BINARY CODES AND QUASI-SYMMETRIC DESIGNS

A.R. CALDERBANK and P. FRANKL
AT\&T Bell Laboratories, Math. and Stat. Research Center, 600 Mountain Ave., Murray Hill, New Jersey 07974, USA

Received 3 October 1987
Revised 1 February 1988
We obtain a new necessary condition for the existence of a $2-(v, k, \lambda)$ design where the block intersection sizes $s_{1}, s_{2}, \ldots, s_{n}$ satisfy $s_{1} \equiv s_{2} \equiv \cdots \equiv s_{n} \equiv s(\bmod 2)$. This condition eliminates quasi-symmetric $2-(20,10,18)$ and $2-(60,30,58)$ designs. Quasi-symmetric $2-$ $(20,8,14)$ designs are eliminated by an ad hoc coding theoretic argument.

A $2-(v, k, \lambda)$ design \mathfrak{B} is said to be quasi-symmetric if there are two block intersection sizes s_{1} and s_{2}. The parameters of the complementary design \mathfrak{B}^{*} are related to the parameters of \mathfrak{B} as follows:

$$
\begin{array}{cccccc}
\mathfrak{B}: & v & k & \lambda_{1} & \lambda_{2} & s_{i} \tag{1}\\
\mathfrak{B}^{*}: & v & v-k & \lambda_{0}-\lambda_{1} & \lambda_{0}-2 \lambda_{1}+\lambda_{2} & v-2 k+s_{i}
\end{array}
$$

Here λ_{i} denotes the number of blocks through a given i points (and $\lambda=\lambda_{2}$). Calderbank [1] used Gleason's theorem on self-dual codes to obtain new necessary conditions for the existence of $2-(v, k, \lambda)$ designs where the block intersection sizes $s_{1}, s_{2}, \ldots, s_{n}$ satisfy $s_{1} \equiv s_{2} \equiv \cdots \equiv s_{n}(\bmod 2)$. We use (1) to restate these conditions as follows:

Theorem 1. Let \mathfrak{B} be a $2-(v, k, \lambda)$ design where the block intersection sizes $s_{1}, s_{2}, \ldots, s_{n}$ satisfy $s_{1} \equiv s_{2} \equiv \cdots \equiv s_{n} \equiv s(\bmod 2)$. If $\lambda_{1} \neq \lambda_{2}(\bmod 4)$, then after possibly taking complements either
(i) $k \equiv 0(\bmod 4), \quad v \equiv 1(\bmod 8), \quad \lambda_{1} \equiv 0(\bmod 8)$, or
(ii) $k \equiv 0(\bmod 4), \quad v \equiv-1(\bmod 8), \quad 2 \lambda_{2}+\lambda_{1} \equiv 0(\bmod 8)$.

Note that Calderbank [1, Lemma 1] proved that $k \equiv s(\bmod 2)$ and $\lambda_{1} \equiv \lambda_{2}(\bmod 2)$ for designs \mathfrak{B} satisfying the hypotheses of Theorem 1 . The next lemma is just proved by simple counting but nevertheless it is very useful.

Lemma 2. If \mathfrak{B} be a $2-(v, k, \lambda)$ design where the block intersection sizes $s_{1}, s_{2}, \ldots, s_{n}$ satisfy $s_{1} \equiv s_{2} \equiv \cdots \equiv s_{n} \equiv s(\bmod 2)$. Let $b_{i}, i=1,2, \ldots, \lambda_{0}$ be the blocks of \mathfrak{B} and let $z \in \mathbb{F}_{2}^{v}$ (z is the characteristic vector of an arbitrary subset).
(A) If $\left(z, b_{i}\right) \equiv 0(\bmod 2)$ for all i, and if the weight of z satisfies 0012-365X/90/\$03.50 © 1990-Elsevier Science Publishers B.V. (North-Holland)
$\omega t(z) \equiv 0(\bmod 4)$, then either
(i) $\omega t(z) \equiv 1(\bmod 4)$, and $\lambda_{1} \equiv 0(\bmod 8)$,
(ii) $\omega t(z) \equiv-1(\bmod 4)$, and $2 \lambda_{2}+\lambda_{1} \equiv 0(\bmod 8)$, or
(iii) $\omega(t) \equiv 2(\bmod 4)$, and $\lambda_{1} \equiv \lambda_{2}(\bmod 4)$.
(B) If $\left(z, b_{i}\right) \equiv 1(\bmod 2)$ for all i, then either
(iv) $\omega t(z) \equiv 0(\bmod 4)$, and $\lambda_{0} \equiv 0(\bmod 8)$
(v) $\omega t(z) \equiv 1(\bmod 4)$, and $\lambda_{0} \equiv \lambda_{1}(\bmod 8)$
(vi) $\omega t(z) \equiv 2(\bmod 4), \lambda_{0} \equiv 0(\bmod 4)$, and $\lambda_{0}+2\left(\lambda_{2}+\lambda_{1}\right) \equiv 0(\bmod 8)$, or
(vii) $\omega t(z) \equiv-1(\bmod 4)$, and $\lambda_{0}+\lambda_{1}-2 \lambda_{2} \equiv 0(\bmod 8)$.

Proof. Part A is proved in [1, Lemma 4]. to prove part B let $N_{2 i-1}, i=1,2, \ldots$ be the number of blocks mecting z in $2 i-1$ points. Since \mathfrak{B} is a 2 -design we have

$$
\begin{align*}
& \sum_{i} N_{2 i-1}=\lambda_{0}, \tag{2}\\
& \sum_{i}(2 i-1) N_{2 i-1}=\omega t(z) \lambda_{1}, \tag{3}\\
& \sum_{i}\binom{2 i-1}{2} N_{2 i-1}=\binom{\omega t(z)}{2} \lambda_{2},
\end{align*}
$$

and so

$$
\begin{aligned}
\sum_{i}[3-3(2 i-1)+(2 i-1)(2 i-2)] N_{2 i-1} & =\sum_{i} 4(i-2)(i-1) N_{2 i-1} \\
& =3 \lambda_{0}+\omega t(z)\left[(\omega t(z)-1) \lambda_{2}-3 \lambda_{1}\right] .
\end{aligned}
$$

Then (iv), (v), (vi), and (vii) follow from the fact that both sides of the above equation are congruent to zero modulo 8 .

Now let M be the incidence matrix of \mathfrak{B} of size $\left(\lambda_{0} \times v\right)$ and let R be the binary code spanned by the rows of M. Let $j=(1,1, \ldots, 1)$.

Theorem 3. Let β be a $2-(v, k, \lambda)$ design where the block intersection sizes $s_{1}, s_{2}, \ldots, s_{n}$ satisfy $s_{1} \equiv s_{2} \equiv \cdots \equiv s_{n}(\bmod 2)$.
(i) If $\lambda_{1} \equiv \lambda_{2}(\bmod 4)$ then either $j \in R$ or $\lambda_{1} \equiv 0(\bmod 8)$.
(ii) If $k \equiv 2(\bmod 4)$ then there exists z such that $\left(z, b_{i}\right) \equiv 1(\bmod 2)$ for all blocks b_{i}.

Proof. (i) If $j \notin R$ then R is properly contained in $\langle R, j\rangle$ and there exists $z \in R^{\perp} \backslash\langle R, j\rangle^{\perp}$. Then $\omega t(z)$ is odd and part A of Lemma 2 implies $\lambda_{1} \equiv 0(\bmod 8)$ or $2 \lambda_{2}+\lambda_{1} \equiv 0(\bmod 8)$. Since $\lambda_{1} \equiv \lambda_{2}(\bmod 4)$ we have $\lambda_{1} \equiv 0(\bmod 8)$.
(ii) The code R is self-orthogonal and there is a doubly even kernel K with codimension 1. Hence R^{\perp} is properly contained in K^{\perp}. If $z \in K^{\perp} \backslash R^{\perp}$ then $b_{1}+b_{i} \in K$ for all i, and so $\left(z, b_{1}+b_{i}\right) \equiv 0(\bmod 2)$ for all i. Thus $\left(z, b_{i}\right)$ is constant modulo 2 , and so $\left(z, b_{i}\right)=1(\bmod 2)$ for all i.

Theorem 3 eliminates two exceptional quasi-symmetric designs from the list compiled by Neumaier (see Neumaier [4], Calderbank [1, 2]).

Example 1. Here $v=20, k=10, \lambda_{2}=18, \lambda_{1}=38, \lambda_{0}=76, s_{1}=4, s_{2}=6$. Part (ii) of Theorem 3 implies there exists z such that $\left(z, b_{i}\right) \equiv 1(\bmod 2)$ for all blocks b_{i}. However, none of the congruence conditions listed in (iv), (v), (vi), or (vii) of Lemma 2 are satisfied.

Example 2. Here $v=60, k=30, \lambda_{2}=58, \lambda_{1}=118, \lambda_{0}=236, s_{1}=14, s_{2}=18$. Again non-existence follows directly from part (ii) of Theorem 3 and part (B) of Lemma 2.

The block graph $G(\mathfrak{B})$ of a quasi-symmetric design \mathfrak{B} is obtained by joining two blocks b_{i}, b_{j} if $\left|b_{i} \cap b_{j}\right|=s_{2}$, where $s_{1}<s_{2}$. Goethals and Seidel [3] proved that the block graph of a quasi-symmetric design is strongly regular. Denote the number of vertices by V, the valency by K, and the number of vertices joined to two given vertices by λ or μ according as the two given vertices are adjacent or non-adjacent. Example 1 leads to a block graph with parameters $V=76, K=35$, $\lambda=18$ and $\mu=14$. Since $V=2(2 K-\lambda-\mu)$ it follows that $\delta G(\mathfrak{B})$ is a regular 2-graph where δ is the coboundary operator (see Seidel [5], Taylor [7] or Seidel and Taylor [6] for details). It is not known whether there are any regular 2-graphs on 76 or on 96 vertices. The non-existence of Example 1 eliminates one method of constructing a regular 2 -graph on 76 points. If Φ is a regular 2-graph on 96 vertices then $\Delta_{\omega}^{*} \Phi$ is a strongly regular graph with $V=95, K=54, \lambda=33$ and $\mu=27$. Here Δ_{ω}^{*} is the restriction of the contracting homotopy with respect to the point ω (see [5, 6, 7] for details). These are the parameters of the block graph $G(\mathfrak{B})$ of a quasi-symmetric $2-(20,8,14)$ design \mathfrak{B}. We now eliminate this design by an ad hoc coding theoretic argument.

Example 3. Here $v=20, k=8, \lambda_{2}=14, \lambda_{1}=38, \lambda_{0}=95, s_{1}=2, s_{2}=4$. We consider a binary code R_{1} satisfying $R \leqslant R_{1} \leqslant R^{\perp}$. Note that by Theorem 3, we have $j \in R$. Let z_{4} be a codeword of weight 4 in R_{1} and let $N_{i}\left(z_{4}\right)$ be the number of blocks meeting z_{4} in i points. Simple counting arguments (see [1]) give

$$
\begin{equation*}
N_{0}\left(z_{4}\right)=21, \quad N_{2}\left(z_{4}\right)=72, \quad N_{4}\left(z_{4}\right)=2 \tag{5}
\end{equation*}
$$

Now let z_{8} be a codeword of weight 8 in R_{1} that is not a block ($N_{8}\left(z_{8}\right)=0$) and let $N_{i}\left(z_{8}\right)$ be the number of blocks meeting z_{8} in i points. We obtain

$$
\begin{equation*}
N_{0}\left(z_{8}\right)+N_{6}\left(z_{8}\right)=3 . \tag{6}
\end{equation*}
$$

Let A_{i} denote the number of codewords of weight i in R_{1}. We prove that $A_{8}-95=31 A_{4}$ by exhibiting a correspondence between codewords of weight 4 and codewords of weight 8 that are not blocks. Given a codeword x of weight 4 there are blocks c_{1}, \ldots, c_{21} disjoint from x and blocks d_{1}, \ldots, d_{72} that meet x in two points. Then $x+j+c_{l}, l=1,2, \ldots, 21$ and $x+d_{l}, l=1,2, \ldots, 72$ are
codewords in R_{1} of weight 8 that are not blocks. Thus a codeword of weight 4 determines 93 codewords of weight 8 that are not blocks. Now (6) implies that every codeword of weight 8 that is not a block occurs 3 times in this way (if $\left|y \cap z_{8}\right|=6$ then $\operatorname{wt}\left(y+z_{8}\right)=4$, and if $\left|y \cap z_{8}\right|=0$ then $\left.\operatorname{wt}\left(y+z_{8}+j\right)=4\right)$. Set $R=R_{1}$. The weight enumerator $W(z)$ of the doubly even code R is given by

$$
\begin{equation*}
W(z)=1+A_{4} z^{4}+\left(31 A_{4}+95\right) z^{8}+\left(31 A_{4}+95\right) z^{12}+A_{4} z^{16}+z^{20} \tag{7}
\end{equation*}
$$

Gleason's theorem implies $\operatorname{dim}(R) \leqslant 9$ so there are two solutions: $A_{4}=1$, $\operatorname{dim} R=8$, and $A_{4}=5, \operatorname{dim} R=9$. The first solution violates (5) (since $A_{4} \neq 0$ implies $A_{4} \geqslant 2$) so there are 5 codewords of weight $4 ; w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$ say. Next we claim that w_{1}, \ldots, w_{5} are disjoint. For otherwise we may suppose $w_{3}=$ $w_{1}+w_{2}$, that $\left|w_{4} \cap w_{5}\right|=0$, and $\left|w_{i} \cap w_{j}\right|=0$ for $i=1,2,3$ and $j=4,5$. Hence every block through w_{1}, w_{2}, or w_{3} is also a block through w_{4} or w_{5}. But this is impossible since there are exactly two blocks through each codeword of weight 4.

The codewords $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$ are disjoint and there are 5 blocks of the form $w_{i}+w_{j}$. We may suppose that these blocks are $w_{1}+w_{5}$ and $w_{i}+w_{i+1}$, $i=1,2,3,4$. Then $w_{2}+w_{5}$ is a codeword of weight 8 that is not a block. Now (5) implies that any block disjoint from $w_{2}+w_{5}$ is of the form $w_{i}+w_{j}$, and that no block meets $w_{2}+w_{5}$ in 6 points. The only block disjoint from $w_{2}+w_{5}$ is $w_{3}+w_{4}$ and we have a contradiction to (6). This eliminates the design.

References

[1] A.R. Calderbank, The application of invariant theory to the existence of quasi-symmetric designs, J. Combin. Theory Ser. A 44 (1987) 94-109.
[2] A.R. Calderbank, Geometric invariants for quasi-symmetric designs, J. Combin. Theory Ser. A, 47 (1988) 101-110.
[3] J.-M. Goethals and J.J. Seidel, Strongly regular graphs derived from combinatorial designs, Canad. J. Math. 22 (1970) 597-614.
[4] A. Neumaier, Regular sets and quasi-symmetric 2-designs, in D. Jungnickel and K. Vedder, Eds., Combinatorial theory Lecture Notes in Math. 969, pp. 258-275 (Springer-Verlag, New York/Berlin, 1982).
[5] J.J. Seidel, A survey of two-graphs, Proc. Intern. Coll. Theorie Combinatorie (Roma 1973) (Accad. Naz. Lincei) 481-511.
[6] J.J. Seidel and D.E. Taylor, Two-graphs, a second survey, in L. Lovasz and V. Sós, Eds, Algebraic Methods in Graph theory (North-Holland, 1981) 689-711.
[7] D.E. Taylor, Regular 2-graphs, Proc. London Math. Soc. 35 (1977) 257-274.

