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1. INTRODUCTION 

There are many Ramsey-type results in combinatorics for which stronger 
density versions actually hold. An excellent example of this phenomenon is 
given by the classical theorem of van der Waerden on arithmetic progres- 
sions (see [W, GRS]): 

THEOREM (van der Waerden). For any partition of N = { 1,2,3, . ...} = 
c,uc,u ... v C, into finitely many classes, some class Ci must contain 
arbitrarily long arithmetic progressions. 

This theorem is an immediate consequence of the following density result 
of Szemeredi (see [ Sz, GRS] ). 

THEOREM (Szemeredi). If X G N has positive upper density, i.e., 

~(X):=limsup’Xn{1’2”“yn}1>~, 
n-cc n 

then X must contain arbitrarily long arithmetic progressions. 
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(This implication is immediate since some Ci must have d(Ci) 3 l/r.) 
However, there are other partition-type results for which the correspond- 

ing natural density theorem is not valid. For example, a theorem of Schur 
[S, GRS] asserts the following. 

THEOREM (Schur). For any partition of N = C, u . ‘. u C,, some Ci 
contains x, y, z with x+ y=z. 

The set (2.x + 1: x E N } shows that the straightforward density version of 
Schur’s theorem does not hold, since this set has (upper) density 4 and 
contains no solution to x + y = z. 

It was recently pointed out by Bergelson that nevertheless, it is still 
possible to prove a result which can be viewed as a form of a density 
version of Schur’s theorem. This is the following. 

THEOREM [B]. For any partition of N = C, u . . . v C,, some C, having 
d( Ci) > 0 satisfies for any .5 > 0, 

d(xEN::(yEN:X,y,zECi,x+y=z)>,~(ci)2-&)>0. (1.1) 

What (1.1) says is that some Ci must contain “many” x so that for each 
of these x there are “many” y in Ci so that x + y is also in Ci. However, 
Bergelson’s result does not guarantee that the upper densities of either set 
is bounded away from 0 as a function only of the number r of classes. 

Our goal in this paper is to prove a variety of iterated density results of 
this type for a number of different combinatorial and algebraic structures. 
A simple example of such a result is the following. 

THEOREM. For each r E N there exists 6 = 6(r) > 0 so that for any parti- 
tion of the set ( y) of pairs of elements of N into r classes Ci we have for 
some Ci, 

~(xEN:d(yEN:c?(zEN: {x,y}, {x,z}, {y,z)ECi)>6)>6)>d, (1.2) 

where d(X) : = lim inf,, _ o. 1 X n { 1, 2, . . . . n } I/n. 

In general, we will always prove the stronger theorem having the outside 
density a lower density (rather than an upper density). 

We will frequently use the traditional “chromatic” terminology of Ramsey 
theory, namely, classes correspond to colors, a partition into r classes is an 
r-coloring, and homogeneous objects are monochromatic. Hence, by iden- 
tifying pairs from N as edges of the complete graph on N, the above result 
can be restated as: 
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THEOREM. For each r E N there exists 6 =6(r) > 0 so that for any 
r-coloring of the edges of K,, 

~(xEN::(yEN::(zEN: {x,y, z) is monochromatic) > 6) > 6) > 6. 

An important class of results in Ramsey theory deal with so-called 
induced, restricted Ramsey theorems (see [NR2]). In attempting to con- 
struct iterated density versions for these theorems, however, it is not 
immediately obvious what the underlying large “universal” object should 
be, e.g., what infinite graph should take the place of K, above for the case 
of triangle-free graphs. We will argue that for the case of graphs, the 
appropriate objects in this case are the so-called countable universal K,-free 
graphs. We use these for our iterated density results, and in a similar way, 
after proving the existence and uniqueness of these universal objects for 
vector spaces, we establish the corresponding iterated density theorem 
(Section 3). We have also included (in Section 7) new proofs of the finite 
unions and finite sums theorems which are considerably simpler than 
previous proofs. 

2. AN ITERATED DENSITY RAMSEY THEOREM 

For ke N, let (f) denote the set of k-element subsets of the set X. The 
standard form of Ramsey’s theorem is the following. 

THEOREM (Ramsey [Ra] ). For any k and r in N, andfor any partition of 
(F)=C,u ... UC,, there is an infinite set XC N such that for some 
ci, (i, E c;. 

A naive attempt at a density version of Ramsey’s theorem cannot suc- 
ceed since, for example, when k = 2 the graph B with vertex set fV and edge 
set { (2i, 2j + 1 } : i, je N } has essentially half of all possible edges (say, 
restricted to [N] = { 1, 2, . . . . N}) and yet contains no triangle. Our next 
result furnishes an iterated density form of Ramsey’s theorem. 

Assume f, rEN and (F)=C,u . . . UC, is a partition of (y) into r 
classes. For a, < . . . < a,-, in N, define 

r(a (al, . . . . a,- I, -x> 
k 

is homogeneous 

and for Odi<l- 1, 

r(a 1 ,..., a,):={x~N:d(T(a, ,..., ai,x))>6), (2.1) 

where 6 =6(k, 1, r)=2-R and R:= R(k, 1, r), the Ramsey number (see 
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[GRS]) guaranteeing homogeneous k-sets of an I-set using partitions into 
Y classes. For i = 0, we denote the expression in (2.1) by r. 

THEOREM 2.1. For all k<l and eE N, 

g(r) > 6. (2.2) 

Comment. It is perhaps useful at this point to consider (2.2) for specific 
small values of k and 1, say k = 2 and I = 3. In this case, since 
R(2, 3, r) < (r+ l)!, for example, then (2.2) asserts that for 6:= 2-(‘+‘)! 
and for any partition of the edges of the complete graph with vertex set N 
into r classes C, u ... u C,, we must have 

d(x:d{y:d{z:alledgesoftriangle {x,y,z}areinthesameCi}>6}>6}>6. 

Proof of Theorem 2.1. Assume d(T) 6 6. Thus, 

LqlV\T)>l-6. 

Note that 

x 4 Ua,, . . . . ai) =z. d(T(a,, . . . . a,, x) < 6. 

Define Si, i = 1, 2, . , as follows: 

Sl = 1% 13 where si E N \r is arbitrary. 

Suppose Sj= {si, s2, . . . . si} has been defined. Form S,, i = Sj u { sj+ i } by 
choosing sj+ i (if possible) so that: 

(i) S~+~E~-UU~~OU,~~,<...<~,~~‘(S~,...,S;,):= Bj, 
(ii) For no YE ( “),+I) is ( ,‘) homogeneous. 

Note that since 

a(Bj{(b)+(i)+ . ..+(l5))6.1-2’6 

then we never get stuck because of (i). However, by Ramsey’s theorem, we 
must eventually halt because of condition (ii), say, with the formation of 
Si, for some t < R. By the definition of S,, for each c E B,, there is a set 
X(c) E ([?i) such that (X(c); (‘I is omogeneous. Thus, there exists a set 
X={ .<...<s. }E(- )su)chtiat 0 s,, 

SI 
J/-i / 1 

-1 -1 

~{cEB,:X(C)=X,}>~(B,) >2pR=6 

(2.3) 
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by the choice of 6. However, by construction, 

sjf-l 6 Qsj13 ...9 sj,-2) 

which contradicts (2.3). This proves (2.2). 1 

3. VECTOR SPACES 

Let 4 be a fixed prime power and let V be the standard infinite-dimen- 
sional vector space over GF(q), that is, the points of V are all infinite 
sequences (x, , . . . . x,, . . . . ) with X~E GF(q), having only a finite number of 
nonzero entries, and addition and multiplication by y E GF(q) done coor- 
dinatewise. Throughout this section we consider q as fixed and do not refer 
to it specifically. 

For vector spaces we use notation similar to that for sets. In particular, 
if U is a vector space then [ y] is the collection of all k-dimensional 
subspaces W of U. We use the notation W< U to indicate that W is a 
subspace of U. Let [z], = no s i< k (q” - qi)/(qk - qi) be the Gaussian 
coefficient, i.e., the number of k-subspaces in an a-dimensional space. Note 
the trivial inequality [z], < quk. 

Let ei E V be the sequence with 1 in the ith coordinate and 0 elsewhere. 
Set V, = (e,, . . . . e,). That is, I’, is the subspace of vectors having zeros 

in all but possibly the first n coordinates. 
If 9 c [T] then one defines the upper density d(P) by 

The lower density d(9) is defined similarly, except that lim sup is 
replaced by lim inf. We will primarily use this definition for k = 0, i.e., when 
9 is a set of points. 

Let us recall the basic Ramsey theorem for vector spaces. 

VECTOR SPACE RAMSEY THEOREM (Graham, Leeb, and Rothschild 
[GLR]). Let I> k > 0, r 2 2 be integers. Then there exists d= d(1, k, r) 
such that for ail partitions [F] = C, v . . . v C, of the k-subspaces of a 
d-dimensional space U, one can find WE [ ‘;I with [ y] c Ci for some i. 

Let us now consider an arbitrary but fixed partition [ y ] = C, v . . . v C, 
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of all k-spaces of V. As usual, a subspace U is called monochromatic if 
[ y] c Ci holds for some i. 

Fix Z>k and for every WE [I!,] define 

r(W) = (~2 E V: ( W, w) is monochromatic}. 

Let 6 < 0 be a small positive constant-we shall fix the value of 6 later. 
Define by backward recursion on I- 2 > i > 0 and U E [ y 1, 

r(U)={uEv:n(r((u,u)),>s). 

Finally, r=r(O)= (u~V:d(Q(u)))>?i}, where 0= {(O,O, . . . . 0, . . . . )> 
is the zero-space. 

THEOREM 3.1. For 6 = q -Id/4 we have 

d(r) > 6. 

Proof. The proof is similar to the proof in the preceding section, 
although technically more complex. We argue indirectly and suppose that 
d(T) < 6, i.e., J(V - r) > 1 - 6 holds. 

Our aim is to find as large a subspace W as possible with the following 
properties: 

(i) W has no monochromatic I-subspaces; 

(ii) for all U < W with 1 < dim U < 1 one has J(ZJ U)) Q 6. 

By (i) and the vector space Ramsey theorem we know that 
dim W-C d(l, k, r) holds. On the other hand, W= (0), the zero-space, 
satisfies (i) and (ii). The contradiction establishing the validity of the 
theorem follows from the next lemma. 

LEMMA 3.2. Let WC V be a subspace satisfying (i), (ii) and 
dim W-C d = d(l, k, r). Then there exists U with dim U = dim W+ 1 satisfy- 
ing (i) and (ii). 

Proof of the lemma. Choose n so large that W < V, and 
Ir(W,)n V,l/IV,l<226 holds for all WO< W (note that T(W,)=@ 
holds automatically if W, is not monochromatic, and, in particular, for 
dim W, 2 I). Among such n select n so that 1 Tn V, I/ 1 V, 1 < 26 also holds. 

Let U,, . . . . U, be all the subspaces of V, satisfying dim Ui = dim W + 1 
and W<Ui.NotethatV,-W=(U,-W)u...u(U,,-W)isapartition 
and 1 Ui - WI = qdim Wf ’ - qdim w  and consequently, m > qnpd holds. If 
some of the Ui satisfy (i) and (ii) then we have nothing to prove. Suppose 
that this is not the case. Then for 1~ i< m, we can choose a subspace 
Tic Ui such that either dim T, = 1 and Ti is monochromatic, or 
l<dim Wi<Iandd(T(Ti))>6. 
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Set Wi = T, n W. Then dim W, = dim Ti- 1 holds because Ti 4 W. 
Choose U,E (Ti-- Wi). Then by definition, USE I( Wi) holds. That is, 

{U 1, . . . . 4?lldLv,<w f ( W,), yielding 

4 

Comparing the extreme sides gives 6 > q-d’/4, a contradiction. 1 

4. UNIVERSAL COLLECTIONS OF VECTOR SPACES 

For % c [y] and 9 c [ y], an embedding of 3 into 9 is a linear 
injection 4: W -+ I/ such that q5(‘3) = 9 IdcW). 

Let 31U denote (GE%‘: G< U}. 

DEFINITION 4.1. Call a family 9’ c [ y ] unioersal if for every collection 
zfc,[ y] , every W, < W with dim W, = dim W- 1, and every embedding 4 

, WO into 5, there is an embedding of 3 into 9 which coincides with 
the previous embedding on W,. 

THEOREM 4.2. For every k > 1 there is up to isomorphism exactly one 
universal family B c [y ] . 

Proof of Existence. Let T,, TZ, . . . . T,, .,., be a linear ordering of all the 
elements of [y] satisfying the property that Tic V,, T,-K V, implies i<j. 

Define a probability space P on all (uncountably many) collections 
F c [y] by setting 

p(T,~9)= 4 for all i> I 

and letting these events be completely independent (for a detailed explana- 
tion of this procedure for sets see [Cl). 

CLAIM. ~(9 E P is universal) = 1. 

Proof of Claim. Since there are only countably many choices for W, 
W,, 3, and 4 from Definition 4.1, it is sufficient to show that for each 
particular choice the extendibility holds with probability 1. Set dim W = d. 

Set d( W,) = U, and let U,, Uz, . . . . U,, . . . . be inlinitely many distinct 
spaces in Cdim gO+ 1] containing U,. Let q5r, &, . . . . be arbitrary extensions 
of the map 4: W,-+ U. to a l-l linear map q5;: W+ Ui, i= 1,2, . . . . Thus, 

~(4~ is an embedding of Y into 9)=2-[z]4+[dk1]q. 
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Moreover, these events are completely independent for i = 1, 2, . . . . Thus, 
with probability 1, infinitely many of them are embeddings of Q into 9 
extending the embedding q5. 1 

Proof of Uniqueness. Let 5 and X be two universal families of 
k-spaces of W. Let fi, f2, . . . . and h,, h,, . . . . be two bases for W. We shall 
define an isomorphism 4: V + V from 9 to 2 inductively. First we fix 
q5(0, . ..)) = (0, . ..) ). 

Suppose that 4 is defined on a subspace IV,, and choose i minimal so 
that fi # IV,. Set W= ( W,,f,) and use the universality of Z to extend 4 
to (LY: w+ w. 

Then choose j minimal so that h, 4 #( W). 
Let II/ be the inverse of 4, i.e., $(#( W)) is the identity on W. Apply the 

universality of 5 to extend the embedding $ of y)(,) to an embedding of 
2 ,<)(w),Fj) and let 4” be the inverse of this embedding. 

Iterating this procedure indefinitely, we obtain the desired 
isomorphism. 1 

Call a family 9 c [ r] K,-free if [ y] $ 9 holds for all U E [ 71. 

DEFINITION 4.3. Let t > k > 1 be positive integers. Call a K,-free family 
9 c [ y ] universal K,-free if the conditions of Definition 4.1 hold for all 
K,-free families Y. 

THEOREM 4.4. For all t > k 3 1 there exists a unique universal K,-free 
family 9~ [y]. 

The proof is rather similar to that of Theorem 4.2. 

Proof of Existence. Let T,, T2, . . . . be a linear ordering of [ y ] as before. 
We will define a probability space P(t). However, this time we have to be 
more careful. For every finite (0, 1)-sequence E = (cl, . . . . E,) define the 
family F(E) = { Ti: si = 1 } and the event 

E(E)= V’n+l E B holds for 9 E P( t) assuming that F(E) c F}. 

Next we define p( E(E)) inductively: 

J@(E)) = 1 for the empty sequence and 

P(E((Q, . . . . Q)) = ; if F( (.sr , . . . . E,, 1)) is K,-free 
if F((.sr, . . . . E,, 1)) is not K,-free; 

P(E((E~, . . . . E,,, 0))) = 1 -p(Ett~I, . . . . E,, 1 ))L n 2 0. 

In a less formal way, we build up a random family 9 step by step. In 
step n we first check whether the addition of T,, maintains K,-freedom. If 
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not, we do not add T,,; if so, then we add it with (independent) probability 
i. As in the case of Theorem 4.1, we only have to show that a fixed quad- 
ruple ( W, W,,, b,%) can be extended with probability 1. Set dim W= d. 

Choose b to satisfy & W,) < Vb and let R,, R,, . . . . be d-dimensional 
spaces satisfying I&W,) < Ri < W and R,-+ Vb. Set Qi= ( Vb, Ri). Suppose 
that Ql , Q,, . . . . are all distinct. This implies that the k-subspaces of $( W,) 
precede the remaining k-subspaces of Ri in the ordering T, , T2, . . . . 

Let di: W+ Ri be an arbitrary l-l linear extension of 4. Then for 
9 E P(t) we have 

because qVb u hi(S) is K,-free and once qV, is fixed, for any of the 
[“i ‘I- [p] k-subspaces T< Qi, T4 vb with probability at least 1, we 
make the right choice. 

The resulting probability is a small but positive number, so with 
probability 1 the desired event occurs infinitely many times. 1 

The proof of the uniqueness is exactly the same as in the case of 
Theorem 4.1 and will be omitted. 1 

5. ITERATED DENSITY RESULTS FOR INDUCED 

AND RESTRICTED SUBSTRUCTURES 

Let 1 d k < 1 be integers. For 9 c [Ii], let [ “;I c [ “;‘I be the collection 
of all complete l-spaces W in 5, i.e., those W satisfying [ y] c F. The 
induced restricted Ramsey theorem for spaces can be stated as follows. 

THEOREM 5.1 (Frankl, Graham, and Rod1 [FGR2]). Let 1 < k 6 I< t, 
r > 2 be integers and let B c [ y] be a K,-free family of k-spaces. Then there 
exists a K,-free collection 3 c [y] such that for all r-colorings of [ “;‘I one 
can find some U < W with 4 u E 9 and such that all l-spaces in [y] have 
the same color. 

We shall use this theorem to establish the desired iterated density result 
for colorings of the universal families of spaces. 

Let us start with the harder one. Let F be as in Theorem 5.1 and con- 
sider an arbitrary r-coloring of [ 71, where 8 is a random element of P(t). 
Let T be a subspace satisfying 9 c [ i] , define d = dim T and let e, , . . . . ed 
be a basis for T. 

For RE [,!,I define 

r(R) = {f E v: ~c;<R.~) is a monochromatic induced copy of 9}. 
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As in Section 3, we define by backward induction for Q E [ y 1, 

UP)= {f~w-Q:a(r(<Q,f>))>O) for d-l >i>O. 

Finally, we set r= f(0). 

THEOREM 5.2. d((r) > 0 holds for almost all X E P(t). 

Proof. From Theorem 4.3 we already know that almost all 2 E P(t) are 
&free universal. However, to prove this theorem we need slightly more 
(which follows from the proof of that result). Namely, let d c [ y] be 
&-free, IV, < W, W = (f,, . . . . fd), and W, = (f,, . . . . fdp, ). In addition, let 
e,, . . . . edP i be elements of V such that 4: fi -+ ei, 1 6 i < d - 1, defines an 
induced embedding of 4 w0 into X. Then with probability 1 the lower 
density of fdE W such that 4: f, + ei, 1 < i < d, embeds d as an induced 
family is positive. 

Using this fact, the proof of Theorem 5.2 is similar to that of 
Theorem 3.1. 

We suppose to the contrary that d(T) = 0. Let 9 be as in Theorem 5.1 
and let W= (IV,, . . . . wb) be such that dim W=b and 9~ [y]. 

We want to find (by induction) linearly independent elements 
ui, . . . . ui E V such that the following hold: 

(i) 4 : M; + uj defines an induced embedding of 9j <,,,,. ,, ,,,, > into 
=e= -x;cu,. . . . . u,); 

(ii) x contains. no monochromatic induced copy of 9; 

(iii) for all subspaces Q of dimension less than d of (u,, . . . . ui) one 
has a((r(Q)) = 0. 

If we can show that this is possible up to i = 6, then we get the desired 
contradiction. Namely, (ii) contradicts Theorem 5.1 for i = b. 

However, as we said in the beginning of the proof, with probability 1 the 
set of possible continuations ui+ i has positive lower density. Omitting all 
elements which would cause a violation of (ii) or (iii) means omitting one 
set of lower density zero and a finite number of sets of upper density zero. 
Thus, the set of permissible choices of ui+ i will have positive upper 
density-the desired contradiction. 1 

Remarks. Obviously, the same proof works for the countably universal 
K,-free graphs as well (the existence of those graphs was proved by Henson 
[HI; cf. [Cl for many interesting results on universal and universal K,-free 
graphs). 

We believe that in this case, unlike Theorem 3.1, it is not possible to get 
positive lower bounds for rj(T). However, with basically the same proof one 
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can get lower bounds of the form C?(E) if we only require the statement to 
hold for X’ E P(t) with probability at least 1 - E. 

In the case of universal (not K,-free) spaces or graphs, one can get 
explicit lower bounds for 4((r) in terms of r, k, and 1. 

In case of graphs one has to use the induced Ramsey theorem 
(cf. [D, EHP, R] ). For hypergraphs or for colorings of complete subgraphs 
(and for restricted versions as well) one needs the stronger Ramsey 
theorems of NeSetiil and Rod1 (see [NR]). 

6. (m, JJ, C)-SETS 

In 1973, Deuber [Dl] introduced certain combinatorial structures, 
called (m, p, c)-sets, in connection with his fundamental work on solution 
sets of systems of homogeneous linear equations. In particular, Deuber 
showed that (m, p, c)-sets enjoy a Ramsey theorem (see the theorem 
below). In this section, we prove an iterated density theorem for (m, p, c)- 
sets. 

We begin with a few definitions. For m, p, c E N, define: 

D(m,p, c) := {(%I, . ..) J,,) : Ai are integers, and for some i < m, 

I& <p,j<i, %i=c, S=O,j>i}. 

For x1, . . . . x, E N, 

<x 1, . . . . x,) := 
{ 

t 2,x,: (AI, . . . . &)ED(m,p, c) . 
i=l > 

A subset S E N which can be written as S = (x1, . . . . x, ) for some xi E N is 
called an (m, p, c)-set (where the values of p and c are understood from the 
context ). 

THEOREM (Deuber [Dl ] ). For all m, p, c, r E N there exist A4, P, C E N 
such that in any r-colored (M, P, C)-set there must always exist a 
monochromatic (m, p, c)-set. 

Fix m, p, c, r, m 3 2, r > 2 and fix an r-coloring of N. Let 
6 = 6(m, p, c, r) > 0 be chosen appropriately (to be specified later). Define 

T(.u 1 > . . . . x,- 1 ):= {x~N: (~,,...,x,,~,,x)ismonochromatic}, 

and for O<i<m- 1, 

Z-(.X u-j:= {xEN:d(r(x, ,..., Xi,X))>6). 1 > ‘..1 _ , 
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In particular, for i = 0, 

THEOREM 6.1. 

cl(r) 2 6. (6.1) 

Proof: Suppose (6.1) does not hold, i.e., d(r) < 6. Thus, if r : = N \r 
then 

-- 
d(f)>l-6. 

We now construct a sequence of (k, P, C)-sets Sk, k = 1, 2, . . . . as follows. 
To begin with, select si E r arbitrarily and set S, = (s,)‘, i.e., S, is a 
(1, P, C)-set (in general, (k, P, C)-sets will be denoted by primed notation 
(x 1, . . . . xk)‘). Now suppose Sj= (si, . . . . sj)’ has been defined. Select sj+ ,, 
if possible, so that with Si+ i := (si, . . . . s,, sj+ i)’ we have 

(i) sj+ 1 > 3MPc sj; 

(ii) if (vi, . . . . vk)zsj+l for some k<m then 

v,$r(v,t ..., v,-,); 

(iii) Sj+ i contains no monochromatic (m, p, c)-set. 

By Deuber’s theorem, this process must stop with the formation of S, for 
some t < M. We claim that the reason why S,, i could not be formed is 
because (iii) could not be satisfied. (It is obvious that it is not (i) which 
stops S, + i .) To see it is not because of (ii) we argue as follows. 

First observe that (by (i)) any XE S, = (si, . . . . s,)’ has a unique 
representation as 

x=l,s,+ ... +ih’-,s*.-,+CSH., llil Gp. 

In this case, we say that rank(x) := w. 

CLAIM. Zf (u,, . . . . uk) c S, for some k < m then all the quantities cu, 
have distinct ranks. 

Proof of Claim. Suppose the contrary and let i < j be so that 
rank(cu,) = rank(cuj) = w. Thus 

cui=I,s,+ .” +J.w,~,s,.~,+Cs,,ES,, 

cu,=/i;s, + ... +Il,-,s,,-,+Cs,.ES,, 
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and also 

u,+cuj=~(i,s,+ ... +Iza,+,s$+~)+Iz;s~+ ... +A;.pIsw.-] 

+ C( 1 + l/c) s,. E (U,, . ..) #k) c S,. 

However, by the choice of the st, 

which implies ui+ cuj# (sr, . . . . s,)‘, a contradiction, and the claim is 
proved. 

As a consequence, if (u,, . . . . uk) s (sl, . . . . s,)’ and rank(cu,)< ... < 
rank(cu,) =j then (u,, . . . . uk- 1) c (sl, . . . . sj- ,)‘. Thus, to satisfy (ii) in 
trying to form S,, r, we must choose s,+ , so that if (24r , . . . . uk) c 
(s 1 > . . . . s, + 1 )’ with rank(cu,)< ... <rank(cu,) then uk$r(u ,,..., ukeI). 
This is immediate (by induction) if rank(q) < t, so assume rank(q) = 
t + 1. Therefore, (u,, . . . . uk- i ) G (si, . . . . s,)‘. By the definition of s,, 

Hence, c@~(u,, . . . . uk-2, Uk-,))<d. Now uk=A1sl + ... +~tS,+cS,+I for 
some choice of A,, . . . . 2, with I& 1 < P. Thus, for 6 suitably small, we can 
certainly lind a (large) s,, , so that &$r(u,, . . . . uk- ,), i.e., so that (ii) 
holds. 

Therefore, S, has the property that for a set X of upper density at 
least t (for 6 sufficiently small), for each XE X, (si, . . . . s,, x)’ contains 
some monochromatic (m, p, c)-set U(x) = (u,(x), . . . . u,(x)), where we 
can assume rank(cu,(x))< ... <rank(cu,(x)). Since S, contains no 
monochromatic (m, p, c)-set then U(x) $ S, so that rank(cu,(x)) = t + 1. 
Hence, U’(x) := (u,(x), . . . . u,-,(x)) GS,. Therefore, if K denotes the 
number of (m - 1, p, c)-sets contained in S,, then for some (m - 1, p, c)-set 
u* = (u:, . ..) ux-, ) with rank(cuF) < . . . -C rank(cu2 _ i), we have for 
X*= (xeX: ui(x)=ui*, 1 <<i<m- I}, 

In particular, since x E X* * (UT, . . . . uz- i, U,(X)) is monochromatic and 
rank(cu,(x))=t+l in (sl ,..., s,,x) then d(y~N: (UT ,..., u;-,,y) is 
monochromatic} 2 1/2CK > 6 for 6 sufficiently small. 



108 FRANKL,GRAHAM, ANDRijDL 

However, 

(u:, . . . . U;-l)GS, 

~u~-,~r(u: )...) u$_2)= {yEN:d(z-(u1* ,..., z4~-1,y)2s} 

~d(r(u:,...,U;)-2,U;r,-l))<~ 

d(yav: (u?, . ..) u z _ , , .v > is monochromatic) < 6 

which is a contradiction. Thus, we must have &t(T) 2 6 and the theorem is 
proved. 1 

We point out that our theorem for (m, p, c)-sets has as an immediate 
consequence iterated density results for solution sets to partition regular 
systems of homogeneous linear equations, the simplest perhaps being the 
single equation x + y = z. The statement in this case is: 

THEOREM. For al/ r E N there exists 6 =6(r) > 0 so that for any 
r-coloring of N, 

In fact, a more careful analysis shows that in this case we can take 
6(r) = 2-“+ l’!. This, of course, is an iterated density version of the 
previously mentioned theorem of Schur [S], which asserts that in any 
finite coloring of N, monochromatic solutions to x + y = z always exist. 

7. FINITE UNIONS AND FINITE SUMS 

In this section we will first give new proofs for the “finite unions” and 
“finite sums” theorems: Let us first recall these two important Ramsey-type 
theorems (see [GRS]). As usual, for XE N, [x] denotes the set 
(1, 2, . ..) x}: 

U(k, r): For all k, r E N there exists U= u(k, r) such that for all 
r-colorings of the power set 2[“‘, one can find k pairwise disjoint nonempty 
subsets A i, . . . . A, so that all possible nonempty unions (Jie, Ai, 0 # ZE 
[k], have the same color. 

S(k, r): For all k, r E N there exists s = s(k, r) such that for all 
r-colorings of [s], one can find k distinct integers aI, . . . . ak in [s] so that 
all possible nonempty sums xis, ai, 0 # ZG [k], have the same color. 

The implication U(k, r) + S(k, r) is immediate. Indeed, an r-coloring of 
[2”] induces an r-coloring of 2t”’ in the usual way, namely, to XE 2[“’ 
assign the same color that C,,X 2*- ’ E [27 has. The definition of u 
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implies the existence of pairwise disjoint nonempty A,, A,, . . . . Ak with all 
unions U iE, Ai, @ # Is [u], having the same color. This clearly implies 
that the integers a,, a,, . . . . ak with aj: = CiEA, 2’- i have monochromatic 
sums. 

We will now prove the implication 

S(k, Y) * U(2k, r). (7.1) 

Since S( 1, r) is obvious, we can thereby obtain the chain of implications 

=a S(2d, r) * U(2df ‘, Y) * S(2df ‘, r) =+ . . . ) 

which implies both U(k, v) and S(k, Y) for all k and Y. 

Proof of (7.1). Let s = s(k, r) be the integer needed for S(k, r). Let n be 
an integer (whose existence is guaranteed by Ramsey’s theorem) with the 
property that for any r-coloring of 2 [“I, there is a subset Xc 2[“’ of size 
3s so that the color of any subset Y c X depends only on the size 1 Y) of Y. 

Now consider an arbitrary r-coloring of 2[“]. In particular, this is an 
r-coloring of all subsets of [n] of the form S= [a,, b,) u [a,, b2) u ... u 
[a,,b,), where O<a,<b,<a,<b+ ... <ai<b,dn and ids. To each 
such subset associate the 2i-set S* = {a,, b,, . . . . aj, bi} G [n] and assign it 
the same color that S has. By the choice of n there is an associated 
3s-element set X* = {a,, bI, cl, . . . . a,, b,, c,} E [n] (in increasing order) 
with the property that the (original) color of any subset of 2[“] consisting 
of i pairwise disjoint half-open intervals with distinct endpoints from X* 
depends only on i, for i < s. This therefore defines an r-coloring of [s]. By 
the choice of s, S(k, Y) implies the existence of positive integers x1, . . . . xk so 
that all nonzero sums zis, xi, ZG [k], have the same color c. 

Consider the 2k pairwise disjoint subsets 

Y, := u Cbj, cj)> 1 di<k. 
xl+ +x,-~<.j<xl+ +.Y, 

Since [aj, b,) u [b,, cj) = [aj, c,) then it follows that any nonempty union 
of the Xi and Y, has color c. This shows that S(k, r) 3 U(2k, Y) and the 
proof is complete. 1 

Finite unions. For a family B of finite subsets of N, we can define 

~$9 ) = lim sup 
(9”2[“‘) 

n-r 
2” 
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with d(9) defined analogously. For A,, . . . . A, ~9 define a*(A,, . . . . Ak) := 
{ Ui,, Ai: /25 # Ic_ [k]}, the Boolean algebra generated by A,, . . . . A, (with 
the empty set deleted). There is an iterated density version of the finite 
unions theorem which can be stated as follows. First fix an r-coloring of all 
finite subsets of N. For finite sets A,, . . . . A,+, , define: 

T(A,, . . . . A,_ ,) := (X: B*(A,, ,.., A,,-, , X) is monochromatic), 

r(A 1, . . . . Ai) : = (X: d(r(A1, . . . . A,, X)) > 6}, O<i<m- 1, 

where 
r=r(fa)= {x:a(r(x))>s) 

and 6 is a suitably small positive number, which depends on m and the 
particular coloring as well. 

THEOREM. For any r-coloring of the finite subsets of N, d( ZJ 2 6. 

The proof follows much the same lines as the earlier proofs. That is, we 
assume &(r) -C 6 and sequentially construct a maximal family F, = 
{S, , s*, . . . . S,} of disjoint sets so that Sj $ T(S,, . . . . S,), 0 < i, < . . . -C i,, <j, 
1 <j< t, and for all X$T(S,,, . . . . S,), O<i, < ... <i,< t, 9?*(S,, . . . . S,, X) 
contains no monochromatic 9Y*( V,(X), . . . . V,(X)). The finite unions 
theorem guarantees that t < u(k, r). The argument is now completed by 
focussing on that portion of F, which is common to a positive fraction of 
the B*( VI(X), . . . . Vk(X)) (details are left to the reader). 

An iterated density version of the finite sums theorem follows from 
Theorem 6.1. An iterated density version of the infinite version of the finite 
sums theorem (Hindman’s theorem [Hi]) was proved recently by 
Bergelson and Hindman [BH] using, in part, an ergodic theoretic 
approach. 
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