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Let o be a non-empty family of a-subsets of an n-element set and % a non-empty
family of b-subsets satisfying AnB#J for all 4e.o/, Be#. Suppose that
nza+b, bza It is proved that in this case ||+ |8 <(})— (", +! holds.
Various extensions of this result are proved. Two new proofs of the Hilton-Milner
theorem on non-trivial intersection families are given as well.  © 1992 Academic

Press, Inc.

1. INTRODUCTION

Let X:= {1,2,..,n} be an n-clement set. For an integer k, 0 <k <n, we
denote by () the set of all k-element subsets of X. A family & = (}) is
called intersecting if FnF'# & for all F, F'e #. One of the best known
results in extremal set theory is the following.

THEOREM [EKR]. Let &% <(¥) be an intersecting family with
n=|X|>2k. Then, |F|<(1"}).

Two families .o/ < (¥) and # = () are said to be cross-intersecting if and
only if 4 " B# ¢ holds for all 4¢€ .o/ and Be 4. Recall the following result
of Hilton and Milner.

THEOREM A [HM]. Ler o <(¥) and B<(¥) be non-empty cross-
intersecting families with n=|X|>2a. Then, || +{B|<()—(";%)+ 1.
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Recently, Simpson [S] rediscovered this theorem. In this paper, we
generalize the above result in various ways. Probably the following is the
most natural extension of Theorem A.

THEOREM 1. Let o/ () and B < (}) be non-empty cross-intersecting
families with n=|X|za+ b, a<b. Then the following hold.

() |+ 1B <()—(", )+ 1
(i) If ) =("_"), then

(")—(”_a>+1 if a=b>2
a a

n—1 + n—1 herwi
a—l b—l otherwise.

Putting restrictions on the size of .o/ we can obtain stronger bounds.

||+ 8] <

THEOREM 2. Let o/ = (%) and #<(}) be non- empty cross-intersecting
families with n=\X|>a+b, a<b. Suppose taht (,* )< || < ("1 holds
for some real number o with n—a<a<n—1. Then the following holds:

<Z>—<Z>+<nia> lf a<b0ra<n_2

2<n—1> if a=bandoa>=n-—2.

a—1

||+ B8] <

The next result is of similar flavor, and it will be used for one of the new
proofs for the Hilton-Milner theorem (see Section 4).

THEOREM 3. Let s/ =(!), #<(,”,) be non-empty cross-intersecting
families with m = Y| > 2a — 1. Suppose that || < (1), then || + |B] <
(")-GID+1

2. ProOF OF THEOREM 1

To prove the theorem, we start with an easy inequality.

LeMMA 1. Let a, b, and n be integers. Suppose that n>a+b and a<b.
Then, it follows that

(o) (o) <()-("57)
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(o) (0 )=Ge) - ("3)

Proof. To prove the above inequality, it suffices to show that

(70 ()<Gme) ()

holds for all real numbers x, n—a+ 1 < x<n- 1. This is equivalent to

S E Oy

e (x—b)-- - (x—n+a+l)<(n—a-1)-----b

or equivalently,

eox—bgn—a—-loxs<n—1+(b—a)

The above inequality follows from x<n—1 and a<b. |

Proof of Theorem 1. We prove the theorem by induction on . Since the
theorem clearly holds for n=a+ b, we assume that n>a+ b. Further, by
the Kruskal-Katona theorem [Kr, Kal], we may assume that
oA ={X—A:Aesl} is the collection of the smallest |</| sets in (,*,)
with respect to the colex order (see Appendix). Let us define

o (n):={A—{n} :neAeﬂ}C<Xa—_{?}),

(i) ={A:n¢ Aest) c<X_a{"}>.

We also define #(n) and #(n) in the same way.

Proof of (i). Since the RHS of the inequality in (ii) does not exceed the
RHS of that of (i) we may suppose that |«/|<("~)) and therefore

o (R)=.
Case 1. %(n)+# . By the induction hypothesis, we have

|.of (n)| + | B(7)| g(”gl)_<(n—1);(a_1)>+l'

This, together with |#(n)| < (}}), gives

|| + |81 = ()| + |B(1)| + |B(m)| < <n> B <n—a> i
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Case 2. Z(n)= . In this case, we have

|+ | B = | L (n)| + | B) s("‘1)+<”‘ 1).
a—1 b—1

Using Lemma 1, we obtain the desired inequality.

Proof of (ii). Since the theorem holds if |o/| =(”"}), we assume that
l(m)|=(}"}) and |(A)>0. Note that |&/(n)=(""1) implies

a—1

| ()| =0.

Case 1. a<b. By the induction hypothesis, we have

) y n—1 (n—1)—a
)Lsz/(n)]+lﬂ(n)l<<b_1>“< b—1 >+1'
So we obtain

||+ 18| = | (n)| + | (7)| + |B(n)|

) Goob -0

Using Lemma 1, we obtain the desired inequality.

Case 2. a=b. By the induction hypothesis, we have

Id(ﬁ)lﬂg(nng(”;1>_<(n—l)—(a-1)>+l_

a

This, together with |s/(n)| = (""}), gives

/1414 = /) + /0 + 200 <) (")

This completes the proof of (ii). |

3. PROOFS OF THEOREM 2 AND THEOREM 3

In this section, we use Lovasz' version of the Kruskal-Katona theorem,
and so we need the following technical lemma.

LEMMA 2. Let s, t, and n be integers with n> s+ t. Define a real valued
Sunction f(x):=()—(3)+(,~,). Then, the following hold:

n—t
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(i) Suppose that 1+(n—s—tv/sv—n+t+1)<()/(,",), then
[f'(x) <0 holds for all real numbers x <v.

(i1) Let u, v be real numbers with u<v, u<n—t+s. Suppose that
f(u)<0 and f(u)= f(v), then f(u)=f(x) holds for all real numbers x,
UKX<U0.

Proof. Proof of (i). Since

x.s-—ll X nv»/fll
=) T ()
) S =0 X—] n—t EO Ry

the inequality f’(x) <0 is equivalent to

(2 =z =)0
(n—t)- - -(s+1)

z(x—s)-n--(x—n+t+1)' (1)

By simple estimation, we have

n—r—1 1 s—1 1 —t—
LHS=1+< 5 )/(Z _><1+_”_S_.
2 o x=J)I\;Z x—=J x—n+it+1

Thus, to prove (1), it suffices to show that

@ | =

n—t—s X

) e (x— 14— .=
(x—13) (x—n+1t+ )< +x—n+t+1 .

><(n——t)----~(s+1).
(2)

Since the LHS of (2) is increasing with x, it suffices to show (2) for x =,

that is,
n—t—s v (v v
< .
v—n+t+1 s (s)/(n—t)

This was exactly our assumption.

Proof of (ii). Suppose on the contrary that f(u) < f(x) holds for some
x, x > u. Then, we may assume that there exist p, ¢ which satisfy

u<p<gq<v,
S(p)=r"(g)=0,
fp)<f(u) < flq).

582a/61/1-7
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If f'(x)=0, it follows that

OGN (e )0 )

Substituting this into f(x), we define a new function:

w=(0)-( L IS )

Note that g(x)=f(x) holds if /’(x)=0. Thus, f(u) < g(g) must hold. We
derive a contradlctlon by showing that f(u) > g(x), or equivalently.

{O-GEb s 5=lm) s 55

holds for all x=p. Since u<n—t+s, (¥)—(,",) is positive, and so
the LHS is decreasing with x. On the other hand, the RHS is increasing
with x. Therefore, it suffices to check the inequality for x=p, that is

f(u)=g(p)=f(p), This was our assumption. |

Using the above lemma, we prove Theorem 2, which contains
Theorem 1 (i).

Proof of Theorem 2. Since the theorem holds for n=a+ b, we assume
that n>a+b. Let |=(,",), n—a<oa<x<n—1. Then, by the
Kruskal-Katona theorem we have [#|<(};)—(;). Define f(x):=(})—
G+ (L)

Case 1. a<b. In this case, we prove that f'(x) <0 holds for n —a <
x<n-—1. By Lemma 2 (i), it suffices to show that

(n—a—b)n—-1) (n—1 n—1
t+ ba << b >/<n—a>' ()

This holds for n=a+ b+ 1. So we may assume that n > a+ b+ 2. Then,
(n—aj- - -(n—b)

_(n—a)(n—a—-1) (n—a-2)----.(n=>b)
T ala+1) b -(a+2)
>(n—a)(n——a—1)’
a(a+1)
LHS=1+n a—(a+1)‘n—1

a+1 a
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To prove (1), it suffices to show that

(n—2a—1)n—-1) (n—a)n—a—1)
e T

or equivalently, n>2a+ 1, and this was our assumption.

Case 2. a=h.

Subcase 2.1. a<n-—2. In this case, we prove that f'(x) <0 holds for
n—a<x<n—2 By Lemma 2 (i), it suffices to show that

(n=2a)n-2) (n-—-2 n—2
a1 << a )/(n—a)' )

This holds for n=2a+ 1. So we assume that n> 2a + 2. Then,

(n—2a)(n—-2) (n—a)n—a—1)
Qe 1+ da—1) < sa—1) «n>2a.

This was our assumption.

Subcase 2.2. a>n—2. Note that f(n—2)=f(n—1)=2("_1). So by
Lemma 2 (ii), f(x)<2("Z!) holds forn—2<x<n—1. |

a—1

Next we prove Theorem 3, which will be used to prove the Hilton—
Milner theorem.

Proof of Theorem 3. Since the theorem clearly holds for m=2a— 1, we
assume that m > 2a. We distinguish two cases according to the size of <.

Case 1. 1<|of|<(222). Let || =(,," ), m—a<x<m—2. Then, by
the Kruskal-Katona theorem we have |#| <(,”,)—(,*,). Define f(x):=
"=+~ ) First we prove that f'(x)<0 holds for all x,
m—a<x<m-—3. By Lemma 2(i), it suffices to show that

(m—2a+1)(m-3) /m-3 / m—3
1+ < .
(a—1)a—2) a—1 m-—a
This holds for m = 2a, and if m > 2a this is equivalent to m > 2a — 1 which
is our assumption.
Next, we prove that f(m—2)= f(x) holds for all x, m—3<x<m—-2.

By Lemma 2 (i), it suffices to show that f(m—a)= f(m—2), or equiv-
alenily,
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< (m—1)-1 (m—1)—1
(m—l)—(a—l))"( a—1 )
<<(m—1)—(0—1)>_((m—1)—(a—1)>
“\m—1)=(a—1) a—1 -
This follows from Lemma 1.

Case2 I,;x/|>( ~2). In this case, we have |Z|<(,”,)—(7"})=
(" (o 1))+(m (a~ 1)~1) Let |‘@'=(m:nl;ll))+(m—luvil)fl) m—as
x <m—2. Then, by the KruskalfKatona theorem we have || <(7)—
(mil) axl) Deﬁne f(x): m (a l))+(m (a 1)— 1)+(m)__(WI~~1
=" —-0G2 D)+, ). By arguments in Casel, f(x)<f(
holds for all x, m—a<x<m—2. |

—a)

RN

4. APPLICATION

Using results of earlier sections, we give two new proofs of the Hilton-
Milner theorem. Let us mention that other short proofs were given in
[FF, M]. Recall that an intersecting family % is called non-trivial if
Nye s F= holds.

THEOREM [HM]. Let & () be a non-trivial intersecting family with
n=|X|22k, Then | % | S(Z:{)_(";ffl)-'-l.

Proof 1. Suppose that |#| is maximal with respect to the conditions.
First we deal with an important special case. Suppose that there exists
A:={a b)e(¥) such that AnF# holds for all Fe#. By the
maximality of |#|, {G:4<=Ge(})} =F holds. Define

o ={F—{a} FeF, FnA={a}},
B:={F-1{b} : FeF , FnA={b}}

Then &/, # are cross-intersecting families on X' — 4. By Theorem A,

o]+ 1)<+ n—2\ (n—k—1
: h k-1 k-1 )
Consequently,

n—2 n—k—1 n—2 n—1 n—k-—1
- B _ _
|f|<l+<k—1> ( k—1 >+<k 2) 1+<k—1> < k-1 )

as desired.
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Next consider the case when % is shifted (see Appendix). Note that
{2,3,...k+1}eF. Now define

o ={F-{1}:Fn{1,2}={1}, Fe F},
B:={F-{2}:Fn{1,2}={(2},Fe#F },
€:={F—{1,2}:{1,2}cFeF),

{

={F—{1,2}:{1,2}nF=(}.
Then by TheoremA and {3,4, .. k+1}ed B, || +|BI<
14+ (32— ("%*7 ") holds.

On the other hand, ¥, 2 are cross-intersecting and 2 is 2-intersecting.
Thus, 2“:={X—-D:DeP}=(*"{"3) is (n—2)~ (2k—2)=(n—2k)-
intersecting. By the Intersecting Kruskal-Katona theorem (cf. [Ka2]),
L =0, _{2) 2|2 =|2| (see Appendix) and by the cross-intersecting
property & n¥ = J. Therefore,

X—{1L2}\| (n-2
|(g|+|@|<|y|+|<g|<t< o >‘_(k_2).

Again, we obtain |F|=|| + 8]+ 6] +12| <1+ (D= ("7".

Now to the general case. Apply repeatedly to & the shlft operator (see
Appendix) S, 1<i<j<n Either we obtain a shifted non-trivial inter-
secting family of the same size (and we are done by the second case) or at
some point the family stops to be non-trivial. That is for some ¥ < (), 4
non-trivial intersecting, |#|=|%| we have that ) nesyoy H# . In this
case, clearly {i}=(),.s,s H and consequently {i, ]} NG# for all
Ge%. Thus we are done by the first special case. ||

Proof 11. Since the theorem clearly holds for n=2k, we assume that

n>=2k+1. We may assume that ne Fe % holds for some F. Let us define
Yi=X—{n}, m:=1Y|, a:=k,

d::{F:néFeﬁ’}C<:>,
B :={F—{n} :neFeﬁ}C<ai’1>.

Then &/ and # are non-empty cross-intersecting families. Since o is inter-
secting itself, |.2/| < (7_}) holds. First suppose that || = (7= /). If m= 2aq,
then |&/| = 4(7). Hence for all Be# and for all ye Y- B, Bu{y}eo
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holds. Therefore, 4 is also intersecting, and so we may that m e B holds for
all Be #. Since & is non-trivial, there exists 4 € .o/ such that m¢ 4. So,

<)o) -0

This implies that |#|= /| +[8]<(," )~ (G-)=G_D- ("0 If
m>2a, then we may assume that me A holds for all 4e.o/, that is,
o ={Ade()):meA}. Since F is non-trivial, there exists Be # such that
m¢ B. But, for all dye(¥Y~Eim)), 4:=A4,0{m}eso/ must hold, a
contradiction.

Next suppose that |«/| < ("~ /). Then by Theorem 3, we have

a—1

m m—a n—1 n—k—1
0_= < —_ = —_ 1,
F| =)+ |3 (a_l) (a_1)+1 (k_]) (a_l )+
as desired. ||

APPENDIX

Let n, k be integers and let X be an n-element set. We define the colex
order < on (}) by setting A< B if max{i:ieA— B} <max{i:ie B—A4}.
The shift operator S;, 1<i<j<n, on (}) is defined as follows: Let
F < (¥). For Fe #, define

(F—(j})v{i} if i¢F jeF and (F—{j})u{i}¢F
s, (F) = )

F otherwise,
and S (F) = {s,;(F): Fe # }. It is easily checked that (i) |S;(F)| =|Z|
and (ii) S;(#) is intersecting if # is intersecting. A family # < (}) is
called shifted if S;(# )= # holds for all 1 <i<j<n. For a family # < ()
and an integer / < k, we define the /th shadow of & by ¢,(%):={Ge(¥):
GciFeF).

ACKNOWLEDGMENT

The authors are indebted to J. E. Simpson for calling their attention to Theorem A, which
initiated this research.



CROSS-INTERSECTING FAMILIES 97

REFERENCES

[EKR] P. Erpds, C. Ko, aND R. RaDo, Intersection theorems for system of finite sets,

[FF]
[HM]
[Kal]
[Ka2]
[Kr]
[(M]

(s]

Quart. J. Math. Oxford. Ser. (2) 12 (1961), 313-320.

P. FrankL anD Z. FORreDl, Non-trivial intersecting families, J. Combin. Theory
Ser. A 41 (1986), 150-153.

A.J. W. HiLTON aND E. C. MILNER, Some intersection theorems for systems of finite
sets, Quart. J. Math. Oxford 18 (1967), 369-384.

G. O. H. KATONA, A theorem of finite sets, “Theory of Graphs, Proc. Colloq. Tihany,
1966,” pp. 187-207, Akad. Kiad6, Budapest, 1968.

G. O. H. KATONA4, Intersection theorems for systems of finite sets, Acta Math. Acad.
Sci. Hungar. 15 (1964), 329-337.

J. B. KruskaL, The number of simplices in a complex, “Math. Optimization Techni-
ques,” pp. 251-278, Univ. of Calif. Press, Berkeley, 1963.

M. MORs, A generalization of a theorem of Kruskal, Graphs Combin. 1 (1985),
167-183.

J. E. SiMPSON, A bipartite Erdés-Ko-Rado theorem, manuscript, 1989.



