BINARY CODES AND QUASI-SYMMETRIC DESIGNS

A.R. CALDERBANK and P. FRANKL

AT & T Bell Laboratories, Math. and Stat. Research Center, 600 Mountain Ave., Murray Hill, New Jersey 07974, USA

Received 3 October 1987 Revised 1 February 1988

We obtain a new necessary condition for the existence of a $2 - (v, k, \lambda)$ design where the block intersection sizes s_1, s_2, \ldots, s_n satisfy $s_1 \equiv s_2 \equiv \cdots \equiv s_n \equiv s \pmod{2}$. This condition eliminates quasi-symmetric 2 - (20, 10, 18) and 2 - (60, 30, 58) designs. Quasi-symmetric 2 - (20, 8, 14) designs are eliminated by an ad hoc coding theoretic argument.

A $2 - (v, k, \lambda)$ design \mathfrak{B} is said to be quasi-symmetric if there are two block intersection sizes s_1 and s_2 . The parameters of the complementary design \mathfrak{B}^* are related to the parameters of \mathfrak{B} as follows:

Here λ_i denotes the number of blocks through a given *i* points (and $\lambda = \lambda_2$). Calderbank [1] used Gleason's theorem on self-dual codes to obtain new necessary conditions for the existence of $2 - (v, k, \lambda)$ designs where the block intersection sizes s_1, s_2, \ldots, s_n satisfy $s_1 \equiv s_2 \equiv \cdots \equiv s_n \pmod{2}$. We use (1) to restate these conditions as follows:

Theorem 1. Let \mathfrak{B} be a $2 - (v, k, \lambda)$ design where the block intersection sizes s_1, s_2, \ldots, s_n satisfy $s_1 \equiv s_2 \equiv \cdots \equiv s_n \equiv s \pmod{2}$. If $\lambda_1 \neq \lambda_2 \pmod{4}$, then after possibly taking complements either

(i) $k \equiv 0 \pmod{4}$, $v \equiv 1 \pmod{8}$, $\lambda_1 \equiv 0 \pmod{8}$, or (ii) $k \equiv 0 \pmod{4}$, $v \equiv -1 \pmod{8}$, $2\lambda_2 + \lambda_1 \equiv 0 \pmod{8}$.

Note that Calderbank [1, Lemma 1] proved that $k \equiv s \pmod{2}$ and $\lambda_1 \equiv \lambda_2 \pmod{2}$ for designs \mathfrak{B} satisfying the hypotheses of Theorem 1. The next lemma is just proved by simple counting but nevertheless it is very useful.

Lemma 2. If \mathfrak{B} be a $2 - (v, k, \lambda)$ design where the block intersection sizes s_1, s_2, \ldots, s_n satisfy $s_1 \equiv s_2 \equiv \cdots \equiv s_n \equiv s \pmod{2}$. Let $b_i, i = 1, 2, \ldots, \lambda_0$ be the blocks of \mathfrak{B} and let $z \in \mathbb{F}_2^v$ (z is the characteristic vector of an arbitrary subset).

(A) If $(z, b_i) \equiv 0 \pmod{2}$ for all *i*, and if the weight of *z* satisfies

0012-365X/90/\$03.50 (C) 1990 - Elsevier Science Publishers B.V. (North-Holland)

 $\omega t(z) \equiv 0 \pmod{4}$, then either

- (i) $\omega t(z) \equiv 1 \pmod{4}$, and $\lambda_1 \equiv 0 \pmod{8}$,
- (ii) $\omega t(z) \equiv -1 \pmod{4}$, and $2\lambda_2 + \lambda_1 \equiv 0 \pmod{8}$, or
- (iii) $\omega(t) \equiv 2 \pmod{4}$, and $\lambda_1 \equiv \lambda_2 \pmod{4}$.
- (B) If $(z, b_i) \equiv 1 \pmod{2}$ for all *i*, then either
 - (iv) $\omega t(z) \equiv 0 \pmod{4}$, and $\lambda_0 \equiv 0 \pmod{8}$
 - (v) $\omega t(z) \equiv 1 \pmod{4}$, and $\lambda_0 \equiv \lambda_1 \pmod{8}$
 - (vi) $\omega t(z) \equiv 2 \pmod{4}$, $\lambda_0 \equiv 0 \pmod{4}$, and $\lambda_0 + 2(\lambda_2 + \lambda_1) \equiv 0 \pmod{8}$, or
 - (vii) $\omega t(z) \equiv -1 \pmod{4}$, and $\lambda_0 + \lambda_1 2\lambda_2 \equiv 0 \pmod{8}$.

Proof. Part A is proved in [1, Lemma 4]. to prove part B let N_{2i-1} , i = 1, 2, ... be the number of blocks meeting z in 2i - 1 points. Since \mathfrak{B} is a 2-design we have

$$\sum_{i} N_{2i-1} = \lambda_0,$$
(2)
$$\sum_{i} (2i-1)N_{2i-1} = \omega t(z)\lambda_1,$$
(3)
$$\sum_{i} {\binom{2i-1}{2}} N_{2i-1} = {\binom{\omega t(z)}{2}} \lambda_2,$$

and so

$$\sum_{i} [3 - 3(2i - 1) + (2i - 1)(2i - 2)] N_{2i-1} = \sum_{i} 4(i - 2)(i - 1) N_{2i-1}$$
$$= 3\lambda_0 + \omega t(z) [(\omega t(z) - 1)\lambda_2 - 3\lambda_1].$$

Then (iv), (v), (vi), and (vii) follow from the fact that both sides of the above equation are congruent to zero modulo 8. \Box

Now let *M* be the incidence matrix of \mathfrak{B} of size $(\lambda_0 \times v)$ and let *R* be the binary code spanned by the rows of *M*. Let j = (1, 1, ..., 1).

Theorem 3. Let β be a $2 - (v, k, \lambda)$ design where the block intersection sizes s_1, s_2, \ldots, s_n satisfy $s_1 \equiv s_2 \equiv \cdots \equiv s_n \pmod{2}$.

(i) If $\lambda_1 \equiv \lambda_2 \pmod{4}$ then either $j \in R$ or $\lambda_1 \equiv 0 \pmod{8}$.

(ii) If $k \equiv 2 \pmod{4}$ then there exists z such that $(z, b_i) \equiv 1 \pmod{2}$ for all blocks b_i .

Proof. (i) If $j \notin R$ then R is properly contained in $\langle R, j \rangle$ and there exists $z \in R^{\perp} \setminus \langle R, j \rangle^{\perp}$. Then $\omega t(z)$ is odd and part A of Lemma 2 implies $\lambda_1 \equiv 0 \pmod{8}$ or $2\lambda_2 + \lambda_1 \equiv 0 \pmod{8}$. Since $\lambda_1 \equiv \lambda_2 \pmod{4}$ we have $\lambda_1 \equiv 0 \pmod{8}$.

(ii) The code R is self-orthogonal and there is a doubly even kernel K with codimension 1. Hence R^{\perp} is properly contained in K^{\perp} . If $z \in K^{\perp} \setminus R^{\perp}$ then $b_1 + b_i \in K$ for all *i*, and so $(z, b_1 + b_i) \equiv 0 \pmod{2}$ for all *i*. Thus (z, b_i) is constant modulo 2, and so $(z, b_i) = 1 \pmod{2}$ for all *i*. \Box

202

Theorem 3 eliminates two exceptional quasi-symmetric designs from the list compiled by Neumaier (see Neumaier [4], Calderbank [1, 2]).

Example 1. Here v = 20, k = 10, $\lambda_2 = 18$, $\lambda_1 = 38$, $\lambda_0 = 76$, $s_1 = 4$, $s_2 = 6$. Part (ii) of Theorem 3 implies there exists z such that $(z, b_i) \equiv 1 \pmod{2}$ for all blocks b_i . However, none of the congruence conditions listed in (iv), (v), (vi), or (vii) of Lemma 2 are satisfied.

Example 2. Here v = 60, k = 30, $\lambda_2 = 58$, $\lambda_1 = 118$, $\lambda_0 = 236$, $s_1 = 14$, $s_2 = 18$. Again non-existence follows directly from part (ii) of Theorem 3 and part (B) of Lemma 2.

The block graph $G(\mathfrak{B})$ of a quasi-symmetric design \mathfrak{B} is obtained by joining two blocks b_i , b_i if $|b_i \cap b_i| = s_2$, where $s_1 < s_2$. Goethals and Seidel [3] proved that the block graph of a quasi-symmetric design is strongly regular. Denote the number of vertices by V, the valency by K, and the number of vertices joined to two given vertices by λ or μ according as the two given vertices are adjacent or non-adjacent. Example 1 leads to a block graph with parameters V = 76, K = 35, $\lambda = 18$ and $\mu = 14$. Since $V = 2(2K - \lambda - \mu)$ it follows that $\delta G(\mathfrak{B})$ is a regular 2-graph where δ is the coboundary operator (see Seidel [5], Taylor [7] or Seidel and Taylor [6] for details). It is not known whether there are any regular 2-graphs on 76 or on 96 vertices. The non-existence of Example 1 eliminates one method of constructing a regular 2-graph on 76 points. If Φ is a regular 2-graph on 96 vertices then $\Delta_{\omega}^{*}\Phi$ is a strongly regular graph with V = 95, K = 54, $\lambda = 33$ and $\mu = 27$. Here Δ_{ω}^{*} is the restriction of the contracting homotopy with respect to the point ω (see [5, 6, 7] for details). These are the parameters of the block graph $G(\mathfrak{B})$ of a quasi-symmetric 2 - (20, 8, 14) design \mathfrak{B} . We now eliminate this design by an ad hoc coding theoretic argument.

Example 3. Here v = 20, k = 8, $\lambda_2 = 14$, $\lambda_1 = 38$, $\lambda_0 = 95$, $s_1 = 2$, $s_2 = 4$. We consider a binary code R_1 satisfying $R \leq R_1 \leq R^{\perp}$. Note that by Theorem 3, we have $j \in R$. Let z_4 be a codeword of weight 4 in R_1 and let $N_i(z_4)$ be the number of blocks meeting z_4 in *i* points. Simple counting arguments (see [1]) give

$$N_0(z_4) = 21, \qquad N_2(z_4) = 72, \qquad N_4(z_4) = 2.$$
 (5)

Now let z_8 be a codeword of weight 8 in R_1 that is not a block $(N_8(z_8) = 0)$ and let $N_i(z_8)$ be the number of blocks meeting z_8 in *i* points. We obtain

$$N_0(z_8) + N_6(z_8) = 3. ag{6}$$

Let A_i denote the number of codewords of weight *i* in R_1 . We prove that $A_8 - 95 = 31A_4$ by exhibiting a correspondence between codewords of weight 4 and codewords of weight 8 that are not blocks. Given a codeword *x* of weight 4 there are blocks c_1, \ldots, c_{21} disjoint from *x* and blocks d_1, \ldots, d_{72} that meet *x* in two points. Then $x + j + c_i$, $l = 1, 2, \ldots, 21$ and $x + d_l$, $l = 1, 2, \ldots, 72$ are

codewords in R_1 of weight 8 that are not blocks. Thus a codeword of weight 4 determines 93 codewords of weight 8 that are not blocks. Now (6) implies that every codeword of weight 8 that is not a block occurs 3 times in this way (if $|y \cap z_8| = 6$ then wt $(y + z_8) = 4$, and if $|y \cap z_8| = 0$ then wt $(y + z_8 + j) = 4$). Set $R = R_1$. The weight enumerator W(z) of the doubly even code R is given by

$$W(z) = 1 + A_4 z^4 + (31A_4 + 95)z^8 + (31A_4 + 95)z^{12} + A_4 z^{16} + z^{20}.$$
 (7)

Gleason's theorem implies dim $(R) \le 9$ so there are two solutions: $A_4 = 1$, dim R = 8, and $A_4 = 5$, dim R = 9. The first solution violates (5) (since $A_4 \ne 0$ implies $A_4 \ge 2$) so there are 5 codewords of weight 4; w_1 , w_2 , w_3 , w_4 , w_5 say. Next we claim that w_1, \ldots, w_5 are disjoint. For otherwise we may suppose $w_3 =$ $w_1 + w_2$, that $|w_4 \cap w_5| = 0$, and $|w_i \cap w_j| = 0$ for i = 1, 2, 3 and j = 4, 5. Hence every block through w_1 , w_2 , or w_3 is also a block through w_4 or w_5 . But this is impossible since there are exactly two blocks through each codeword of weight 4.

The codewords w_1 , w_2 , w_3 , w_4 , w_5 are disjoint and there are 5 blocks of the form $w_i + w_j$. We may suppose that these blocks are $w_1 + w_5$ and $w_i + w_{i+1}$, i = 1, 2, 3, 4. Then $w_2 + w_5$ is a codeword of weight 8 that is not a block. Now (5) implies that any block disjoint from $w_2 + w_5$ is of the form $w_i + w_j$, and that no block meets $w_2 + w_5$ in 6 points. The only block disjoint from $w_2 + w_5$ is $w_3 + w_4$ and we have a contradiction to (6). This eliminates the design.

References

- A.R. Calderbank, The application of invariant theory to the existence of quasi-symmetric designs, J. Combin. Theory Ser. A 44 (1987) 94-109.
- [2] A.R. Calderbank, Geometric invariants for quasi-symmetric designs, J. Combin. Theory Ser. A, 47 (1988) 101-110.
- [3] J.-M. Goethals and J.J. Seidel, Strongly regular graphs derived from combinatorial designs, Canad. J. Math. 22 (1970) 597-614.
- [4] A. Neumaier, Regular sets and quasi-symmetric 2-designs, in D. Jungnickel and K. Vedder, Eds., Combinatorial theory Lecture Notes in Math. 969, pp. 258–275 (Springer-Verlag, New York/Berlin, 1982).
- [5] J.J. Seidel, A survey of two-graphs, Proc. Intern. Coll. Theorie Combinatorie (Roma 1973) (Accad. Naz. Lincei) 481-511.
- [6] J.J. Seidel and D.E. Taylor, Two-graphs, a second survey, in L. Lovasz and V. Sós, Eds, Algebraic Methods in Graph theory (North-Holland, 1981) 689-711.
- [7] D.E. Taylor, Regular 2-graphs, Proc. London Math. Soc. 35 (1977) 257-274.