2}{m-a}$. Let $|\mathscr{A}|=\binom{x}{m-a}, m-a \leqslant x \leqslant m-2$. Then, by the Kruskal-Katona theorem we have $|\mathscr{B}| \leqslant\left({ }_{a-1}^{m}\right)-\binom{x}{a-1}$. Define $f(x):=$ $\left({ }_{a-1}^{m}\right)-\left({ }_{a}^{x}{ }^{x}\right)+\binom{x}{m}$. First we prove that $f^{\prime}(x)<0$ holds for all x, $m-a \leqslant x \leqslant m-3$. By Lemma 2(i), it suffices to show that

$$
1+\frac{(m-2 a+1)(m-3)}{(a-1)(a-2)}<\binom{m-3}{a-1} /\binom{m-3}{m-a}
$$

This holds for $m=2 a$, and if $m>2 a$ this is equivalent to $m>2 a-1$ which is our assumption.

Next, we prove that $f(m-2) \geqslant f(x)$ holds for all $x, m-3 \leqslant x \leqslant m-2$. By Lemma 2 (i), it suffices to show that $f(m-a) \geqslant f(m-2)$, or equivalenily,

$$
\begin{aligned}
& \binom{(m-1)-1}{(m-1)-(a-1)}-\binom{(m-1)-1}{a-1} \\
& \quad \leqslant\binom{(m-1)-(a-1)}{(m-1)-(a-1)}-\binom{(m-1)-(a-1)}{a-1} .
\end{aligned}
$$

This follows from Lemma 1.
Case 2. $|\mathscr{A}|>\binom{m-2}{m-a}$. In this case, we have $|\mathscr{B}|<\binom{m}{a-1}-\binom{m-2}{a-1}=$ $\binom{m-1}{m-(a-1)}+\binom{m-2}{m-(a-1)-1}$. Let $|\mathscr{B}|=\binom{m-1}{m-(a-1)}+\left(\begin{array}{c}m-(a-1)-1\end{array}\right), \quad m-a \leqslant$ $x<m-2$. Then, by the Kruskal-Katona theorem, we have $|\mathscr{A}| \leqslant\binom{ m}{a}-$
 $\binom{x}{a-1}=\binom{m}{a-1}-\binom{x}{a-1}+\binom{x}{m-a}$. By arguments in Case 1, $f(x) \leqslant f(m-a)$ holds for all $x, m-a \leqslant x \leqslant m-2$.

4. Application

Using results of earlier sections, we give two new proofs of the HiltonMilner theorem. Let us mention that other short proofs were given in [FF, M]. Recall that an intersecting family \mathscr{F} is called non-trivial if $\bigcap_{F \in, \bar{Y}} F=\varnothing$ holds.

Theorem [HM]. Let $\mathscr{F} \subset\binom{X}{k}$ be a non-trivial intersecting family with $n=|X| \geqslant 2 k$, Then $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

Proof I. Suppose that $|\mathscr{F}|$ is maximal with respect to the conditions. First we deal with an important special case. Suppose that there exists $A:=\{a, b) \in\binom{x}{2}$ such that $A \cap F \neq \varnothing$ holds for all $F \in \mathscr{F}$. By the maximality of $|\mathscr{F}|,\left\{G: A \subset G \in\binom{X}{2}\right\} \subset \mathscr{F}$ holds. Define

$$
\begin{aligned}
\mathscr{A} & :=\{F-\{a\}: F \in \mathscr{F}, F \cap A=\{a\}\}, \\
\mathscr{B} & :=\{F-\{b\}: F \in \mathscr{F}, F \cap A=\{b\}\} .
\end{aligned}
$$

Then \mathscr{A}, \mathscr{B} are cross-intersecting families on $X-A$. By Theorem A ,

$$
|\mathscr{A}|+|\mathscr{B}| \leqslant 1+\binom{n-2}{k-1}-\binom{n-k-1}{k-1} .
$$

Consequently,

$$
|\mathscr{F}| \leqslant 1+\binom{n-2}{k-1}-\binom{n-k-1}{k-1}+\binom{n-2}{k-2}=1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}
$$

as desired.

Next consider the case when \mathscr{F} is shifted (see Appendix). Note that $\{2,3, \ldots, k+1\} \in \mathscr{F}$. Now define

$$
\begin{aligned}
\mathscr{A} & :=\{F-\{1\}: F \cap\{1,2\}=\{1\}, F \in \mathscr{F}\}, \\
\mathscr{B} & :=\{F-\{2\}: F \cap\{1,2\}=\{2\}, F \in \mathscr{F}\}, \\
\mathscr{C} & :=\{F-\{1,2\}:\{1,2\} \subset F \in \mathscr{F}\}, \\
\mathscr{D} & :=\{F-\{1,2\}:\{1,2\} \cap F=\varnothing \subset\} .
\end{aligned}
$$

Then by Theorem A and $\{3,4, \ldots, k+1\} \in \mathscr{A} \cap \mathscr{B}, \quad|\mathscr{A}|+|\mathscr{B}| \leqslant$ $1+\binom{n-2}{k-1}-\binom{n-k-1}{k-1}$ holds.

On the other hand, \mathscr{C}, \mathscr{D} are cross-intersecting and \mathscr{D} is 2-intersecting. Thus, $\mathscr{D}^{c}:=\{X-D: D \in \mathscr{D}\} \subset\binom{X-\{1.2\}}{n-k-2}$ is $(n-2)-(2 k-2)=(n-2 k)$ intersecting. By the Intersecting Kruskal-Katona theorem (cf. [Ka2]), $\left|\mathscr{S}:=\sigma_{k-2}\left(\mathscr{D}^{c}\right)\right| \geqslant\left|\mathscr{D}^{c}\right|=|\mathscr{D}|$ (see Appendix) and by the cross-intersecting property $\mathscr{S} \cap \mathscr{C}=\varnothing$. Therefore,

$$
|\mathscr{C}|+|\mathscr{D}| \leqslant|\mathscr{S}|+|\mathscr{C}| \leqslant\left|\binom{X-\{1,2\}}{k-2}\right|=\binom{n-2}{k-2} .
$$

Again, we obtain $|\mathscr{F}| \equiv|\mathscr{A}|+|\mathscr{B}|+|\mathscr{C}|+|\mathscr{D}| \leqslant 1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}$.
Now to the general case. Apply repeatedly to \mathscr{F} the shift operator (see Appendix) $S_{i j}, 1 \leqslant i<j \leqslant n$. Either we obtain a shifted non-trivial intersecting family of the same size (and we are done by the second case) or at some point the family stops to be non-trivial. That is for some $\mathscr{G} \subset\binom{X}{k}, \mathscr{G}$ non-trivial intersecting, $|\mathscr{F}|=|\mathscr{G}|$ we have that $\bigcap_{H \in S_{i f}(\mathscr{G})} H \neq \varnothing$. In this case, clearly $\{i\}=\bigcap_{H \in S_{\mu}(\mathcal{S})} H$ and consequently $\{i, j\} \cap G \neq \varnothing$ for all $G \in \mathscr{G}$. Thus we are done by the first special case.

Proof II. Since the theorem clearly holds for $n=2 k$, we assume that $n \geqslant 2 k+1$. We may assume that $n \in F \in \mathscr{F}$ holds for some F. Let us define $Y:=X-\{n\}, m:=|Y|, a:=k$,

$$
\begin{aligned}
& \mathscr{A}:=\{F: n \notin F \in \mathscr{F}\} \subset\binom{Y}{a}, \\
& \mathscr{B}:=\{F-\{n\}: n \in F \in \mathscr{F}\} \subset\binom{Y}{a-1} .
\end{aligned}
$$

Then \mathscr{A} and \mathscr{B} are non-empty cross-intersecting families. Since \mathscr{A} is intersecting itself, $|\mathscr{A}| \leqslant\binom{ m-1}{a-1}$ holds. First suppose that $|\mathscr{A}|=\binom{m-1}{a-1}$. If $m=2 a$, then $|\mathscr{A}|=\frac{1}{2}\binom{m}{a}$. Hence for all $B \in \mathscr{B}$ and for all $y \in Y-B, B \cup\{y\} \in \mathscr{A}$
holds. Therefore, \mathscr{B} is also intersecting, and so we may that $m \in B$ holds for all $B \in \mathscr{B}$. Since \mathscr{F} is non-trivial, there exists $A \in \mathscr{A}$ such that $m \notin A$. So,

$$
|\mathscr{B}| \leqslant\left|\binom{Y-\{m\}}{a-2}-\binom{Y-A}{a-1}\right|=\binom{m-1}{a-2}-\binom{m-a}{a-1} .
$$

This implies that $|\mathscr{F}|=|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ m}{a-1}-\binom{m-a}{a-1}=\binom{n-1}{k-1}-\binom{n-k-1}{k-1}$. If $m>2 a$, then we may assume that $m \in A$ holds for all $A \in \mathscr{A}$, that is, $\mathscr{A}=\left\{A \in\binom{Y}{a}: m \in A\right\}$. Since \mathscr{F} is non-trivial, there exists $B \in \mathscr{B}$ such that $m \notin B$. But, for all $A_{0} \in\binom{Y-(B \cup, i m\}}{a-1}, A:=A_{0} \cup\{m\} \in \mathscr{A}$ must hold, a contradiction.
Next suppose that $|\mathscr{A}|<\binom{m-1}{a-1}$. Then by Theorem 3, we have

$$
|\mathscr{F}|=|\mathscr{A}|+|\mathscr{B}| \leqslant\binom{ m}{a-1}-\binom{m-a}{a-1}+1=\binom{n-1}{k-1}-\binom{n-k-1}{a-1}+1,
$$

as desired.

Appendix

Let n, k be integers and let X be an n-element set. We define the colex order $<$ on $\binom{X}{k}$ by setting $A<B$ if $\max \{i: i \in A-B\}<\max \{i: i \in B-A\}$. The shift operator $S_{i j}, 1 \leqslant i<j \leqslant n$, on $\binom{X}{k}$ is defined as follows: Let $\mathscr{F} \subset\binom{X}{k}$. For $F \in \mathscr{F}$, define

$$
s_{i j}(F):= \begin{cases}(F-(j\}) \cup\{i\} & \text { if } i \notin F, j \in F, \text { and }(F-\{j\}) \cup\{i\} \notin \mathscr{F} \\ F & \text { otherwise },\end{cases}
$$

and $S_{i j}(\mathscr{F}):=\left\{s_{i j}(F): F \in \mathscr{F}\right\}$. It is easily checked that (i) $\left|S_{i j}(\mathscr{F})\right|=|\mathscr{F}|$ and (ii) $S_{i j}(\mathscr{F})$ is intersecting if \mathscr{F} is intersecting. A family $\mathscr{F} \subset\binom{X}{k}$ is called shifted if $S_{i j}(\mathscr{F})=\mathscr{F}$ holds for all $1 \leqslant i<j \leqslant n$. For a family $\mathscr{F} \subset\binom{X}{k}$ and an integer $l \leqslant k$, we define the l th shadow of \mathscr{F} by $\sigma_{l}(\mathscr{F}):=\left\{G \in\binom{\frac{X}{l}}{l}\right.$: $G \subset \exists F \in \mathscr{F}\}$.

ACKNOWLEDGMENT

The authors are indebted to J. E. Simpson for calling their attention to Theorem A, which initiated this research.

References

[EKR] P. Erdós, C. Ko, and R. Rado, Intersection theorems for system of finite sets, Quart. J. Math. Oxford. Ser. (2) 12 (1961), 313-320.
[FF] P. Frankl and Z. Füredi, Non-trivial intersecting families, J. Combin. Theory Ser. A 41 (1986), 150-153.
[HM] A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967), 369-384.
[Kal] G. O. H. Katona, A theorem of finite sets, "Theory of Graphs, Proc. Colloq. Tihany, 1966," pp. 187-207, Akad. Kiadó, Budapest, 1968.
[Ka2] G. O. H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
[Kr] J. B. Kruskal, The number of simplices in a complex, "Math. Optimization Techniques," pp. 251-278, Univ. of Calif. Press, Berkeley, 1963.
[M] M. MöRS, A generalization of a theorem of Kruskal, Graphs Combin. 1 (1985), 167-183.
[S] J. E. Simpson, A bipartite Erdös-Ko-Rado theorem, manuscript, 1989.

