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Let X be an n-element set and .# a family of k-subsets of X, Let r be an integer,
k > r> 2. Suppose that # does not contain r + 1 members having empty inter-
section such that any r of them intersect non-trivially. Chvatal and Erdés conjec-
tured that for (r + 1) k < rn we have |.#| < (;Z]). In this paper we first prove that
this conjecture holds asymptotically (Theory 1). In Theorems 4 and 5 we prove it
for r=2,k>5, n> ny(k); k> 3r, n > ny(k, r), respectively.

1. INTRODUCTION

Let X be a finite set of elements and let # be a family of k-element
subsets of X. Let r be an integer, r > 2.

We say that # contains an r-dimensional generalized simplex (or simply
r-simplex) if we can find F,,..., F,,, €.F such that

r+1
ﬂ Fi=0,
i=1

but for any 1 jr+1,
N F+@.
1#)

It is easy to see that there is no r-simplex with k < r. For k =r the F’s are
necessarily the vertex-sets of the faces of an r-dimensional simplex, i.e., the
different r-subsets of an (r + 1) set.

A special case of Turan’s problem is: (see [7]). What is the maximum
number of edges # can have if it contains no k-simplex?

For k=2 the answer follows from Turan’s more general theorem (see
Turan [7]); it is [n/2][(n + 1)/2].
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For k > 3 the problem is involved, but evidently this maximum is at least
[n/k], i.e., more than c,(}) for some ¢, > 0. What happens if k > r?
Erdos [4] made the following

CONJECTURE 1. Let 3 < k< 3n, and suppose # contains no 2-simplex.
Then | # | = ("))

Chvatal [2] made the more general

CONJECTURE 2. Let r <k (r/(r + 1)) n, and suppose # contains no r-
simplex. Then | # | < (32 1)

Chvatal 2] proved this conjecture for k =r + 1.

The validity of Conjecture 2 in the case ((r — 1)/r)n < k follows from
Lemma 1 in [5]. It was proved by Bermond and Frankl [1] for an infinity of
special values, but always n < k%

The aim of this paper is to deal with the case n > ny(k). First we prove

THEOREM 1. Let r<k< (r/(r 1)) n, and suppose F contains no r-
simplex. Then || < (1 +o(1)(}?Z 1))

Acccording to the result of Chvatal we may assume k> r + 2.
In the proof we make use of the following consequence of a theorem of
Duke and Erdds [3].

THEOREM 2. Let r+ 2 <k and suppose * contains no 3 numbers F,,
F,, F, such that for some r-element subset D of F, we have

F,NF,=F,NF,=F,NF,=D.

then for some constant C, we have

In Section 3, we prove

THEOREM 3. Suppose # contains no 2-simplex (i.e., triangle), k > 5,
n 22 ny(k). Then one of the following holds:
@ FI1<GID
(ii) For some y € X we have y € F for every F € F.
(iii) For some x € X d{x)<3(;_3) holds (d(x) is the nuber of
edges of F containing x).

Next we deduce the conjecture of Erdés from Theorem 3.
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THEOREM 4. Suppose F contains no 2-simplex, k > 5, n > nj(k). Then
either every member of # contains a fixed element y of X or we have
FI< G0

In the last section we give a sketch of proof for

THEOREM 5. Suppose # contains no r-simplex, k > 3r, n> nyk,r).
Then either every member of # contains a fixed element y of X or we have
| F1< G2

The proof of Theorem 5 heavily depends on a refinement of a result in [6].

2. THE PROOF OF THEOREM 1

First we divide # into two subfamilies. Let us define
Fo={FEF|VGCF,|G|=k~1,3F € #,F +F,GcF'},
F=F -,

={FEF |IG=G(F),|G|=k~1,VFFEF ,F #F,G¢F')}.
Let us set

% = (G(F)| FE.#;}.

Then by the definition of .#, we have
n—1 n—1
= .
A=< (p )+ (5 ) M)

Suppose we can find F, F', F" € #, and D c F, |D|=r such that
FAF=FNF =FNF' =D, )

Let D= {d,d,,..,d,} and for i=1,..,r let F, be a set in # different to F
which contains F — {d;}. The existence of F, is assumed by the definition of
Fy.

As F, — F consists of one element, x,, lying outside of D, and (F' — D)
(F" — D)= @, we have either x, € F' or x, € F".

Hence it is possible to choose F,, ; =F or F” such that x, € F,,,. We
assert F, 1,..., 1, F, , is an r-simplex.

As F\NF,,,=D-{d,}, and d,&€F, for 1<ig<r, we deduce
NitiFi=2. .
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By the definition of the F,’s we have

de()F, forlgjgr,

i#]
and

F-D)= () F,

l#r+1
which proves that F,,..,F,, , indeed form an r-simplex, a contradiction,
establishing that there are no F, F', F" € F,, and D cF, |D|=r which
satisfy (2).
An application of Theorem 2 yields

Fi<a(} ;) 3)

Combining (1) and (3) we obtain

=A< (f ) )+ ared (25 ) =aremn(f 2 )-
Q.E.D.
3. THE ProoF oF THEOREM 3
Without loss of generality we may assume
=1 (520 ) @
k—~1

and that N F=02.
Let us divide # now into three subfamilies.

F,={FEF|VGcF,|G|=k—1,3F €F,F +F,GcF},
F,={FEF|3G,,G,F,|G,|=|G;|=k—1,G, # G,,

VF,,F,€#,F,#F+F,,G,¢F,,G,&F,),
F1=F = (FHUA),

i.e., for the members of #, there is exactly one (k — 1)-element subset which
is contained in no other member of #. By the definitions we have

e ()= (20) + (R 22): )
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In view of (3) we have

mi<a(s s ) ©)

Is |#| = || + | #| +|F,| from (4), (5) and (6) we derive

F=a+ed(3,) 1)

Now using (6) and (7) we get from (4)

AP ( 1) (1+2ck)(k 3) (kfl) (2+2ck)(k i) ®)

For an F € #, let G(F) denote the (k — 1) subset which is contained in no
other member of #; we call G(F) the kernel of F. Let us set {x(F)}=
F — G(F); we call x(F) the complement of G(F).

Let us define & = {G(F)| F € #,}.

Obviously | €| =|#;|. For a 2-element subset E of X let us set d(E)=
HGEZ|EcGY.

Our next aim is to prove that all but c,n 2-element subsets of X have
degree d(E) > 2(?~2). For this purpose let us set

£ = 3Ech|E|=2,d(E)> 3 (::i)t

(i)l

k-3/V

Let us count the number of pairs (E, G), E < G € ¥, |E| = 2 in two different
ways. We obtain

(5 ) mi<imi (23) +1ei 5 (5 3)
- (3) (:23) -5 (:23):

Using (8) we obtain from (9)

" Ve (P )<(, " _—————,g'(" §>
e fi)el )

EN IR

& = EECX||E|=2,d(E)<

©)
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or

k— -1
&< 4 ( 5 ! )(2+2ck) 2—2 <4k— DR+ 2 )n=c,n (10)

Our next observation is that if F, F', F" € #, satisfy (2), with of course
r =2, then D < G(F) is impossible. The proof is word for word the same as
the proof of the impossibility of (2).

For Ec X, |E|=2 and x € (X — E) let us set

Z(x, E)={G € ¥ | E — G, x is the complement of G},
g(x, E) =¥ (x,E).

Let us consider now a fixed E € &,. Let x,,..., x,, be those elements of X — E
for which g(x, E) > 0. We may suppose

g(x,, E) > g(x,, E) > -+ > g(x,, E). (11)

We want to prove
’" 3
S s B <= E-2) (3, ) (12)

We may assume m>3. Let G,€¥%(x,,E). Let us set
H=(G,— E)U {x,}. Let i be the greatest integer such that there exists
F, € # satisfying F,"H =@, G(F,) € Z(x,, E).

As the number of sets GE &, Ec G, GN H # @ is at most (k — 2)(}_
we deduce

3 e m<E-2 () (13)
X ¢H

If there is no such i we set i =0, and (13) remains valid.

Ifi>3 weset H=F —E.

Now by the observation after (10) it is impossible to find an ', 1 < ¥’ <
such that. there is an F,e#, satisfying G(F,€ G(x,, E),
F,NHUH)=@. Indeed G, U {x,}=F,, F,, F, satisfy F,NF, =
F,NFy=F ,NF,cGy= G(F,). Hence we deduce as we deduced (13):

3
S s B <23, (14)

X (HUH')



A PROBLEM OF CHVATAL AND ERDOS 175

Equations (13), (14) yield, in view of (11),

mj _3
Vg E)<36-2) ([, )+ 2= B (9)
j=3 -
To prove (12) it suffices now to prove
(x E)<2(k—2)(n—3) (16)
83, L) & k—4)

Suppose that (16) does not hold. Then we can find G, € ¥(x,, E) such
that {x,, x,} NG, =@.

Now in view of (11) we can find G,€ %(x,,E) such that
G,N({(G;—E)U {x;,x3})=@, and there is a G, € F(x,,E) such that
G,N((G, VUG {xy, x3}) — E)) = @.

Setting F,=G,;U {x;}, F,=G,U{x,}, F,=G,U{x,}] we have
Fy,NF,=F,NF,=F,NF, =FEcG(F,), a contradiction, proving (16),
and consequently (12).

Hence we have, as E € &,

s E)+ et B3 (13 ) - @k-0E-2 (1) ()

Let us define

A(E)= iEU

x| 8(x;» E) > 2(k — 2) (Z:2)§ g

Now in view of (16), (17) and n > ny(k) we have | 4(E)| =3 or 4. Let us
set

& ={A(E)|E€E,}.
LEMMA. If k>S5 then forany A,, A,, A, € &/ we have
A NA,NA £
Proof of the Lemma. Suppose we have found E,, E,, E, € &, such that
AE)NAE)NAE)=2.

Let us define for i=1, 2, 3,

% ={G—-E,|GE¥Z(x,E)forsomex € (A4(E,)—E)),
(G—E)NAE,)VA(E,) UAE,)) =2}
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Now in view of (17) and the definition of the A(E,)’s for n > n,(k) for
i=1,2,3 we have

g5 (") (18)

Let X ={x,, X;,..., X,}, B, ={x,, ?cz,..., Xe3h Ba= X435 Xp_gsees Xap_1hs
By = {Xyy_1s Xpk—gss X3x—120 X1} (i-€5 |B;]=|B,|=|B;| =k —3, and they
form a triangle, that is,

BlmBsz3=z’ Blm82¢@¢BlmngBsz3¢Q).
For a permutation I7 of X we set
II(B,)) = {n(x)| x € B,}, i=1,2,3.
For the number N, of permutations /7 satisfying /1(B,) € £, we obtain, using
(18),
=k-=3)(n—k+3)Z >in! (i=1,23) (19)

Now (19) implies the existence of a permutation /T, such that I7,(B,) € &
holds i=1, 2, and 3.

By the definition of the & there are sets C,<A(E;) such that

I,(B)VC,=F,€# (i=1,2,3). However, F,, F,, F, form a 2-
dimensional simplex, a contradiction, proving the lemma.

LEMMA, If k2> 5 then there exists a y€ X such that y € A holds for
every A € 7.

Proof of the Lemma. 1f we can find 4,, 4, € & such that |[4,N4,|=1,
then in view of the preceding lemma 4, N A, <A for any 4 € &, and we
are done. Hence we may assume that for every 4,,4, € & we have

4,04, > 2. (20)

We know that & consists of 3- and 4-element sets, and by the definition of
& we have in view of (10) for n > n,(k)

E 2
PIPSLIIEN

3 —26— (21)

Suppose that for 4,, A, € & we have 4, N4, ={y,,y,}. Let us set

A, = {y1: 32} =Dy, Ay — {1502} =Dy, {y1: 2} = D;.
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In view of (2) for 4 € &, D; & A we have

AND#@ fori=1,2,3.

Hence the number of such A’s is less than |D,|.|D,|.|D,| - n< 8n.
Consequently by (21) the set D= {4 — D,| D, < A € &/} has cardinality at
least n2/30. As it consists of 1- and 2-sets and n > ny(k), it contains four
pairwise disjoint members D,, D,, D¢, D,. But then for every A N <,
D, c 4 implies, in view of (20), A M D;# @&, 3 i€ 7, which is impossible
since |4 | < 4. Thus, in this case D, < A for every 4 € &

The only remaining case is when for every 4,, 4, € & we have

|4, N4, > 3. (22)

But (22) and |4,| < 4 imply |&/| < 4n, a contradiction, proving the lemma.
Let y be the (or one of the) element(s) contained in every 4 € . Let us
set

&=|E€ &, |y€E}
Obviously we have |&| > |&| —(n—1). Let us set B={b € (X —y) | dg(b) =

n/2}, where d.(b) denotes the degree of b in the graph &.
Using that, in view of (10) we have

#1218~ (=D = (3) - 18- = D> (5) - €@+ D
we deduce

n n
20&|= 3 dE(x)=|B|—§-+(n—lBl)n=n2—|B|7.

xeX

Or equivalently,

(cx+)n+n

Bl =2c, + 4.
Bl i+ 23)
PROPOSITION. If FE #,y & F then
[FNB|>k—1. (24)

Suppose for some F (24) is not true. Let z,, z, be two different elements of
F —B.
As z,,z, € B we can find v,, v, € (X — F) such that {z,,v,}, {z,,v,} E&.
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By the definition of A(E), and A({a,,v,}) for i=1,2 we can find G,, G,
such that

G,€EF(ylanv))  GNF={z) (i=12).

Now setting F, = {y} UG, F,={y} UG, these two sets and F form a
triangle, a contradiction, proving the proposition.
Let d denote the number of sets F € # satisfying y € F. We have

COROLLARY.
d < n— 2%, (25)

In view of (23) and (24) we have
d< (n—|BJ) ( ’Bll ) + ('il) < n 2kt

proving (25).

Now we are in position to prove that in # there is a vertex of degree not
exceeding 3(} Z3).

For this purpose let FE#, y&F. Such an edge exists by our

assumptions. We claim that for at least kK — 1 vertices x of F

d Ax) < = (Z";) (26)

holds. Suppose it is not true and let x,, x, be two different vertices of F for
which (26) is not true. Let us set Z; = {F € F | {x;, y} < F}. In view of (25)
and n > ny(k) for i = 1,2 we have

21> k-1 (;_3): @)

Hence we can find F, € &, such that F;, " F = {x,} for i = 1, 2; that is, F, F,,
F, form a triangle which proves Theorem 3.
4. THE PROOF OF THE CONJECTURE OF ERDOS

In view of Theorem 1 there is an nf = n¥(k) such that for n > nf(k) and
an # without triangles we have

<2 (1))
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Let us choose nj(k) =2 max{n¥(k), ny(k)}, where ny(k) is the bound in
Theorem 3.

Suppose Theorem 4 doesn’t hold for some n > ny(k), and some # (n). We
apply Theorem 3, obviously in this case (iii) holds. Let us set

Fh-1)={FeEF(n),xeF}

We have

|#(n = 1) = |F ()] — drmy(x) > (,’Z:i)%—(l:i)

_ (n—2 + 1 (n—Z)

“\k=1/) 7 2 \k-2/
Now we consider the family # (n — 1) on n — 1 vertices and apply Theorem
3, omit a vertex of degree less than (7 ~3), obtain # (n — 2), and so on until

we obtain # ([n/2]).
Let us estimate the cardinality of # ([n/2]).

= (5] o= 5 ()

S ([n/21—1)+ “"{4’/21i<n—i— 1)

k—1 = 2\ k-2
5 ([nI/CZ_]—I1>+[n_42_]_([n/Z]—2)>2<[nl/62_]:l)’

k—2

a contradiction, since #([n/2])cF(n) contains no triangle, and
n > 2n¥(k). Thus Theorem 4 is proved.

5. THE CONJECTURE OF CHVATAL

We partition # into #;, #,, #, according to F € # contains 0, 1 or at
least two (k — 1) subsets which are not contained in any other F' € #. In
Section 2 we proved there are no F, F', F"€ #,, DcF, |D|=r which
satisfy (2), i.e., they form a 4-system with kernel of cardinality r.

For k > 3r applying the methods of [6] we can deduce that

n—r—1
lﬁi<ck(k_r#1), (28)

for some constant c,.

582a/30/2-5



180 PETER FRANKL

Let us count the number of pairs (G, F), Gec FEF, |G|=k— 1.

n

|Z |- k<A + 215+ ((k—l

) =11 -217]) (= k +
or equivalently

n 7+ @n—il A kA <a—k+ 0 (")
dividing by n and rearranging

n—1

A+ IZ A< ()

)+ 20D @)

As we may assume |#|>(!_]) we obtain from (29) and (28),
| Fol < (%252 1), and consequently

7> (1) - (05 )

Now we define G, as in the proof of Theorem 3, i.e., the family of the
unique (k — 1) subsets of .#;. Moreover let us define

#=(H||H|=k~ L |{[FEF|HCF)>k+1}.

Using (30) we derive (we count the pairs (F,H), FE#*, |H|=k—1,
H&EY)

A<=k 0+ (07 ) #2307 ) i)+
(1)

From (31) we obtain for some constant c}.

n—1 n—r—1
H| > —c .
| ’/(k—z) c"(k—r—l)
Let us define for B X, |B|=r

2,B)={GEZ|BcG}), D B)={HEX|BcH)
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Let us set further

P = chXHB]—r,

st (177)

1 n—r
LAB) < 2(r+2) (k—r) ;
Counting the number of pairs (B, E), BC E, E € (¥ U#), |B|=r we get

() ()G ()
<2 0) s ()

As n > ny(k, r), (32) yields # is empty, i.e., for every r-element subset B of
X either

(32)

1

r+1 (n—r n—r
20>+ (42r) o |@‘*’(B)'>‘2(T+_2)(k—r)'

Let us set

r+1 (n—r
£, = §BcX||B|—r,|%(B)> o)

From the proof of Theorem 1 it follows that there are no 3 sets F, F’,
F” € #, which form a A-system with kernel D, |D|=r, and D < G(F).
Hence we may proceed with &, as in the proof of Theorem 1, and prove that
there are two elements x,(E), x,(E) such that for almost every G, E < G the
complement of G is either x,(E) or x,(E), then we define for F € &, the set
A(E) satisfying

Ec A(E), |A(E)—E|=1 or 2.

Next we prove that the intersection of any r+ 1 member of & =
{A(E)| E € &,} is non-empty.

From this and |4| > c(k, r)(?) we derive that there is a y € X such that
y € A for every A € /. Then at last we are in a posititon to prove that every
member of # contains y. Suppose the contrary and let F, € #, y € F,. Let
(X, X35 X, < Fyy, X, EX—F,), x,,.,#y. Let us set further
E={x11<j<r+ L,j#i}

For E, € & we choose G, € £ such that its complement is y and G, F =

E;— {x,,,} (its is possible by the definition of A(E,) and y € A(E,)). We put
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F;=G,U{y} in this case. For E,& &, we can find H;E# such that
HNF=E;— {x,,} as |ZAE)| > (1/2(r + 2))(,2;L,).
By the definition of -# we can find F; € #;, H; C F, such that

(F,—H)NF=g.

Now the sets F,, F,, l,..,1, F, form an r-dimensional simplex, a
contradiction, which proves the theorem.
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