Note

A sharpening of Fisher's inequality

Peter Frankl*
CNRS, Paris, France

Zoltán Füredi*
Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary

Received 6 January 1989
Revised 2 June 1989

Abstract

Frankl, P. and Z. Füredi, A sharpening of Fisher's inequality, Discrete Mathematics 90 (1991) 103-107.

It is proved that in every linear space on v points and b lines the number of intersecting line-pairs is at least $\binom{v}{2}$. This clearly implies $b \geqslant v$.

1. Definitions

A hypergraph \boldsymbol{H} is a pair (V, \mathscr{E}), where V is a finite set, called vertices, and \mathscr{E}, the edges, is a family of non-empty subsets of V. It is called linear (or 0-1 intersecting) if $\left|E \cap E^{\prime}\right| \leqslant 1$ holds for all pairs $\left\{E, E^{\prime}\right\} \subset \mathscr{E} . \boldsymbol{H}$ is λ-intersecting if $\left|E \cap E^{\prime}\right|=\lambda$ for all pairs. For a set $S \subset V$ let $\mathscr{E}[S]$ denote the family of edges containing S. The degree of the vertex x is $\operatorname{deg}(x)=|\mathscr{E}[\{x\}]| . \boldsymbol{H}$ is k-uniform if for cvery cdge $E \in \mathscr{E},|E|=k$. The dual of the hypergraph $\boldsymbol{H}, \boldsymbol{H}^{*}$, is obtained by interchanging the roles of vertices and edges keeping the incidences, i.e. $V\left(\boldsymbol{H}^{*}\right)=\mathscr{E}(\boldsymbol{H})$ and $\mathscr{E}\left(\boldsymbol{H}^{*}\right)=\{\mathscr{E}[x]: x \in V\}$.

[^0]0012-365X/91/\$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)

A linear space $\boldsymbol{L}=(P, \mathscr{L})$ is a linear hypergraph consisting of at least 2-element sets such that $|\mathscr{L}[x, y]|=1$ hold for all pairs. In this case the vertices are called points, the edges are called lines. It is called trivial if $|\mathscr{L}|=1$, i.e. $\mathscr{L}=\{P\}$. A near pencil is a linear space having a line with $|P|-1$ points. A finite projective plane (of order q) is a linear space over $q^{2}+q+1$ points, the same number of lines, each line having $q+1$ points.

2. Preliminaries, results

In 1948 de Bruijn and Erdős [4] proved that for every nontrivial finite linear space $L=(P, \mathscr{L})$, one has

$$
\begin{equation*}
|\mathscr{L}| \geqslant|P| \tag{2.1}
\end{equation*}
$$

Moreover here equality holds if and only if \boldsymbol{L} is either a finite projective plane or a near pencil. This result is called sometimes the non-uniform Fisher's inequality, as the proof of the uniform case is due to him [6]. (His inequality applies to general intersection size.) The dual of (2.1) says that if (V, \mathscr{E}) is a 1 -intersecting family consisting of at least 2-element sets then

$$
\begin{equation*}
|\mathscr{E}| \leqslant|V| . \tag{2.2}
\end{equation*}
$$

Because of its simplicity, the de Bruijn-Erdôs theorem has plenty of applications. There is a growing number of different proofs, whose methods and applicability go far beyond the theory of designs and finite geometries. (We mention e.g. the books by Crawley and Dilworth [5], Lovász [11].) Varga [18] proved that for every line $L_{m} \in \mathscr{L}$ of maximal cardinality there are at least $|P|-1$ lines intersecting it. Ryser [16] gave a complete characterization of $0-1$-intersecting families, in which every set is intersected by all but one edge. Seymour [17] proved that every 0 -1-intersecting family (V, \mathscr{E}) contains at least $|\mathscr{E}| /|V|$ pairwise disjoint members. (This generalization is related to the Erdốs-Faber-Lovász conjecture, see [7].) A weighted version was proved by Kahn and Seymour [10]. Füredi and Seymour (see in [10]) proved that for an intersecting hypergraph (V, \mathscr{E}) one can find a pair $\{x, y\} \subset V$ such that $|\mathscr{E}| x, y| | \geqslant|\mathscr{E}| /|V|$. Another version of (2.1) and (2.2) became known as Motzkin's lemma [13].

The most interesting and fruitful proof was given by Majumdar [12] and Ryser [15]. Using linear algebra they proved (2.2) for λ-intersecting families. Their method was greatly generalized by Ray-Chaudhuri and Wilson [14], Frankl and Wilson [9]. For recent developments see Alon, Babai and Suzuki [1], Babai [2], Babai and Frankl [3], Wilson [19].

In this note another sharpening of (2.2) is proven.
Theorem. Suppose that E_{1}, \ldots, E_{m} is a 1-intersecting family (i.e. $\left|E_{i} \cap E_{j}\right|=1$ for all $i \neq j$) of sets having at least 2 elements, moreover $\cap E_{i}=\emptyset$. Then the number of pairs covered by the E_{i} 's is at least $\binom{m}{2}$.

There is already an application of this theorem (see [8]).

3. Proof

We return to the original proof given in [4]. Let $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ denote the underlying set of the 1 -intersecting family. Denote the cardinality of the edge E_{i} by e_{i}, and the degree of x_{j} by d_{j}. Without loss of generality we may suppose that

$$
\begin{equation*}
e_{1} \geqslant \cdots \geqslant e_{m} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{n} \tag{3.2}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
\sum e_{i}=\sum d_{j} \tag{3.3}
\end{equation*}
$$

We do know that $m \leqslant n$. The main point in the original proof is that for every i if $e_{i}>0$, then

$$
\begin{equation*}
e_{i} \geqslant d_{i} \tag{3.4}
\end{equation*}
$$

holds. For the reader's convenience a proof of (3.4) is given in the Appendix.
Let $v(N, n)$ be the set of vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ with nonnegative integer coordinates such that $\sum x_{i}=N$ and $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{n}$. We say \boldsymbol{y} covers \boldsymbol{x} if there exist coordinates $1 \leqslant u<v \leqslant n$ such that

$$
y_{i}= \begin{cases}x_{i}+1 & \text { for } i=u \\ x_{i}-1 & \text { for } i=v \\ x_{i} & \text { otherwise }\end{cases}
$$

Define the partial ordering of $v(N, n)$ as follows. $\boldsymbol{y}>\boldsymbol{x}$ if there exists a sequence $\boldsymbol{x}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{s}=\boldsymbol{y}$ such that \boldsymbol{x}_{i+1} covers $\boldsymbol{x}_{i}(i=0,1, \ldots, s-1)$. This is the usual notion of majorization in $v(N, n)$.

Define the function $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i}\binom{x_{i}}{i}$. Then the following is trivial.
Lemma 3.5. If $\boldsymbol{y}>\boldsymbol{x}$ then $f(\boldsymbol{y}) \geqslant f(\boldsymbol{x})$.
Proof. Lemma 3.5 holds for any convex function $g(x): \mathbb{R} \rightarrow \mathbb{R}$ whenever $f(x)=$ $\sum_{i} g\left(x_{i}\right)$.

Proof of the Theorem. Let $N=\sum e_{i}=\sum d_{j}$. Then we have that

$$
\boldsymbol{e}=\left(e_{1}, e_{2}, \ldots, e_{m}, 0, \ldots, 0\right)>\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{m}, \ldots, d_{n}\right)
$$

Then Lemma 3.5 implies that

$$
\sum_{i}\binom{e_{i}}{2} \geqslant \sum_{j}\binom{d_{j}}{2}
$$

Here the left-hand side is the number of pairs covered by $\left\{E_{1}, \ldots, E_{m}\right\}$, and the right-hand side is the number of intersections, i.e. $\binom{m}{2}$.

Appendix. Here we recall the proof of (3.4). For $x \notin E$ we have

$$
\begin{equation*}
\operatorname{deg}(x) \leqslant|E| \tag{3.6}
\end{equation*}
$$

Let E be any edge not containing $\left\{x_{1}, \ldots, x_{i}\right\}$. Then (3.6) gives that $|E| \geqslant d_{i}$. So (3.4) follows if we have at least i such edges. This settles the case $i=1$. For $i>1$ suppose that there are only at most $i-1$ such edges. All the other edges contain $\left\{x_{1}, \ldots, x_{i}\right\}$, so we have $m=i$. Then $\min _{j \leqslant i} d_{j}=1$, yielding $e_{i} \geqslant 2>d_{i}=1$.

4. Remarks, problems

Conjecture. Suppose that \boldsymbol{H} is a (nontrivial) λ-intersecting family with m edges. Then the number of covered pairs is at least $\binom{m}{2}$.

Can we obtain in this way a purely combinatorial proof for the MajumdarRyser theorem? Can we have in this way a new approach to the λ-design conjecture? (See [15].) As a first step, is there a linear algebraic proof for the Theorem?

References

[1] N. Alon, L. Babai and H. Suzuki, Multilinear polynomials and Frankl-Ray-Claudhuri-Wilson type intersection theorems, preprint, 1988.
[2] L. Babai, A short proof of the non-uniform Ray-Chaudhuri-Wilson inequality, Combinatorica 8 (1988) 133-135.
[3] L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics, Part 1 (Dept. Comp. Sci., University of Chicago, 1988).
[4] N. G. de Bruijn and P. Erdős, On a combinatorial problem, Indagationes Math. 10 (1948) 421-423.
[5] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, NJ, 1973) proof of 14.2 .
[6] R. A. Fisher, An examination of the different possible solutions of a problem on incomplete blocks, Ann Eugenics 10 (1940) 52-75.
[7] Z. Füredi, The chromatic index of simple hypergraphs, Graphs and Combinatorics 2 (1986) 89-92.
[8] Z. Füredi, Ouadrilateral-free graphs with maximum number of edges, J. Combin. Theory Ser. B, submitted.
[9] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981) 357-368
[10] J. Kahn and P. Seymour, A fractional version of the Erdós-Faber-Lovász conjecture, Combinatorica, to appear.
[11] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Budapest (North-Holland, Amsterdam, 1979) Problems 13.14 and 13.15.
[12] K. N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat. 24 (1953) 377-389.
[13] T. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70 (1951) 451-464 (lemma 4.6).
[14] D. K. Ray-Chaudhuri and R. M. Wilson, On t designs, Osaka, J. Math. 12 (1975) 737-744.
[15] H. J. Ryser, An extension of a theorem of de Bruijn and Erdós on combinatorial designs, J. Algebra 10 (1968) 246-261.
[16] H. J. Ryser, Subsets of a finite set that intersect each other in at most one element, J. Combin. Theory Ser. A 17 (1974) 59-77.
[17] P. Seymour, Packing nearly disjoint sets, Combinatorica 2 (1982) 91-97.
[18] L. E. Varga, A note on the structure of pairwise balanced designs, J. Combin. Theory Ser. A 40 (1985) 435-438.
[19] R. M. Wilson, Inequalities for t designs, J. Combin. Theory Ser. A 34 (1983) 313-324.

[^0]: * This research was supported in part by the Hungarian National Science Foundation under Grant No. 1812.
 This paper was written while the authors visited A.T. \& T. Bell Laboratories, Murray Hill, NJ 07974 and Bell Communications Research Inc., Morristown, NJ 07960, USA, resp.

