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obtain a new for the of a - (u, A) design the 
block intersection st, sZ, . . , s, satisfy sr -sZ-. . . = s, = s(mod 2). This condition 
eliminates quasi-symmetric 2 - (20,10,18) and 2 - (60,30,58) designs. Quasi-symmetric 2 - 
(20,8,14) designs are eliminated by an ad hoc coding theoretic argument. 

A 2 - (v, k, A) design 93 is said to be quasi-symmetric if there are two block 
intersection sizes s1 and s2. The parameters of the complementary design !3* are 
related to the parameters of 93 as follows: 

5!3:v k AI J.2 si 

23*: v v-k &,-A, Lo--2A,+& v-2k+si (1) 

Here Ai denotes the number of blocks through a given i points (and A = A,). 
Calderbank [l] used Gleason’s theorem on self-dual codes to obtain new 
necessary conditions for the existence of 2 - (v, k, A) designs where the block 
intersection sizes sl, s2, . . . , s, satisfy s1 = s2 = * * - = s,(mod 2). We use (1) to 
restate these conditions as follows: 

Theorem 1. Let !I3 be a 2 - (v, k, A) design where the block intersection sizes 

Sl, sz, . . . > s, satisfy s1-s2=**. = s, = s(mod 2). If & # &(mod 4), then after 

possibly taking complements either 

(i) k = O(mod 4), v = l(mod S), A, = O(mod S), or 
(ii) k = O(mod 4), v=-1 (mods), 2&+A,=O(modS). 

Note that Calderbank [l, Lemma l] proved that k = s(mod 2) and AI = &(mod 2) 
for designs 93 satisfying the hypotheses of Theorem 1. The next lemma is just 
proved by simple counting but nevertheless it is very useful. 

Lemma 2. Zf '$3 be a 2 - (v, k, A) design where the block intersection sizes 

s1, s2, . . * , s, satisfy s1=s2=--- =s,=s(mod 2). Let bi, i=l,2,. . . ,A0 be the 

blocks of 93 and let z E F,U (z is the characteristic vector of an arbitrary subset). 

(A) Zf (z, bJ = O(mod 2) for all i, and if the weight of z satisfies 
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at(z) $ O(mod 4), then either 

(i) cot(z) = l(mod 4), and A1 = O(mod 8), 
(ii) cot(z) = -l(mod 4), and 2)L2 + A, = O(mod 8), or 

(iii) w(t) = 2(mod 4), and A-, = A,(mod 4). 
(B) Zf (2, bi) = l(mod 2) for all i, then either 

(iv) cot(z) = O(mod 4), and A0 = O(mod 8) 
(v) cot(z) = l(mod 4), and A,, = A,(mod 8) 

(vi) cot(z) = 2(mod 4), &, = O(mod 4), and I, + 2(& + J,,) = O(mod 8), or 

(vii) wt(z) = -l(mod 4), and A0 + A1 - 2A2 = O(mod 8). 

Proof. Part A is proved in [l, Lemma 41. to prove part B let N2i_-1, i = 1, 2, . . . 

be the number of blocks meeting z in 2i - 1 points. Since !-l3 is a 2-design we have 

c (2i - ~)Nz-~ = cot(z)&, 

(2) 

(3) 

F ( 2i; ')Nzi-, = ( ot2(z))A,, 
and so 

c [3 - 3(2i - 1) + (2i - 1)(2i - 2)]N*i_, = c 4(i - 2)(i - l)NZi_, 
I i 

= 3Ao + ot(z)[(ot(z) - l)& - 3Ai]. 

Then (iv), (v), (vi), and (vii) follow from the fact that both sides of the above 
equation are congruent to zero modulo 8. 0 

Now let M be the incidence matrix of % of size (&, x v) and let R be the binary 
code spanned by the rows of M. Let j = (1, 1, . . . , 1). 

Theorem 3. Let /3 be a 2 - (v, k, I.) design where the block intersection sizes 

Sl, 32, . . . > s, satisfy s1 = s2 = . . . = s,(mod 2). 
(i) Zf AI = A,(mod 4) then either j E R or A1 = O(mod 8). 

(ii) Zf k = 2(mod 4) then there exists .z such that (z, bi) = l(mod 2) for all blocks 

bi. 

Proof. (i) If j $ R then R is properly contained in (R, j) and there exists 
z E R* \ (R, j) I. Then cot(z) is odd and part A of Lemma 2 implies A, = O(mod 8) 
or 2A-, + h, = O(mod 8). Since A1 = A,(mod 4) we have il, = O(mod 8). 

(ii) The code R is self-orthogonal and there is a doubly even kernel K with 
codimension 1. Hence RI is properly contained in Kl. If z E Kl\ RI then 
b, + bj E K for all i, and SO (z, b, + bj) = O(mod 2) for all i. Thus (z, bj) is constant 
modulo 2, and so (z, bi) = l(mod 2) for all i. 0 
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Theorem 3 eliminates two exceptional quasi-symmetric designs from the list 
compiled by Neumaier (see Neumaier [4], Calderbank [ 1,2]). 

Example 1. Here v = 20, k = 10, A2 = 18, A1 = 38, rZO = 76, s1 = 4, s2 = 6. Part (ii) 
of Theorem 3 implies there exists z such that (z, bJ = l(mod 2) for all blocks b,. 
However, none of the congruence conditions listed in (iv), (v), (vi), or (vii) of 
Lemma 2 are satisfied. 

Example 2. Here v = 60, k = 30, A2 = 58, Al = 118, 1, = 236, ~1 = 14, ~2 = 18. 
Again non-existence follows directly from part (ii) of Theorem 3 and part (B) of 

Lemma 2. 

The block graph G(B) of a quasi-symmetric design ‘??3 is obtained by joining 
two blocks bi, bi if lb, fl bjl = s2, where s1 < s2. Goethals and Seidel [3] proved 
that the block graph of a quasi-symmetric design is strongly regular. Denote the 
number of vertices by V, the valency by K, and the number of vertices joined to 
two given vertices by A or p according as the two given vertices are adjacent or 
non-adjacent. Example 1 leads to a block graph with parameters V = 76, K = 35, 
A = 18 and p= 14. Since V = 2(2K - A - p) it follows that 6G(93) is a regular 
2-graph where 6 is the coboundary operator (see Seidel [5], Taylor [7] or Seidel 
and Taylor [6] for details). It is not known whether there are any regular 2-graphs 
on 76 or on 96 vertices. The non-existence of Example 1 eliminates one method 
of constructing a regular 2-graph on 76 points. If @ is a regular 2-graph on 96 
vertices then Ai@ is a strongly regular graph with V = 95, K = 54, ;1= 33 and 
y = 27. Here AZ is the restriction of the contracting homotopy with respect to the 
point o (see [5, 6, 71 for details). These are the parameters of the block graph 
G(93) of a quasi-symmetric 2 - (20,8,14) design B. We now eliminate this design 
by an ad hoc coding theoretic argument. 

Example 3. Here v =20, k = 8, 3L2= 14, A, = 38, &,= 95, s, =2, s2=4. We 
consider a binary code RI satisfying R 6 RI 4 RI. Note that by Theorem 3, we 
have j E R. Let z, be a codeword of weight 4 in RI and let ZVj(zq) be the number of 
blocks meeting z, in i points. Simple counting arguments (see [l]) give 

&(zJ = 21, N,(z,) = 72, N,(z,) = 2. (5) 

Now let z, be a codeword of weight 8 in R, that is not a block (&(zs) = 0) and let 
hli(zs) be the number of blocks meeting z, in i points. We obtain 

&(%) + &(z,) = 3. (6) 

Let Aj denote the number of codewords of weight i in RI. We prove that 
A8 - 95 = 31A4 by exhibiting a correspondence between codewords of weight 4 
and codewords of weight 8 that are not blocks. Given a codeword x of weight 4 
there are blocks ci, . . . , czl disjoint from x and blocks dr, . . . , dT2 that meet x in 
two points. Then x +i + c,, I = 1, 2, . . . , 21 and x + d,, 1 = 1, 2, . . . , 72 are 
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codewords in RI of weight 8 that are not blocks. Thus a codeword of weight 4 
determines 93 codewords of weight 8 that are not blocks. Now (6) implies that 
every codeword of weight 8 that is not a block occurs 3 times in this way (if 
Jy f~ z,l = 6 then wt(y + zg) = 4, and if Jy rl ZJ = 0 then wt(y + zs +j) = 4). Set 
R = R,. The weight enumerator W(z) of the doubly even code R is given by 

W(z) = 1 + Adz4 + (31A4 + 95)~~ + (31A, + 95)~‘~ + A4z16 + z2’. (7) 

Gleason’s theorem implies dim(R) s 9 so there are two solutions: A4 = 1, 
dim R = 8, and A4 = 5, dim R = 9. The first solution violates (5) (since A4 # 0 

implies A4 > 2) so there are 5 codewords of weight 4; wr, w,, w,, w,, w, say. Next 
we claim that wl, . . . , w5 are disjoint. For otherwise we may suppose w, = 

w1+ w2, that Iw4fl w5J = 0, and Iw~ r-l wi( =0 for i = 1, 2, 3 and j = 4, 5. Hence 
every block through wlr w,, or w, is also a block through w, or w,. But this is 
impossible since there are exactly two blocks through each codeword of weight 4. 

The codewords wl, w2, w,, w4, w, are disjoint and there are 5 blocks of the 
form wi + wi. We may suppose that these blocks are w1 + w5 and wi + wi+r, 
i = 1,2, 3, 4. Then w, + w5 is a codeword of weight 8 that is not a block. Now (5) 
implies that any block disjoint from w2 + w5 is of the form wi + Wj, and that no 
block meets w2 + w, in 6 points. The only block disjoint from w2 + w, is w3 + w4 
and we have a contradiction to (6). This eliminates the design. 
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