Discrete Mathematics 83 (1990) 201-204 201
North-Holland

BINARY CODES AND QUASI-SYMMETRIC DESIGNS

A.R. CALDERBANK and P. FRANKL

AT&T Bell Laboratories, Math. and Stat. Research Center, 600 Mountain Ave., Murray Hill,
New Jersey 07974, USA

Received 3 October 1987
Revised 1 February 1988

We obtain a new necessary condition for the existence of a 2 — (v, k, A) design where the
block intersection sizes sy, s,,...,s, satisfy s;=s,=-.--=s5,=s(mod2). This condition
eliminates quasi-symmetric 2 — (20, 10, 18) and 2 — (60, 30, 58) designs. Quasi-symmetric 2 —
(20, 8, 14) designs are eliminated by an ad hoc coding theoretic argument.

A 2— (v, k, A) design B is said to be quasi-symmetric if there are two block
intersection sizes 5, and s,. The parameters of the complementary design B* are
related to the parameters of B as follows:

B: v k A A 8;

EB*: v U—k A-()_Afl 10—211"'12 v—2k+s,- (1)

Here A; denotes the number of blocks through a given i points (and A= 4,).
Calderbank [1] used Gleason’s theorem on self-dual codes to obtain new
necessary conditions for the existence of 2 — (v, k, 1) designs where the block
intersection sizes s, §,, . . ., §, satisfy s, =s,=---=5,(mod2). We use (1) to
restate these conditions as follows:

Theorem 1. Let B be a 2— (v, k, 1) design where the block intersection sizes
51582, - ., S, Satisfy s, =s,=---=5,=s(mod2). If A # A, (mod4), then after
possibly taking complements either

(i) k=0(mod4), v=1(mod8), A,=0(mod38), or

(ii) k=0(mod4), v=-1(mod8), 24,+ i, =0(mod 8).

Note that Calderbank [1, Lemma 1] proved that k = s(mod 2) and 4, = A,(mod 2)
for designs B satisfying the hypotheses of Theorem 1. The next lemma is just
proved by simple counting but nevertheless it is very useful.

Lemma 2. If B be a 2— (v, k, L) design where the block intersection sizes

S15 82, - - ., S, Salisfy s, =85,=+--=s,=s(mod 2). Let b,, i=1,2,..., Ay be the

blocks of B and let z € 5 (z is the characteristic vector of an arbitrary subset).
(A) If (z,b)=0(mod2) for all i, and if the weight of 2z satisfies
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wot(z) £ 0(mod 4), then either
(i) wt(z)=1(mod 4), and A, =0(mod 8),
(ii) wt(z)=—-1(mod4), and 24, + A, =0(mod 8), or
(iii) w(t)=2(mod 4), and A, = A,(mod 4).
(B) If (z, b,)=1(mod 2) for all i, then either
(iv) wt(z)=0(mod 4), and A, = 0(mod 8)
(v) wt(z)=1(mod 4), and Ay= A,(mod 8)
(vi) wt(z)=2(mod 4), A,=0(mod 4), and A, + 2(A, + A;) =0(mod 8), or
(vii) wt(z)=—1(mod 4), and Ay + A, — 24, =0(mod 8).

Proof. Part A is proved in [1, Lemma 4]. to prove part B let N,;_,, i=1,2, ...
be the number of blocks meeting z in 2/ — 1 points. Since B is a 2-design we have

Ei: Nyi_1 = Ao, (2)
2 (2i — D)Ny_y = wt(2)A,, 3)
2 (21' - 1)N2i_1 _ (wt(z))lz)

and so
2 [3-3Qi - 1)+ (2i — 1)(2i = 2)INyiy = 24 =2)( ~ DN,y
=34 + 0t(2)[(wt(z) - 1)A, — 34,].

Then (iv), (v), (vi), and (vii) follow from the fact that both sides of the above
equation are congruent to zero modulo 8. O

Now let M be the incidence matrix of B of size (A, X v) and let R be the binary
code spanned by the rows of M. Letj=(1,1,...,1).

Theorem 3. Let B be a 2— (v, k, L) design where the block intersection sizes
S1, 82, - . - 5 Sy SQLSfy 5, =5,=- - - =5,(mod 2).

(1) If A, = A(mod 4) then either j € R or A, =0(mod 8).

(it) If k =2(mod 4) then there exists z such that (z, b;) = 1(mod 2) for all blocks
b;.

Proof. (i) If j¢ R then R is properly contained in (R,j) and there exists
ze R*\(R, j)*. Then wt(z) is odd and part A of Lemma 2 implies A, = 0(mod 8)
or 2, + A, =0(mod 8). Since A, = A,(mod 4) we have A, =0(mod 8).

(ii)) The code R is self-orthogonal and there is a doubly even kernel K with
codimension 1. Hence R* is properly contained in K*. If ze€ K*\R* then
b, + b; e K for all i, and so (z, b, + b;) =0(mod 2) for all i. Thus (z, b,) is constant
modulo 2, and so (z, b;) =1(mod 2) for alli. O
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Theorem 3 eliminates two exceptional quasi-symmetric designs from the list
compiled by Neumaier (see Neumaier [4], Calderbank [1, 2]).

Example 1. Here v=20, k=10, A,=18, A, =38, A4, =76, 5; =4, 5, =06. Part (ii)
of Theorem 3 implies there exists z such that (z, b;) = 1(mod 2) for all blocks b,.
However, none of the congruence conditions listed in (iv), (v), (vi), or (vii) of
Lemma 2 are satisfied.

Example 2. Here v=060, k=30, 2,=58, 4, =118, A,=236, 5;,=14, s5,=18.
Again non-existence follows directly from part (ii) of Theorem 3 and part (B) of
Lemma 2.

The block graph G(B) of a quasi-symmetric design B is obtained by joining
two blocks b;, b, if |b; N b;| =s,, where s, <s,. Goethals and Seidel [3] proved
that the block graph of a quasi-symmetric design is strongly regular. Denote the
number of vertices by V, the valency by K, and the number of vertices joined to
two given vertices by A or u according as the two given vertices are adjacent or
non-adjacent. Example 1 leads to a block graph with parameters V =76, K = 35,
A=18 and u =14. Since V =2(2K — A — u) it follows that G(B) is a regular
2-graph where 6 is the coboundary operator (see Seidel [5], Taylor [7] or Seidel
and Taylor [6] for details). It is not known whether there are any regular 2-graphs
on 76 or on 96 vertices. The non-existence of Example 1 eliminates one method
of constructing a regular 2-graph on 76 points. If @ is a regular 2-graph on 96
vertices then A} @ is a strongly regular graph with V =95, K =54, A =33 and
u =27. Here A}, is the restriction of the contracting homotopy with respect to the
point @ (see [5, 6, 7] for details). These are the parameters of the block graph
G(B) of a quasi-symmetric 2 — (20, 8, 14) design 8. We now eliminate this design
by an ad hoc coding theoretic argument.

Example 3. Here v=20, k=8, A,=14, A, =38, A,=95, 5,=2, s,=4. We
consider a binary code R, satisfying R <R, <R". Note that by Theorem 3, we
have j € R. Let z, be a codeword of weight 4 in R, and let N;(z,) be the number of
blocks meeting z, in i points. Simple counting arguments (see [1]) give

No(z) =21,  Noz)=T72, Ni(zs)=2. (5)

Now let zg be a codeword of weight 8 in R, that is not a block (Ng(z3) = 0) and let
Ni(zg) be the number of blocks meeting z; in i points. We obtain

No(zg) + Ne(zg) = 3. (6)

Let A; denote the number of codewords of weight i in R,. We prove that
Ag—95=31A, by exhibiting a correspondence between codewords of weight 4
and codewords of weight 8 that are not blocks. Given a codeword x of weight 4
there are blocks ¢y, . . ., ¢; disjoint from x and blocks d, . . ., d;, that meet x in
two points. Then x+j+¢, I=1,2,...,21 and x+d,, {=1,2,...,72 are
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codewords in R, of weight 8 that are not blocks. Thus a codeword of weight 4
determines 93 codewords of weight 8 that are not blocks. Now (6) implies that
every codeword of weight 8 that is not a block occurs 3 times in this way (if
|y Nzgl =6 then wt(y +zg) =4, and if |y Nzg| =0 then wt(y + zz+j) =4). Set
R = R,. The weight enumerator W(z) of the doubly even code R is given by

W) =1+ Az + (3144 +95)z8 + (31A4 + 95)2'2 + A4z '6 + 22 (7)

Gleason’s theorem implies dim(R)=<9 so there are two solutions: A,=1,
dimR =8, and A,=5, dimR =9. The first solution violates (5) (since A,#0
implies A, = 2) so there are 5 codewords of weight 4; w;, w,, w3, w,, ws say. Next
we claim that wy, ..., ws are disjoint. For otherwise we may suppose w;=
w; +w,, that [wy;Nws|=0, and |w,Nw;|=0 for i=1,2,3 and j=4,5. Hence
every block through w;, w,, or w; is also a block through w, or ws. But this is
impossible since there are exactly two blocks through each codeword of weight 4.

The codewords w;, w,, wy, w,, ws are disjoint and there are 5 blocks of the
form w;+w,. We may suppose that these blocks are wy+ ws and w; +w,4,
i=1,2,3, 4. Then w, + ws is a codeword of weight 8 that is not a block. Now (5)
implies that any block disjoint from w, + ws is of the form w; + w;, and that no
block meets w, + ws in 6 points. The only block disjoint from w, + ws is w; + wy
and we have a contradiction to (6). This eliminates the design.
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