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Higher incidence matrices have proved an important tool both in design theory 

and extremal set theory. In the present paper some tight bounds on the rank over 
finite fields of some inclusion matrices are derived. In particular, a short proof of 
Wilson’s mod p rank formula is given. A problem of Graham, Li, and Li concern- 

ing bases for so-called null t-designs is solved as well. 0 1990 Academic Press. Inc. 

1. INTRODUCTION 

Let X be an n-element set and F c 2x a family of its subsets. For 
n 3 s Z 0 one defines the inclusion matrix Z(9, s) as a 191 by (z) matrix 
whose rows are indexed by FE 9, the columns by GE (t) and the general 
entry is 

i(F, G)= 
1 if FIG 
o 

if F qb G. 

For matrices M,, . . . . M, having the same number of rows let 
M, 1 M2 1 . . . 1 44, denote the matrix obtained by putting M,, . . . . M, next to 
each other. Set 

z*(F, s) = Z(F, s) I Z(F-, s - 1) 1 . . . 1 Z(9,O). 

Note the trivial inequality 

rank,Z*(F,s)< 1 1 , 
0 O<i<.s 

(1) 

where rank, A4 denotes the rank of an integer matrix over GF(p). 
For sets K, L c {0, 1, . . . . n} the family 9 is called a (K, L)-system if 

IFI E K for all FE 9 and IFn F’I EL for all distinct, F, F’ E F. 

* This research was done while the author was visiting AT&T Bell Laboratories, Murray 

Hill, NJ 07974. 
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Inclusion matrices have proved useful in obtaining upper bounds for the 
maximum size, m(n, K, L) of (K, L)-systems. 

Let us recall the following result. 

THEOREM 1.0 [FW]. Suppose that 9 = {F,, . . . . F,} c 2x, p is a prime 
and ql(x), . . . . q,,,(x) are integer-valued polynomials of degree at most s 
satisfying 

P :, Sf(lFil) for l<i<m 

p 1 qi(lFjnFjI) for 1 <i-c j<m. 

Then 

rank, Z*(P, s)= 191. (2) 

For example, if pO, ~1,) . . . . pL, are distinct residues mod p such that k = p0 
(mod p) for all k E K and ZE (pI, . . . . p,} (mod p) for all 1 EL then one can 
take q;(x) = n IGjss(.x-pj) for 1 <iGm. 

In view of (1) this implies 

IPlQm(n,K,L)G C ‘: 
0 

(3) 
OGj<s 1 

Very recently, Alon and Babai [AB] found a nice but complicated argu- 
ment using spaces of polynomials to replace the RHS of (3) ny (z). (Note 
that the case s = 1 was solved in [FRI.) Here we show that, indeed, this 
can be derived from Theorem 1.0 as well. 

Define Z*(K, s) as Z*(g, s), where 9= tJkeK (z). 
Our principal result is 

THEOREM 1.1. Suppose that k = k’ (mod p) for all k, k’ E K and 0 < s < p. 
Then 

rank,, Z*(K, s) < n 
0 

. 
S 

(4) 

Since, Z*(F;, s) is a submatrix of Z*(K, s) in the above situation, 
Theorem 1.0 and (4) imply m(n, K, L) < (t) as claimed. 

Let us mention that in most cases, e.g., for n 3 p + 2s, equality holds in 
(4). For the proof we need two simple facts. 

PROPOSITION 1.2. Suppose that 0 d r < s -c p and r + s < n. Then 

rank, Z(s, r) = : 
0 

. (5) 
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PROPOSITION 1.3. The general entry m(F, A) of the matrix I(@--, s) Z(s, t) 
is 

m(F, A) = 
if AcF 

otherwise. 

This statement is both well known and trivial 
The rank of inclusion matrices has aroused a lot of interest. The fact that 

rankoZ(a,b)= i 
0 

for all a > b > 0, n 2 a + b, (6) 

was proved around the same time by Kantor [K], Graver-Jurkat [GJ], 
and Wilson [ Wl 1; rank, Z(a, a - 1) = (11:) follows easily, e.g., by using 
the exact sequence arising from the boundary operator for simplicial com- 
plexes. Linial and Rothschild [LR] succeeded in determining rank, Z(a, 6) 
in general. 

Finally, Wilson [W2] found a beautiful but complex argument to com- 
pute the Smith norma form of Z(a, b) thereby determining rank, Z(a, b) for 
all p. The formula, which clearly implies (5), is 

rank, Z(a, b) = 1 i(l)-(irl):O~i~r,pt(~~~)}, n>a+b. 

(7) 

In Section 4 a simple, short proof of (7) is given. It is based on 
Corollary 3.4, which exhibits a special basis for the column space of 
Z*(a, b). In Section 3 universal bases for the vector space of so-called 
null t-designs are constructed (Theorem 3.2) thereby solving a problem 
of Graham, Li, and Li [GLL]. The proof of Theorem 1.1 is given in 
Section 5. In Section 6 further problems are discussed. The paper is self- 
contained. 

2. A PARTITION OF THE ~-ELEMENT SETS 

Let us represent every subset Fc [n] = (1, 2, . . . . n> by a walk, w(F) 
going from the origin to (n - IFI, IFI) by steps of length one, the ith step 
is to the right or up according as i$ F or iE F holds. 

The rank, r(F) is defined as IFI -j, where j is largest integer such that 
w(F) reaches the line y=x+j. E.g., r( [n])=O, r({ 1, 3,4}) = 1. Define 
Y(n, k, r) = {G c [n], ICI = k, r(G) = r}. 
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CLAIM 2.1. I%(n,k,r)l=(:)-(,“,)forOdrdk(where(:,)=O). 

Proof: By the reflection principle the number of walks from (0,O) to 
(n-k, k) and hitting the line y=x+ k-r is the same as the number 
of walks from (r-k, k-r) to (n-k, k), that is (y). Thus 
$izlGr ig(n, k, r)l = (F) holds for 0 < r < k, which in turn implies the 

For a set G of rank r let us define a set G = (j,, . . . . j,) in the following 
way. Suppose that G = {i i, . . . . i,} with ii > . . > i,. Choose j, E ([n] - G) 
maximal with respect to j, < i,. 

Once j, is defined for h > 1 choose jrE ([n] - (G u {j,, , , . . . . jr})) maxi- 
mal with respect to j, < i,. The fact that we never get stuck is the content 
of the next proposition. 

CLAIM 2.2. The set GE ( [:I) is well defined. 

Proof. Indeed, the only problem would be if we cannot choose some 
element, say j,, that is [i,] c G u {jl+ , , . . . . j,}. Since IG n [i,] 1 = k - I+ 1, 
i,< k - I+ 1 + r - 1. Consequently, after i, steps the walk w(G) is on or 
above the line y = x + k - r + 1, contradicting the definition of r = r(G). 1 

Remark 2.3. Note that if r(G- {ilj)=r- 1 then G- {ii} = {j,, . . ..jr} 
holds; this fact will be used in (3.1). 1 

3. UNIVERSAL BASES FOR INCLUSION MATRICES 

Let us fix 1 <k < n and consider the reverse lexicographic order on (f). 
This is a linear order for all F, G E ( I:‘) defined by F < G iff max F- G < 
max G-F. 

Let x, , . . . . x, be indeterminates and for a set F define xF = ni, F xi. 
Let V= V(n, k) be the vector space over some fixed field r of all formal 

linear combinations CFE ( [;I) cc(F) xF. In other words V is the vector space 

of all square-free, homogeneous polynomials of degree k. 
For a set GE ( [;I) of rank r we define the polynomial p(G) in the 

following way. Let G = {i,, . . . . ik}, G = {j,, . . . . j,} (cf. definition of G in 
Section 2), where i, > . . . > i,. Define 

Note that by Remark 2.3 we have 

fJP(G) 
-=P(G- (41) 

axi, 

if i,>k+r. (3.1) 
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For example in the case k = 1 we obtain the polynomials xi, 
x2 - X1) . ..) xi - x1, . . . . It is easy to see that the first ({) of them form a basis 
of V(j, 1). We shall see that the p(G) have this and some stronger proper- 
ties as well. 

DEFINITION 3.1. 
if 

A polynomial CFE ( [;I) a(F) xF is culled a null t-design 

1 a(F)=0 holds for all 1 TI < t. (3.2) 
TCF 

Note that for fields of characteristic zero this definition is equivalent to 
the one given in [GLL]. 

Let V, = V(n, k, t) be the subspace of I/ spanned by the null t-designs. 
For convenience we set V_, = I/. 

THEOREM 3.2. For all d > k > r > 0 the polynomials p(G), GE 
Ur<j<k g(d, k, j)form a basis of v,- I(4 k). 

Remark. Note that for d < k + r all the families S(d, k, j) are empty, 
implying V,- i (d, k) = (0). 

Proof. We apply induction on d and prove the statement 
simultaneously for all k and r. The case d = k is trivial and can serve as the 
base step. 

The proof is very simple in the case r = 0 as well. Namely, G is the 
largest set F for which xF occurs in the expansion of p(G). Consequently, 
the p(G) are linearly independent and their number is (;f). 

Let Ub= (p(G) : GE UiGb %(d, k, i)). By what we have just proved, 
dim U,,=(f) holds for O<b<d-k. 

CLAIM 3.3. U,n b$,= (0). 

ProoJ In the case b = 0 one has U, = (xi . . . . . xk) and the statement is 
trivial. Thus we may suppose that b 3 1 and apply induction on 6. Consider 
q(x) = Co a(G) P(G) E Ub. 

Let G be the largest set (in the reverse lexicographic order) with 
a(G)#O. Set r=r(G) and note O<r<b. 

Let i, be the maximal element of G. We distinguish two cases. 

(i) il > k + r. Consider the polynomial q*(x) = c?q(x)/ax, E 
U, _ , (i, - 1, k - 1). By the induction hypothesis and (3.1) there exists some 
SE(~$::‘) with CscF a*(F)#O where 

q*(x) = C a*(F) xF. 
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Since a*(F) = a(Fu {i,}), we have 

c E(H) # 0; 
(SW (i, ))cH 

i.e., q(x) $ V, as desired. 

(ii) i, 6 k + Y. In this case we claim that q(x) # V,. For IAl <r define 

B(A)= 1 a(F). 
A c F 

Set B = [k + r] - G, 1 BI = r. Define 

6(B)= c a(F). 
BnF=@ 

By inclusion-exclusion we have 

6(B) = 1 (- l)lA’ B(A). 
.4 c B 

If q(x) E V, then B(A) = 0 and thus 6(B) = 0 follows. However, the maxi- 
mal choice of G implies Fc [k + r] whenever a(F) # 0. Consequently, 
6(B) = cl(G) # 0, a contradiction. 1 

Now it is easy to conclude the proof of the theorem. By Claim 3.3 and 
dim U,=(i) we have dim b<(i)-(f). 

On the other hand, {p(G):GeU,,,,, %(d,k,j)} are (;f)-(i) linearly 
independent polynomials in this space, consequently they form a basis. 1 

COROLLARY 3.3 [W2]. The rank of Z*(k, t) is (y) ouer an arbitrary 
field, Z-for nak+t. 

Proof: Note that V, is the kernel of this matrix viewed as a linear trans- 
formation f(E) -+ r(Y) + “’ + (;1). 1 

For a matrix A4 let col,M be its column-space over Z. 

COROLLARY 3.4. For every field r and for all a 2 b, a + b 6 n one can 
choose a basis v, , . . . . v ,, of col, Z*(a, b) such that for every 0 <j < b and 

(j!,)<i<(r) the vect&‘vi isfrom Z(a, j). 

Proof: Apply induction on b. For b = 0 just take v1 = (1, . . . . 1). Once a 
basis for colF(a, b - 1) is chosen, by rank, Z*(a, 6) - rank, Z*(a, b - 1) = 
(i)- (bT1), we can extend it by (i)- (,,!,) vectors from Z(a, b) to a basis 
of col,Z*(a, 6). 1 
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4. THE SHORT PROOF OF WILSON'S RANK FORMULA 

For a prime p and fixed integers a z b 2 0 define two sets 

S= 
{ 

Odida:p;( 
( > 

41:. , R=[O,a]-S. 

Let us restate (7) with this notation. 

THEOREM 4.1 (Wilson [W2]). Suppose that n 2 a + b then 

91 

rank, Z(a, b) = c 
iEs (Y)-(in 1)’ 

Clearly, this statement follows from Lemmas 4.2 and 4.3 below. For 
Bc (0, 1, . . . . b} let M(a, B) denote the matrix (with (z) rows) formed by all 
the vectors ui satisfying ui E Z(a, 6) with 8 E B (ui is defined in Corollary 3.4). 

LEMMA 4.2. 

Proof: Consider the product Z(a, 6) M(b, R). Its value is the all-zero 
matrix by Proposition 1.3 and the choice of R. By Corollary 3.4 it follows 
that 

Consequently, 

LEMMA 4.3. 

rank, Z(a, b)> C 
ieS 

/n n 

,i - i-l ’ H > ’ 

(4.2) 

Proof: By Proposition 1.3 we have 

col, Z(a, i) c col, Z(a, b) for iE S. 

Consequently, u, E col, Z(a, b) for (i” ,) < j < (r) and i E S, with the notation 
of Corollary 3.4. These vectors are independent, proving (4.2). [ 
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5. PROOF OF THEOREM 1.1 

Let us first prove an easy, kind of well-known statement. For a matrix 
M let col, M denote its column space over GF(p). 

PROPOSITION 5.1. Suppose that 0 < d< p and 

IFI -t 
i > s-t 

s d (mod p) for all FE 9. 

Then 

col,(Z(.9, t)) c col,(Z(9, s)) holds. 

Proof: By Proposition 1.3, 

Z(F, t) = f Z(Y;, s) Z(s, t) 

(5.1) 

holds, implying (5.1). l 

COROLLARY 5.2. Suppose that 0 < s < r < p and I FI = r (mod p) for all 
FE 9. Then 

col,(Z(F, t)) c col,(Z(9, s) 

holds for all 0 d t d s. 

Note that (5.2) implies 

(5.2) 

rank,(Z*(s, p)) = rank,(Z(s, 9)) 6 ’ 
0 

. 
s 

Another use of Proposition 1.3 is the following. 

PROPOSITION 5.3. Suppose that p 1 (‘pb,-,‘) for all FEN. Then 

rank,(Z(4, s)) < T - rank,(Z(s, t)) 
0 

holds. (5.3) 

Proof: By Proposition 1.3, Z(9, s) Z(s, t) is the zero matrix over 
GF(P). I 

Now we can easily derive Theorem 1.1. Define 0 < r < p by k = r (mod p) 
for all k E K. Ifs Q r then it follows from Corollary 5.2 that col,(Z*(K, s)) = 
col,(Z(K, s)) and this latter matrix has only (t) columns proving (4). 
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Let now O<r<s<p. For n<r+p, Z*(K, s)=Z*(y, s) and this latter 
arises from Z*(r, r) by adding some all zero columns. Thus (4) follows. 
Again by Corollary 5.2 and the above case for s = Y we have 

col,(Z(K, s) 1 Z(K, s - 1) I ... 1 Z(K, r + 1)) = col,(Z(K, s)) 

and 

col,(z*(K, Y)) = col,(Z(K, Y)). 

This yields using (5.3): 

rank, Z*(K, S) < rank, Z(K, S) + rank, Z(K, r) d ’ 
0 0 

+ 
s 

: -rank, Z(s, r). 

To prove (4), we need rank,(Z(s, r)) = (y). This, however, follows from 
Proposition 1.2 by n > r + p > Y + s. 1 

6. MORE RANK FORMULAS 

There are many more problems to be considered. For example, what 
happens if we drop the condition s <p in Theorem 1.1? Or if the numbers 
k E K are allowed to belong to t residue classes modulo p. 

We shall return to these problems in a forthcoming paper. Let us just 
announce the following extension of another result of Alon and Babai 
CABI. 

THEOREM 6.1. Suppose that 1 KJ = t. Then 
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