Note

A sharpening of Fisher's inequality

Peter Frankl*

CNRS, Paris, France

Zoltán Füredi*

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary

Received 6 January 1989 Revised 2 June 1989

Abstract

Frankl, P. and Z. Füredi, A sharpening of Fisher's inequality, Discrete Mathematics 90 (1991) 103-107.

It is proved that in every linear space on v points and b lines the number of intersecting line-pairs is at least $\binom{v}{2}$. This clearly implies $b \ge v$.

1. Definitions

A hypergraph H is a pair (V, \mathscr{C}) , where V is a finite set, called vertices, and \mathscr{C} , the edges, is a family of non-empty subsets of V. It is called *linear* (or 0-1 intersecting) if $|E \cap E'| \leq 1$ holds for all pairs $\{E, E'\} \subset \mathscr{C}$. H is λ -intersecting if $|E \cap E'| = \lambda$ for all pairs. For a set $S \subset V$ let $\mathscr{C}[S]$ denote the family of edges containing S. The *degree* of the vertex x is $deg(x) = |\mathscr{C}[\{x\}]|$. H is *k*-uniform if for every edge $E \in \mathscr{C}$, |E| = k. The *dual* of the hypergraph H, H^* , is obtained by interchanging the roles of vertices and edges keeping the incidences, i.e. $V(H^*) = \mathscr{C}(H)$ and $\mathscr{C}(H^*) = \{\mathscr{C}[x]: x \in V\}$.

* This research was supported in part by the Hungarian National Science Foundation under Grant No. 1812.

This paper was written while the authors visited A.T. & T. Bell Laboratories, Murray Hill, NJ 07974 and Bell Communications Research Inc., Morristown, NJ 07960, USA, resp.

0012-365X/91/\$03.50 (C) 1991 - Elsevier Science Publishers B.V. (North-Holland)

A linear space $L = (P, \mathcal{L})$ is a linear hypergraph consisting of at least 2-element sets such that $|\mathcal{L}[x, y]| = 1$ hold for all pairs. In this case the vertices are called *points*, the edges are called *lines*. It is called *trivial* if $|\mathcal{L}| = 1$, i.e. $\mathcal{L} = \{P\}$. A *near pencil* is a linear space having a line with |P| - 1 points. A finite *projective plane* (of order q) is a linear space over $q^2 + q + 1$ points, the same number of lines, each line having q + 1 points.

2. Preliminaries, results

In 1948 de Bruijn and Erdős [4] proved that for every nontrivial finite linear space $L = (P, \mathcal{L})$, one has

$$|\mathcal{L}| \ge |P|. \tag{2.1}$$

Moreover here equality holds if and only if L is either a finite projective plane or a near pencil. This result is called sometimes the non-uniform Fisher's inequality, as the proof of the uniform case is due to him [6]. (His inequality applies to general intersection size.) The dual of (2.1) says that if (V, \mathcal{E}) is a 1-intersecting family consisting of at least 2-element sets then

 $|\mathscr{E}| \le |V|. \tag{2.2}$

Because of its simplicity, the de Bruijn-Erdős theorem has plenty of applications. There is a growing number of different proofs, whose methods and applicability go far beyond the theory of designs and finite geometries. (We mention e.g. the books by Crawley and Dilworth [5], Lovász [11].) Varga [18] proved that for every line $L_m \in \mathscr{L}$ of maximal cardinality there are at least |P| - 1 lines intersecting it. Ryser [16] gave a complete characterization of 0-1-intersecting families, in which every set is intersected by all but one edge. Seymour [17] proved that every 0-1-intersecting family (V, \mathscr{E}) contains at least $|\mathscr{E}|/|V|$ pairwise disjoint members. (This generalization is related to the Erdős-Faber-Lovász conjecture, see [7].) A weighted version was proved by Kahn and Seymour [10]. Füredi and Seymour (see in [10]) proved that for an intersecting hypergraph (V, \mathscr{E}) one can find a pair $\{x, y\} \subset V$ such that $|\mathscr{E}[x, y]| \ge |\mathscr{E}|/|V|$. Another version of (2.1) and (2.2) became known as Motzkin's lemma [13].

The most interesting and fruitful proof was given by Majumdar [12] and Ryser [15]. Using linear algebra they proved (2.2) for λ -intersecting families. Their method was greatly generalized by Ray-Chaudhuri and Wilson [14], Frankl and Wilson [9]. For recent developments see Alon, Babai and Suzuki [1], Babai [2], Babai and Frankl [3], Wilson [19].

In this note another sharpening of (2.2) is proven.

Theorem. Suppose that E_1, \ldots, E_m is a 1-intersecting family (i.e. $|E_i \cap E_j| = 1$ for all $i \neq j$) of sets having at least 2 elements, moreover $\bigcap E_i = \emptyset$. Then the number of pairs covered by the E_i 's is at least $\binom{m}{2}$.

There is already an application of this theorem (see [8]).

3. Proof

We return to the original proof given in [4]. Let $V = \{x_1, x_2, ..., x_n\}$ denote the underlying set of the 1-intersecting family. Denote the cardinality of the edge E_i by e_i , and the degree of x_j by d_j . Without loss of generality we may suppose that

$$e_1 \ge \cdots \ge e_m, \tag{3.1}$$

and

$$d_1 \ge d_2 \ge \cdots \ge d_n. \tag{3.2}$$

Obviously, we have

$$\sum e_i = \sum d_j. \tag{3.3}$$

We do know that $m \le n$. The main point in the original proof is that for every *i* if $e_i > 0$, then

$$e_i \ge d_i. \tag{3.4}$$

holds. For the reader's convenience a proof of (3.4) is given in the Appendix.

Let v(N, n) be the set of vectors $x = (x_1, \ldots, x_n)$ with nonnegative integer coordinates such that $\sum x_i = N$ and $x_1 \ge x_2 \ge \cdots \ge x_n$. We say y covers x if there exist coordinates $1 \le u < v \le n$ such that

$$y_i = \begin{cases} x_i + 1 & \text{for } i = u, \\ x_i - 1 & \text{for } i = v, \\ x_i & \text{otherwise.} \end{cases}$$

Define the partial ordering of v(N, n) as follows. y > x if there exists a sequence $x = x_0, x_1, \ldots, x_s = y$ such that x_{i+1} covers x_i $(i = 0, 1, \ldots, s - 1)$. This is the usual notion of majorization in v(N, n).

Define the function $f(x_1, \ldots, x_n) = \sum_i {x_i \choose 2}$. Then the following is trivial.

Lemma 3.5. If y > x then $f(y) \ge f(x)$.

Proof. Lemma 3.5 holds for any convex function $g(x): \mathbb{R} \to \mathbb{R}$ whenever $f(x) = \sum_{i} g(x_i)$. \Box

Proof of the Theorem. Let $N = \sum e_i = \sum d_i$. Then we have that

$$e = (e_1, e_2, \ldots, e_m, 0, \ldots, 0) > d = (d_1, d_2, \ldots, d_m, \ldots, d_n).$$

Then Lemma 3.5 implies that

$$\sum_{i} \binom{e_i}{2} \ge \sum_{j} \binom{d_j}{2}.$$

Here the left-hand side is the number of pairs covered by $\{E_1, \ldots, E_m\}$, and the right-hand side is the number of intersections, i.e. $\binom{m}{2}$. \Box

Appendix. Here we recall the proof of (3.4). For $x \notin E$ we have

$$\deg(x) \le |E|. \tag{3.6}$$

Let *E* be any edge not containing $\{x_1, \ldots, x_i\}$. Then (3.6) gives that $|E| \ge d_i$. So (3.4) follows if we have at least *i* such edges. This settles the case i = 1. For i > 1 suppose that there are only at most i - 1 such edges. All the other edges contain $\{x_1, \ldots, x_i\}$, so we have m = i. Then $\min_{i \le i} d_i = 1$, yielding $e_i \ge 2 > d_i = 1$.

4. Remarks, problems

Conjecture. Suppose that H is a (nontrivial) λ -intersecting family with m edges. Then the number of covered pairs is at least $\binom{m}{2}$.

Can we obtain in this way a purely combinatorial proof for the Majumdar-Ryser theorem? Can we have in this way a new approach to the λ -design conjecture? (See [15].) As a first step, is there a linear algebraic proof for the Theorem?

References

- [1] N. Alon, L. Babai and H. Suzuki, Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems, preprint, 1988.
- [2] L. Babai, A short proof of the non-uniform Ray-Chaudhuri-Wilson inequality, Combinatorica 8 (1988) 133-135.
- [3] L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics, Part 1 (Dept. Comp. Sci., University of Chicago, 1988).
- [4] N. G. de Bruijn and P. Erdős, On a combinatorial problem, Indagationes Math. 10 (1948) 421-423.
- [5] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, NJ, 1973) proof of 14.2.
- [6] R. A. Fisher, An examination of the different possible solutions of a problem on incomplete blocks, Ann Eugenics 10 (1940) 52-75.
- [7] Z. Füredi, The chromatic index of simple hypergraphs, Graphs and Combinatorics 2 (1986) 89-92.
- [8] Z. Füredi, Ouadrilateral-free graphs with maximum number of edges, J. Combin. Theory Ser. B, submitted.
- [9] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368.
- [10] J. Kahn and P. Seymour, A fractional version of the Erdős-Faber-Lovász conjecture, Combinatorica, to appear.
- [11] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Budapest (North-Holland, Amsterdam, 1979) Problems 13.14 and 13.15.

- [12] K. N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat. 24 (1953) 377-389.
- [13] T. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70 (1951) 451-464 (lemma 4.6).
- [14] D. K. Ray-Chaudhuri and R. M. Wilson, On t designs, Osaka, J. Math. 12 (1975) 737-744.
- [15] H. J. Ryser, An extension of a theorem of de Bruijn and Erdős on combinatorial designs, J. Algebra 10 (1968) 246-261.
- [16] H. J. Ryser, Subsets of a finite set that intersect each other in at most one element, J. Combin. Theory Ser. A 17 (1974) 59-77.
- [17] P. Seymour, Packing nearly disjoint sets, Combinatorica 2 (1982) 91-97.
- [18] L. E. Varga, A note on the structure of pairwise balanced designs, J. Combin. Theory Ser. A 40 (1985) 435-438.
- [19] R. M. Wilson, Inequalities for t designs, J. Combin. Theory Ser. A 34 (1983) 313-324.