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The exact bound in the Erdds-Ko-Rado theorem is known [F, W]. It states that 
if n > (t + l)(k - t + 1). and -@ is a t-intersecting family of k-sets of an n-set 
(IFnF’I>t for all F,F’ES), then ISlG(;::). Define &,={Fc{l,2,...,n}: 

IFI = k, IFn { 1,2, . . . . t + 2r} I > t + r}. Here it is proved that for n > c dm 
(k-t + 1) one has I$tl < max, I&,l. 0 1991 Academic Press, IIIC. 

1. DEFINITIONS 

2’ is the set of all subsets of S. (z) denotes the set of all k-subsets of the 
set S (k > 0). If ISI = n, then 1 (:)I = (;). For integers a < b let us denote 
{a, a + 1, **., b} by [a, b], and [l, n] is abbreviated to [n]. So [n] denotes 
the set { 1, 2, . . . . a}. A set system 9 c 2S is called k-unifarm if its members 
are k-sets. B is t-intersecting if (F n F’I > t holds for each F, F’ E 9. For a 
subset A let F[A] denote the members of F containing A; i.e., P[A] = 
{FE 9 : A c F}. The cardinality of F[ (x}] for an element XE S is called 
the degree of 9 (at x), and it is denoted by deg(9, x). 

To avoid double indices it is usually supposed that the underlying set of 
9 is [n]. In this case for FEN the ith entry of F is denoted by (F)i; i.e., 
F= {(F),, (F)2, . ..}. where 1 < (F), < (F)* < . . , <n. We also correspond 
to F its characteristic vector v(F) = (u,(F), v,(F), . . . . u,(F)), where 

if ieF, 

otherwise. 
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A third representation of the set F is given by walks on the grid. The walk 
starts at the point (0,O) on the plane. In the ith step the walk moves from 
the point (x, y) to the point (x + 1, y) or (x, y + 1) according to whether 
u,(F) is 0 or 1. Obviously, the walk ends at the point (n - IFJ, IFI). The 
total number of shortest paths in the grid of the integer points on the plane 
from (0,O) to (n-k, k) is (t). 

PROPOSITION 1.1. The number of walks from (0.0) to (n -k, k) reaching 
the line y=x+h (where O<h<k) is (k2h). 

ProoJ This follows from the well-known reflection principle. Reflecting 
the rest of the path after it has been reached the line y= x+ h, one can 
obtain a 1 to 1 correspondence to the paths from (0,O) to (k-h, 
n-k+h). 1 

The most frequently used form of (1.1) is the following. The number 
of walks from (0.0) to (a, b) (a > b) which intersect the line y = x only in 
(0, 0) is 

(1.2) 

We will use some standard inequalities, e.g., for b > a > 0 

r’e-‘&<r!<r’e-’ 
SC 

2nr I+&) 

for all r 2 1. For positive integers A, B, C one has 

and the left hand side takes its maximum when 

x= (A+l)(C+l) -1 1 A+B+2 ’ 

(1.5) 

(1.6) 

In the formulas c means a sufficiently large, but effectively computable 
constant (all of our formulas are true with the choice c = 50, for example). 
But in each formula c might have a new value. 
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2. RESULTS 

Suppose that F is a family of k-sets of [n] such that any two of them 
intersect in at least t elements. Erdos, Ko, and Rado [EKR] proved that 
this condition implies 1.9 < (ix:) whenever n > n,(k, t). Equality holds if 
and only if 9 consists of all the k-element subsets of [n] containing a fixed 
t-element subset. In the case t = 1 they established the best possible bound 
n,(k, 1) = 2k. Hsieh [H] lowered the bound for n,(k, t). The exact form of 
the Erdds-Ko-Rado theorem was proved by Frank1 [F], for t 3 15, and 
by Wilson [W], for all t, proving that n,(k, t) = (k - t + l)(t + 1). For 
smaller values of n there are larger t-intersecting families. For example, if 
n ,< 2k - t, then the whole ( [:I) is t-intersecting. Define 

d+(‘;‘): }. IFn [t+2r]I >t+r 

(To avoid trivialities from now on it is supposed that n > 2k - t, k > t > 2, 
k-t>r>O.) 

Conjecture 2.1 (See [F]). If 9 is of maximal cardinality, then 9 = &r 
for some r. 

The case n = 4p, k = 2p, t = 2 (and then r = p - 1) was conjectured in 
[EKR], too. It is not difficult to pick up the largest &,. 

PROPOSITION 2.2. [&,I is the largest among the 4’s if 

n,(k,t)=(k-t+l)(Z+s)<n<(k-t+l)(2+?). (2.3) 

(For the proof see Section 4.) Moreover, if equality holds above, 
then 1 J&I = I&+ 1 1. In this paper we prove Conjecture 2.1 for n > 
(k-t+ l&,/G. 

THEOREM 2.4. Suppose that 9 is a t-intersecting family over [n] of 
maximal cardinality. Suppose further that n is in the range of (2.3), and 
t 2 1 + cr(r + 1 )/( 1 + log r). Then F is isomorphic to &, (or to .G$ + , in the 
case n = n,(k, t)). 

As the case r = 0 was solved, we may suppose that r 3 1 throughout in 
this paper. (Although, our method works for r = 0 as well, at least if t > to.) 
The proof is elementary. It uses the so called shifting operation, introduced 
in [EKR]. We follow the line of [F], where several properties of the 
shifted families were proved. 
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Wilson [W] used the eigenvalue method of Delsarte [D], and actually 
obtained a stronger result for n >n,(k, t). He proved that the Shannon 
capacity of the graph K(n, k, t) is (;I:). (K(n, k, t) is the generalized Kneser 
graph with vertex set ( [:I), and two vertices F and F’ are connected by an 
edge if [Fn F’I < t.) The case t = 1 was proved by Lo&z [L] in his 
celebrated paper on Shannon capacity. The general case was proved by 
Schrijver [S] for very large n. They both used the Johnson scheme, but 
Wilson ingeniously utilized the properties of the Hamming scheme. 

However, this method does not seem to be suitable to settle Conjec- 
ture 2.1 in general, because for n <n,(k, t) the Shannon capacity of 
K(n, k, t) exceeds max (dr9,(. (Private communication of R. M. Wilson.) 

The Convex Hull of t-intersecting Families. For any family 9 c 2[“] one 
can associate the following profile vector, f(9) = (fO, fi, . . . . f,) E R”+l, 
f.= j9n(c11)1. Let P n,t be the convex hull of all profile vectors of 
tlintersecting families over [n]. Let rE [n], Kc [n], k, =min K. Suppose 
that r + t < k,. Define the t-intersecting family 9(K, r) as follows. 

at+rforkEK,k<n+t-kI 
1 

v :kEK,k>n+t-k, 

P. L. ErdGs, Frankl, and Katona [EFK] proved that for t = 1 all the 
extremal points (i.e., vertices) of the polytope P,,, can be obtained as a 
profile vector of a family 9(K, 0). 

Conjecture 2.5. (Cooper [Cl). P,, is the convex hull of the 
f(F(K, r))‘s. 

Corollaries. As (k - t + 1 )(t + 1) = n,(k, t) d i(k + l)*, one can for- 
mulate the exact version of the Erdiis-Ko-Rado theorem as follows. If 
9 c ([El) is a t-intersecting family, then 191 < Idol. Theorem 2.4 can be 
reformulated, too. 

COROLLARY 26 If 9 c(~;]) is a t-intersecting family and n > 
ck3’2(log k) ~ I’*, ihen IF1 <maxi 141. 

Considering the complements of the sets of the family, like in (5.3), we 
also have the following. 

COROLLARY 2.1. Zf n x k + ck213, then Conjecture 2.1 is true. 
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3. SHIFTING 

The following exchange operation, or shifting, was defined in [EKR]. 
Let 1 < i < j< n, and suppose that 9 is a t-intersecting family of k-sets 
over [n]. Define the operator Pii: 9 --) ([;I) as follows. 

if i$F, jEF, (F\(j})u (i}#9, 

otherwise. 

Let us set P,(F)= {P,(F) : FEN}. Obviously, IPii(9)l = 191, and it is 
easy to see that P,(9) is t-intersecting, too. Iterating the shifting operation 
for all pairs 1 ,< i < j < n, after finitely many steps one obtains a family 9 * 
having the property Pv(9*) =9* for every pair (i, j), i<j. Then g* is 
called shifted. This can be reformulated in the following way. 

If FE9*, i#F, jEF, i<j then (F\(j})u (i}EF* as well. (3.1) 

From now on it is always supposed that 9 is shifted. The following lemma 
essentially appeared first in [F]. 

LEMMA 3.2. For all F, F’ E B there exists an i such that IFn [i] I + 
IF’n[i]I>t+i. 

ProoJ Suppose on the contrary that Lemma 3.2 does not hold for each 
pair. Then let {F, F’} c 9 be such that IFn F’I is minimal among the 
pairs do not satisfy Lemma 3.2. Let us denote the tth element of Fn F’ 
by j; i.e., (Fn F’),=j. Then IFn [j] I + IF’n [j] I cj+ t = I [j] I + 
IFn F’n [j] 1, so there exists a 1 <i<j such that i$Fu F’. Then 
iF, (f”\(j)) u {i>> is another counterexample for Lemma 3.2 with 
(Fn (F’- {j} + {i})l < IFn F’I, a contradiction. 1 

Note that in Lemma 3.2 F= F’ is allowed, hence we have the following. 

COROLLARY 3.3. For all FE 9 there exists an s such that IFn 
[t + 2s] I 2 t + s. 

COROLLARY 3.4. (Hujter [Hu] ). Suppose that 9 is maximal, FE 9. Let 
F’~([;~)such thatF’n[t+l,n]=Fn[t+l,n]. Then F’E~. 

In other words, in the first t elements of [n] one can shift any direction. 
As we are looking for an 9 of the maximum size, from now on we may 
suppose that 9 is maximal (i.e., 9 u (F’} is not t intersecting any more 
for F’ E ( [;‘)\9) and 191 2 IJ$ I. The following proposition is easy. 
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PROPOSITION 3.5. Let Y c ([;I) be a t-intersecting family, and suppose 
that for some i< j one has Pii = &. Then 9 is isomorphic to dr. 

4. ON THE SIZES OF THE EXTREMAL FAMILIES 

Proposition 2.2 is proved in the following form. 

PROPOSITION 4.1. For n>n,(k, t)=(k-t+ 1)(2+ (t- l)/(r+ 1)) one 
has \&?I > I&?:, II. Here equality holds only if n = n,(k, t). 

Proof: J%\J% + 1 consists of those sets FE ([;I) for which [Fn 
[t+2r]I>t+r but IFn[t+2r+2]1<t+r+l. Thus lFn[t+2r]I= 
t+randFn{t+2r+l,t+2r+2)=0.S0 

(4.2) 

Similarly, &~+,\&~={F~(~~~):(Fn[t+2r]I=t+r-l and {t+2r+l, 
t + 2r + 2) c F}. Hence 

(4.3) 

The ratio of (4.2) and (4.3) is 

r+ln-k-r-l 
t+r k-t-r ’ 

which is at least 1 if and only if n > n,(k, t). 1 

From now on we suppose that n,(k, t)<n<n,-,(k, t); i.e., 

(r+l)n>(k-t+l)(t+2r+l) (4.4) 

rn<(k-t+l)(t+2r-1). (4.5) 

Let JZZ’ = u&~ (0 <s G k - t). Then Corollary 3.3 is equivalent to the fact 
that 9 c JZZ’. The family &s consists of those sets whose associated walks 
from (0,O) to (n -k, k) reach the line y = x + t during the first t + 2s steps. 
Hence Proposition 1.1 implies that 

Define ~~=~~\(~Ou~I u ...dx4,_, u&~+, u . ..). i.e., those members of 
J&~ which do not belong to another 4. This means that for FE J/Y one has 

582a/56/2-2 
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(F),+i> t + 2i except for i=s, when (F),+,= t + 2s. In other words, the 
walk touches the line y= x + t at the point (s, t +s), otherwise it goes 
below it. Hence (1.2) gives 

LEMMA 4.8. For n,(k, t) < n < n,_ ,(k, t) one /UZ.S 

I-@? > 
t(t - 1) 

4Jr+l(t+2r)(t+2r-1) 

Proof: (4.7) implies that 

b+J t n-2k+t(‘+r2’)(;:r1yy) =- 
(,tY,) t+2r n- t-2r (k?,) 

Here the second term is at least (t - l)/(t + 2r - 1) by (4.4). With the 
values A=t+2r, B=n-t-2r, and C=k-t, (1.5) implies that 

2 
4d(t+2r)(n-:-2r)(k-t-r) 

(4.9) 

The product of the first and the last factors under the square root is less 
than (r + l)n, by (4.4). So the right hand side of (4.9) is at least 

(l/(4 ,h=))L”,). M oreover (4.5) and (4.4) imply that 

r-l< -,+(~+W+l) 

A+B+2 
< r. 

Then (1.6) gives that (4.9) takes its maximum at x = r. 1 

Let d(*) = &\ u &p. One can define J&‘(*) as the family of k-sets from 
JXJ whose walks have at least 2 common points with the line y = x + t. 

LEMMA 4.10. l&(*)1 <2(,-;-i). 

Proof: The number of walks reaching the line y = x + t + 1 is (k-;- i), 
by Proposition 1.1. Consider a walk W from &(*I which does not reach 
this line. Call these walks of type II. Reflecting the portion of W between 
the first and the last common point with y = x + t, one can obtain an injec- 
tion from the walks of type II to the walks reaching y = x + t + 1. This 
implies that the number of walks of type II is also at most (k-;- ,). 1 
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PROPOSITION. Suppose that t - 12 lO( r + 1). Then for s > 4( r + 1) one 
has 

be+ 1 I G f WPI. (4.11) 

Proof: (4.7) gives that 

IJzZ~+~~ t+2st+2s+ 1 n-k-s- 1 k-t-s 
m=- s+l t+s+l n-t-2s-2n-t-2s-1’ 

Here the third term is at most 1, because we may suppose that s + 1 <k - t. 
(Otherwise the definition of JG?:+~ is empty.) The last term is at most 
(r + l)/(t + 2r + l), by (4.4), (for s > r). Hence the right hand side is at 
most 

t+2st+2s+l r+l 
s+l t+s+l t+2r+l’ 

(4.12) 

Introducing c1= (t - 1 )/(r + 1 ), and /I = (s + 1 )/(r + 1) we have that the 
formula in (4.12) is bounded above by 

u+2/?a+2/3 1 -- 
P a+/? a+2 

which is less than 4 for CI > 10, /I > 4. 1 

5. PROOF OF THE THEOREM 

From now on we suppose that 

(5.1) 

where c1 is an absolute constant. In the proof c,, c2, . . . are effectively 
computable constants. 

Let 9 be a f-intersecting family, 9 c (‘:I). As it was shown in Section 3, 
we may suppose that 9 is shifted. Calculate r from (4.4) and (4.5). 
Suppose that (91 is maximal; i.e., 

19”) 2 l-41. (5.2) 

Our first observation is that without loss of generality we may suppose that 

n32k. (5.3) 
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Indeed, for n< 2k consider the family of complementers, %-‘= {[n] - 
F: FE %}. Then %’ is a t’= n - 2k+ t-intersecting family, 9” c ([;,I), 
where k’ = n - k. It is easy to check that the values n, k’, and t’ in the 
formulas (4.4) and (4.5) give r’ = k - t - r. Then (4.4) implies 

2k(r+l)>n(r+l)>(k-t+l)(t+2r+l) 

=(k-t+1)(2r+2)+(k-t+l)(t-l), 

which implies 

r>k-t-r=r’. 

Then (5.1) and (4.4) give 

t’-l=n-2k+t-12 s(k-t-r) 

r 
>c, -r’>c 

r’(r’ + 1) 
l+logr ’ 1 + log r’ 

for some c2 < ci. Now we are able to prove our key lemma. 

PROPOSITION 5.5. &‘n 9 = 0 for all but one s. 

Prooj By (5.2) and Lemma 4.8 we have that 

(5.4) 

(5.6) 

(In the last step we used (5.1).) Moreover, Lemma 4.10 and (4.4) give 

Id’*‘1 
i’( > 

kit <,“,:-:i 1<2%. (5.7) 

The right hand side of (5.6) is larger than the right hand side of (5.7), 
implying % \dC2) # 0. We have obtained that there exists an ~2: such that 
J@ n % # 0. Next we show that only one of such s exists. 

Suppose that FE % n .&y, F’ E % n &y,, s <s’. By the definition of JZ!‘~ 
we have that 

t+i 
IFn Cd1 <--- 2 

holds for all i 2 t, with equality holding only for i = s. Similarly, 1 F’ n [i] ) 
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< (t + i)/2 for all i > t, and here equality holds for i = s’ only. Then for the 
sum we have 

but here equality never holds, since s #s’. This contradicts Lemma 3.2. 1 

From now on s denotes the index of J$P for which &,” n 4 # 0. Our 
next aim is to prove that B c s4,. (5.6) and (5.7) imply that 

Here the right hand side is larger than 5 (by (5.7) and Lemma 4.8). Then 
(4.11) gives that 

s<4(r+ 1). (5.9) 

Proof: Otherwise (4.11) gives that 

contradicting (5.8). 1 

We claim that 

nB3k-2t+ 1. (5.10) 

Indeed, (5.3) and (4.5) imply that 

k-t-r>r. (5.11) 

Moreover, the inequality 

(k-t+l)(t+2r+1)>(3k-2t+l)(r+l) (5.12) 

is equivalent to 

k+r&i 
t-r-2‘ 

Here the right hand side is less than r, by (5.1), hence it holds by (5.11). 
This implies (5.12), which gives with (4.4) that 

(r+l)n~(k-t+l)(t+2r+l)>(r+1)(3k-2t+l), 

yielding (5.10). 1 
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Equation (5.10) was proved only to legitimate the following definition 
for all l<i<k-t-s+ 1. Define oi~(t;l) as follows, ~~n[t+2s+ 
i+l]=[s+l,t+2s], and (Di)rr+,+s=t+2s+i+2afor l<a<k-r-s. 
That is, 

Di = {s + 1, s + 2, . ..) t+2s- 1, t+2s, t+2s+i+2, 

t + 2s + i + 4, . . . . t+2s+i+2(k-t-s)}. 

Here (D,),=2k-t+id3k-2t+l. 

CLAIM 5.13. If Di E %, and FE % \-pl’ then the walk associated to F 
meets the line y = x + t + i. 

Proof: This is an easy consequence of Lemma 3.2. Let j be the smallest 
integer satisfying 

I~i~~CjlI+I~~C~lI~~+.i. 

Thenas IFn[t+2s]I<t,wehavethatj=t+2s+i+2aforsomea>l. 
Then 

IFn[t+2s+i+2a]Iat+j-IDin[j]I=t+s+i+a. 

Hence (F)t+i+s+o G(t+i)+2(s+a). I 

A corollary of Claim 5.13 is the following. If Dk--l--s+l~% then 
% \dS = 12/; i.e., % c J$ and the proof is ready. Let i = max { a: D, E %}. (If 
this set is empty, we take i = 1.) The remaining case is whenever 

i<k-t-s. 

Claim 5.13 and Proposition 1.1 imply that 

(5.14) 

IF\4 <2 k-:-i =Ipi. ( > 
(The factor 2 is needed, in fact, only in the case when the set {D, : 1 < a < 
k - t-s} n % is empty. But we wanted to have a universal upper bound.) 

Now we are going to prove a lower bound for IdS\%t. As % is shifted 
and maximal, Corollary 3.4 implies that all the k-sets are missing from 4 
which one can obtain from D,, r by shifting the elements of Di+, n 
[t + 2s + i + 2, n], and shifting (rightward) the elements of Di+ 1 n [t]. By 
( 1.2) the number of images of Di+ 1 is 

=: Mi. 
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CLAIM 5.15. For l~a<ionehasM,.,IP,,,>M,IP,. 

Proof We have that 

M a+1 Pa- n-2k+t-a-l n-k-s-a n-k+t+a+l 

Ma Pa+1 n-2k+t-a n-t-2s-a-l k-t-a ’ 

Here (5.10) and (5.14) imply that the first nominator is at least 1, so the 
first fraction is at least f. Similarly, n 2 2k - t - 1 -a, so the second 
fraction is at least $, too. Finally, for the last term we have 

n-k+r+a+l>n-k+t+2,t+r 
k-t-a k-t-l 

- > 4, 
r+l 

by (4.4) and (5.1). i 

CLAIM 5.16. MI/P, > 1. 

This implies that Mi > Pi; i.e., IFI < IJ& 1, a contradiction. So the 
opposite of (5.14) must be true; i.e., 6 c ds. 

ProoJ We have that 

t n-2k+t-1 

0 ( 

n-t-2s-2 

> 
~=~~+~~-k~~~~~~~~~~~~l) 

(t- l)(f-2)...(t-s+ l)n-2k+t- 1 n-k-s 

= (t+2s-l)...(r+s+l) n-2k+t n-t-2s-1’ 

Using (1.3) we obtain that the first term is at least 

exp(- :z:s)>exp-2+$. 

Using (5.9) and (5.1) we obtain that the right hand side is at least 
exp( -32 log r/cl) > r-32’c1 > c3r-‘13, if cr is sufficiently large. Obviously, 
the second and third fractions are at least 4, so we have 
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In the last step we used (5.8). On the other hand 

PI =2(,-:- *)= .“,“,:; 1 (kl,)+$(k:*). t5.18) 
Finally, (5.17), (5.18), and (5.1) give Claim 5.16. i 
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