On a Problem of Chvatal and Erdös on Hypergraphs Containing No Generalized Simplex

Peter Frankl
Université Pierre et Marie Curie, E. R. Combinatoire, U.E.R. 49, 4 Place Jussieu, 7523 Paris Cedex 05, France
Communicated by the Managing Editors

Received November 1, 1979

Let X be an n-element set and \mathscr{F} a family of k-subsets of X. Let r be an integer, $k>r \geqslant 2$. Suppose that \mathscr{F} does not contain $r+1$ members having empty intersection such that any r of them intersect non-trivially. Chvatal and Erdös conjectured that for $(r+1) k \leqslant r n$ we have $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}$. In this paper we first prove that this conjecture holds asymptotically (Theory 1). In Theorems 4 and 5 we prove it for $r=2, k \geqslant 5, n>n_{0}(k) ; k \geqslant 3 r, n>n_{0}(k, r)$, respectively.

1. Introduction

Let X be a finite set of elements and let \mathscr{F} be a family of k-element subsets of X. Let r be an integer, $r \geqslant 2$.

We say that \mathscr{F} contains an r-dimensional generalized simplex (or simply r-simplex) if we can find $F_{1}, \ldots, F_{r+1} \in \mathscr{F}$ such that

$$
\bigcap_{i=1}^{r+1} F_{l}=\varnothing,
$$

but for any $1 \leqslant j \leqslant r+1$,

$$
\bigcap_{i \neq j} F_{i} \neq \varnothing .
$$

It is easy to see that there is no r-simplex with $k<r$. For $k=r$ the F_{i} 's are necessarily the vertex-sets of the faces of an r-dimensional simplex, i.e., the different r-subsets of an $(r+1)$ set.

A special case of Turan's problem is: (see [7]). What is the maximum number of edges \mathscr{F} can have if it contains no k-simplex?

For $k=2$ the answer follows from Turan's more general theorem (see Turan [7]); it is $[n / 2][(n+1) / 2]$.

For $k \geqslant 3$ the problem is involved, but evidently this maximum is at least $[n / k]^{k}$, i.e., more than $c_{k}\binom{n}{k}$ for some $c_{k}>0$. What happens if $k>r$?

Erdös [4] made the following
Conjecture 1. Let $3 \leqslant k \leqslant \frac{2}{3} n$, and suppose \mathscr{F} contains no 2 -simplex. Then $|\boldsymbol{F}|=\binom{n-1}{k-1}$.

Chvátal [2] made the more general
Conjecture 2. Let $r<k \leqslant(r /(r+1)) n$, and suppose ${ }^{F}$ contains no r simplex. Then $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}$.

Chvatal [2] proved this conjecture for $k=r+1$.
The validity of Conjecture 2 in the case $((r-1) / r) n<k$ follows from Lemma 1 in [5]. It was proved by Bermond and Frankl [1] for an infinity of special values, but always $n<k^{2}$.

The aim of this paper is to deal with the case $n>n_{0}(k)$. First we prove
Theorem 1. Let $r<k \leqslant(r /(r+1)) n$, and suppose \mathcal{F} contains no r simplex. Then $|\boldsymbol{F}| \leqslant\left(1+o(1)\binom{n-1}{k-1}\right.$.

Acccording to the result of Chvátal we may assume $k \geqslant r+2$.
In the proof we make use of the following consequence of a theorem of Duke and Erdös [3].

THEOREM 2. Let $r+2 \leqslant k$ and suppose \mathcal{F} contains no 3 numbers F_{1}, F_{2}, F_{3} such that for some r-element subset D of F_{1} we have

$$
F_{1} \cap F_{2}=F_{1} \cap F_{3}=F_{2} \cap F_{3}=D .
$$

then for some constant C_{k} we have

$$
|f| \leqslant c_{k}\binom{n-2}{k-2}
$$

In Section 3, we prove
Theorem 3. Suppose \mathcal{F} contains no 2-simplex (i.e., triangle), $k \geqslant 5$, $n \geqslant n_{0}(k)$. Then one of the following holds:
(i) $|\mathscr{F}|<\binom{n-1}{k-1}$.
(ii) For some $y \in X$ we have $y \in F$ for every $F \in \mathscr{F}$.
(iii) For some $x \in X \quad d_{F}(x)<\frac{1}{2}\binom{n-1}{k-2}$ holds $\left(d_{\mathcal{F}}(x)\right.$ is the nuber of edges of \mathscr{F} containing x).

Next we deduce the conjecture of Erdös from Theorem 3.

Theorem 4. Suppose \mathcal{F} contains no 2-simplex, $k \geqslant 5, n \geqslant n_{0}^{\prime}(k)$. Then either every member of \mathscr{F} contains a fixed element y of X or we have $|\mathcal{F}|<\binom{n-1}{k-1}$.

In the last section we give a sketch of proof for

TheOrem 5. Suppose \mathcal{F} contains no r-simplex, $k>3 r, n \geqslant n_{0}(k, r)$. Then either every member of \mathcal{F} contains a fixed element y of X or we have $|\mathscr{F}|<\binom{n-1}{k-1}$.

The proof of Theorem 5 heavily depends on a refinement of a result in [6].

2. The Proof of Theorem 1

First we divide \mathscr{F} into two subfamilies. Let us define

$$
\begin{aligned}
\mathscr{F}_{0} & =\left\{F \in \mathscr{F}\left|\forall G \subset F,|G|=k-1, \exists F^{\prime} \in \mathscr{F}, F^{\prime} \neq F, G \subset F^{\prime}\right\}\right. \\
\mathscr{F}_{1} & =\mathscr{F}-\mathscr{F}_{0} \\
& =\left\{F \in \mathscr{F}\left|\exists G=G(F),|G|=k-1, \forall F^{\prime} \in \mathscr{F}, F^{\prime} \neq F, G \not \subset F^{\prime}\right\}\right.
\end{aligned}
$$

Let us set

$$
\mathscr{G}=\left\{G(F) \mid F \in \mathscr{F}_{1}\right\} .
$$

Then by the definition of \mathscr{F}_{1} we have

$$
\begin{equation*}
\left|\mathscr{F}_{1}\right|=|\mathscr{G}| \leqslant\binom{ n-1}{k-1}+\binom{n-1}{k-2} . \tag{1}
\end{equation*}
$$

Suppose we can find $F, F^{\prime}, F^{\prime \prime} \in \mathscr{F}_{0}$ and $D \subset F,|D|=r$ such that

$$
\begin{equation*}
F \cap F^{\prime}=F \cap F^{\prime}=F^{\prime} \cap F^{\prime \prime}=D . \tag{2}
\end{equation*}
$$

Let $D=\left\{d, d_{2}, \ldots, d_{r}\right\}$ and for $i=1, \ldots, r$ let F_{1} be a set in \mathscr{F} different to F which contains $F-\left\{d_{i}\right\}$. The existence of F_{i} is assumed by the definition of \boldsymbol{F}_{0}.

As $F_{1}-F$ consists of one element, x_{1}, lying outside of D, and $\left(F^{\prime}-D\right) \cap$ ($F^{\prime \prime}-D$) $=\varnothing$, we have either $x_{1} \notin F^{\prime}$ or $x_{1} \in F^{\prime \prime}$.

Hence it is possible to choose $F_{r+1}=F^{\prime}$ or $F^{\prime \prime}$ such that $x_{1} \notin F_{r+1}$. We assert $F_{1}, 1, \ldots, 1, F_{r+1}$ is an r-simplex.

As $F_{1} \cap F_{r+1}=D-\left\{d_{1}\right\}$, and $d_{i} \notin F_{i}$ for $1 \leqslant i \leqslant r$, we deduce $\bigcap_{i=1}^{r+1} F_{i}=\varnothing$.

By the definition of the F_{i} 's we have

$$
d_{j} \in \bigcap_{i \neq j} F_{i} \quad \text { for } 1 \leqslant j \leqslant r
$$

and

$$
(F-D) \subset \bigcap_{i \neq r+1} F_{i}
$$

which proves that F_{1}, \ldots, F_{r+1} indeed form an r-simplex, a contradiction, establishing that there are no $F, F^{\prime}, F^{\prime \prime} \in F_{0}$, and $D \subset F,|D|=r$ which satisfy (2).

An application of Theorem 2 yields

$$
\begin{equation*}
\left|F_{0}\right| \leqslant c_{k}\binom{n-2}{k-2} \tag{3}
\end{equation*}
$$

Combining (1) and (3) we obtain

$$
|\mathscr{F}|=\left|\mathscr{F}_{1}\right|+\left|\mathscr{F}_{0}\right| \leqslant\binom{ n-1}{k-1}+\left(1+c_{k}\right)\binom{n-2}{k-2}=(1+o(1))\binom{n-1}{k-1}
$$

Q.E.D.

3. The Proof of Theorem 3

Without loss of generality we may assume

$$
\begin{equation*}
|F| \geqslant\binom{ n-1}{k-1} \tag{4}
\end{equation*}
$$

and that $\bigcap_{F \in \mathcal{F}} F=\varnothing$.
Let us divide \mathscr{F} now into three subfamilies.

$$
\begin{aligned}
& \mathscr{F}_{0}=\left\{F \in \mathscr{F}\left|\forall G \subset F,|G|=k-1, \exists F^{\prime} \in \mathscr{F}, F^{\prime} \neq \mathscr{F}, G \subset F^{\prime}\right\}\right. \\
& \mathscr{F}_{2}=\left\{F \in \mathscr { F } \left|\exists G_{1}, G_{2} \subset F,\left|G_{1}\right|=\left|G_{2}\right|=k-1, G_{1} \neq G_{2},\right.\right. \\
&\left.\forall F_{1}, F_{2} \in \mathscr{F}, F_{1} \neq F \neq F_{2}, G_{1} \not \subset F_{1}, G_{2} \not \subset F_{2}\right\}, \\
& \mathscr{F}_{1}=\mathscr{F}-\left(\mathscr{F}_{0} \cup \mathscr{F}_{2}\right),
\end{aligned}
$$

i.e., for the members of F_{1} there is exactly one $(k-1)$-element subset which is contained in no other member of \mathscr{F}. By the definitions we have

$$
\begin{equation*}
\left|\mathscr{F}_{1}\right|+2\left|\mathscr{F}_{2}\right| \leqslant\binom{ n}{k-1}=\binom{n-1}{k-1}+\binom{n-1}{k-2} \tag{5}
\end{equation*}
$$

In view of (3) we have

$$
\begin{equation*}
\left|\mathscr{F}_{0}\right| \leqslant c_{k}\binom{n-2}{k-2} \tag{6}
\end{equation*}
$$

Is $|\mathscr{F}|=\left|\mathscr{F}_{0}\right|+\left|\mathscr{F}_{1}\right|+\left|\mathscr{F}_{2}\right|$ from (4), (5) and (6) we derive

$$
\begin{equation*}
\left|\mathscr{F}_{2}\right|=\left(1+c_{k}\right)\binom{n-2}{k-2} \tag{7}
\end{equation*}
$$

Now using (6) and (7) we get from (4)
$\left|\mathscr{F}_{1}\right| \geqslant\binom{ n-1}{k-1}-\left(1+2 c_{k}\right)\binom{n-2}{k-2}=\binom{n}{k-1}-\left(2+2 c_{k}\right)\binom{n-2}{k-2}$.
For an $F \in \mathscr{F}_{1}$ let $G(F)$ denote the $(k-1)$ subset which is contained in no other member of \mathscr{F}; we call $G(F)$ the kernel of F. Let us set $\{x(F)\}=$ $F-G(F)$; we call $x(F)$ the complement of $G(F)$.

Let us define $\mathscr{G}=\left\{G(F) \mid F \in \mathscr{F}_{1}\right\}$.
Obviously $|\mathscr{G}|=\left|\mathscr{F}_{1}\right|$. For a 2-element subset E of X let us set $d(E)=$ $|\{G \in \mathscr{G} \mid E \subset G\}|$.

Our next aim is to prove that all but $c_{k}^{\prime} n$ 2-element subsets of X have degree $d(E) \geqslant \frac{3}{4}\binom{n-2}{k-3}$. For this purpose let us set

$$
\begin{aligned}
& \mathscr{E}_{1}=\left\{E \subset X| | E \mid=2, d(E) \geqslant \frac{3}{4}\binom{n-2}{k-3}\right\}, \\
& \mathscr{E}_{2}=\left\{E \subset X| | E \mid=2, d(E)<\frac{3}{4}\binom{n-2}{k-3}\right\} .
\end{aligned}
$$

Let us count the number of pairs $(E, G), E \subset G \in \mathscr{G},|E|=2$ in two different ways. We obtain

$$
\begin{align*}
\binom{k-1}{2}|\mathscr{F}| & \leqslant\left|\mathscr{E}_{1}\right|\binom{n-2}{k-3}+\left|\mathscr{E}_{2}\right| \frac{3}{4}\binom{n-2}{k-3} \tag{9}\\
& =\binom{n}{2}\binom{n-2}{k-3}-\frac{1}{4}\left|e_{2}\right|\binom{n-2}{k-3}
\end{align*}
$$

Using (8) we obtain from (9)

$$
\binom{n}{k-1}-\left(2+2 c_{k}\right)\binom{n-1}{k-2} \leqslant\binom{ n}{k-1}-\frac{\left|\mathscr{E}_{2}\right|\binom{n-2}{k-3}}{4\binom{k-1}{2}}
$$

or

$$
\begin{equation*}
\left|\mathscr{C}_{2}\right| \leqslant 4\binom{k-1}{2}\left(2+2 c_{k}\right) \frac{n-1}{k-2}<4(k-1)\left(2+2 c_{k}\right) n=c^{\prime}, n . \tag{10}
\end{equation*}
$$

Our next observation is that if $F, F^{\prime}, F^{\prime \prime} \in \mathscr{F}_{1}$ satisfy (2), with of course $r=2$, then $D \subset G(F)$ is impossible. The proof is word for word the same as the proof of the impossibility of (2).

For $E \subset X,|E|=2$ and $x \in(X-E)$ let us set

$$
\begin{aligned}
\mathscr{G}(x, E) & =\{G \in \mathscr{G} \mid E \subset G, x \text { is the complement of } G\}, \\
g(x, E) & =|\mathscr{G}(x, E)| .
\end{aligned}
$$

Let us consider now a fixed $E \in \mathscr{E}_{1}$. Let x_{1}, \ldots, x_{m} be those elements of $X-E$ for which $g(x, E)>0$. We may suppose

$$
\begin{equation*}
g\left(x_{1}, E\right) \geqslant g\left(x_{2}, E\right) \geqslant \cdots \geqslant g\left(x_{m}, E\right) . \tag{11}
\end{equation*}
$$

We want to prove

$$
\begin{equation*}
\sum_{i=3}^{m} g\left(x_{i}, E\right) \leqslant(4 k-1)(k-2)\binom{n-3}{k-4} . \tag{12}
\end{equation*}
$$

We may assume $m \geqslant 3$. Let $G_{0} \in \mathscr{G}\left(x_{m}, E\right)$. Let us set $H=\left(G_{0}-E\right) \cup\left\{x_{m}\right\}$. Let i be the greatest integer such that there exists $F_{1} \in \mathscr{F}_{1}$ satisfying $F_{1} \cap H=\varnothing, G\left(F_{1}\right) \in \mathscr{G}\left(x_{i}, E\right)$.

As the number of sets $G \in \mathscr{G}, E \subset G, G \cap H \neq \varnothing$ is at most $(k-2)\binom{n-3}{k-4}$ we deduce

$$
\begin{equation*}
\sum_{\substack{i<j<m \\ x_{j} \leqslant H}} g\left(x_{j}, E\right) \leqslant(k-2)\binom{n-3}{k-4} . \tag{13}
\end{equation*}
$$

If there is no such i we set $i=0$, and (13) remains valid.
If $i \geqslant 3$ we set $H^{\prime}=F_{1}-E$.
Now by the observation after (10) it is impossible to find an $i^{\prime}, 1 \leqslant i^{\prime}<i$ such that there is an $F_{2} \in \mathscr{F}$, satisfying $G\left(F_{2}\right) \in G\left(x_{i}, E\right)$, $F_{2} \cap\left(H \cup H^{\prime}\right)=\varnothing$. Indeed $G_{0} \cup\left\{x_{m}\right\}=F_{0}, F_{1}, F_{2}$ satisfy $F_{2} \cap F_{1}=$ $F_{2} \cap F_{0}=F_{1} \cap F_{0} \subset G_{0}=G\left(F_{0}\right)$. Hence we deduce as we deduced (13):

$$
\begin{equation*}
\sum_{\substack{1, j<i \\ x_{j} \notin\left(H \cup H H^{\prime}\right)}} g\left(x_{j}, E\right) \leqslant 2(k-2)\binom{n-3}{k-4} . \tag{14}
\end{equation*}
$$

Equations (13), (14) yield, in view of (11),

$$
\begin{equation*}
\sum_{j=3}^{m} g\left(x_{j}, E\right) \leqslant 3(k-2)\binom{n-3}{k-4}+2(k-1) g\left(x_{3}, E\right) . \tag{15}
\end{equation*}
$$

To prove (12) it suffices now to prove

$$
\begin{equation*}
g\left(x_{3}, E\right) \leqslant 2(k-2)\binom{n-3}{k-4} \tag{16}
\end{equation*}
$$

Suppose that (16) does not hold. Then we can find $G_{3} \in \mathscr{G}\left(x_{3}, E\right)$ such that $\left\{x_{1}, x_{2}\right\} \cap G_{3}=\varnothing$.

Now in view of (11) we can find $G_{2} \in \mathscr{G}\left(x_{2}, E\right)$ such that $G_{2} \cap\left(\left(G_{3}-E\right) \cup\left\{x_{1}, x_{3}\right\}\right)=\varnothing$, and there is a $G_{1} \in \mathscr{G}\left(x_{1}, E\right)$ such that $\left.G_{1} \cap\left(\left(G_{2} \cup G_{3} \cup\left\{x_{2}, x_{3}\right\}\right)-E\right)\right)=\varnothing$.

Setting $\quad F_{3}=G_{3} \cup\left\{x_{3}\right\}, \quad F_{2}=G_{2} \cup\left\{x_{2}\right\}, \quad F_{1}=G_{1} \cup\left\{x_{1}\right\} \quad$ we have $F_{3} \cap F_{2}=F_{3} \cap F_{1}=F_{2} \cap F_{1}=E \subset G\left(F_{1}\right)$, a contradiction, proving (16), and consequently (12).

Hence we have, as $E \in \mathscr{E}_{1}$

$$
\begin{equation*}
g\left(x_{1}, E\right)+g\left(x_{2}, E\right) \geqslant \frac{3}{4}\binom{n-2}{k-3}-(4 k-1)(k-2)\binom{n-3}{k-4} \tag{17}
\end{equation*}
$$

Let us define

$$
A(E)=\left\{E \cup\left\{x_{i} \left\lvert\, g\left(x_{i}, E\right)>2(k-2)\binom{n-3}{k-4}\right.\right\}\right\} .
$$

Now in view of (16), (17) and $n>n_{0}(k)$ we have $|A(E)|=3$ or 4 . Let us set

$$
\mathscr{A}=\left\{A(E) \mid E \in E_{1}\right\} .
$$

Lemma. If $k \geqslant 5$ then for any $A_{1}, A_{2}, A_{3} \in \mathscr{A}$ we have

$$
A_{1} \cap A_{2} \cap A_{3} \neq \varnothing
$$

Proof of the Lemma. Suppose we have found $E_{1}, E_{2}, E_{3} \in \mathscr{E}_{1}$ such that

$$
A\left(E_{1}\right) \cap A\left(E_{2}\right) \cap A\left(E_{3}\right)=\varnothing
$$

Let us define for $i=1,2,3$,

$$
\begin{aligned}
\mathscr{G}_{i}= & \left\{G-E_{i} \mid G \in \mathscr{G}\left(x, E_{i}\right) \text { for some } x \in\left(A\left(E_{i}\right)-E_{i}\right),\right. \\
& \left.\left(G-E_{i}\right) \cap\left(A\left(E_{1}\right) \cup A\left(E_{2}\right) \cup A\left(E_{3}\right)\right)=\varnothing\right\} .
\end{aligned}
$$

Now in view of (17) and the definition of the $A\left(E_{i}\right)$'s for $n>n_{0}(k)$ for $i=1,2,3$ we have

$$
\begin{equation*}
\left|\mathscr{S}_{i}\right|>\frac{2}{3}\binom{n}{k-3} \tag{18}
\end{equation*}
$$

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, B_{1}=\left\{x_{1}, x_{2}, \ldots, x_{k-3}\right\}, B_{2}=\left\{x_{k-3}, x_{k-2}, \ldots, x_{2 k-7}\right\}$, $B_{3}=\left\{x_{2 k-7}, x_{2 k-6}, \ldots, x_{3 k-12}, x_{1}\right\}$ (i.e., $\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=k-3$, and they form a triangle, that is,

$$
\left.B_{1} \cap B_{2} \cap B_{3}=\varnothing, \quad B_{1} \cap B_{2} \neq \varnothing \neq B_{1} \cap B_{3}, B_{2} \cap B_{3} \neq \varnothing\right) .
$$

For a permutation Π of X we set

$$
\Pi\left(B_{i}\right)=\left\{\pi(x) \mid x \in B_{i}\right\}, \quad i=1,2,3 .
$$

For the number N_{i} of permutations Π satisfying $\Pi\left(B_{i}\right) \in \mathscr{F}_{i}$ we obtain, using (18),

$$
\begin{equation*}
N_{i}=(k-3)!(n-k+3)!\left|\mathscr{G}_{i}\right|>\frac{2}{3} n!\quad(i=1,2,3) \tag{19}
\end{equation*}
$$

Now (19) implies the existence of a permutation Π_{0} such that $\Pi_{0}\left(B_{i}\right) \in \mathscr{G}_{i}$ holds $i=1,2$, and 3 .

By the definition of the \mathscr{G}_{i} there are sets $C_{i} \subseteq A\left(E_{i}\right)$ such that $\Pi_{0}\left(B_{i}\right) \cup C_{i}=F_{i} \in \mathscr{F}_{1} \quad(i=1,2,3)$. However, F_{1}, F_{2}, F_{3} form a 2dimensional simplex, a contradiction, proving the lemma.

Lemma. If $k \geqslant 5$ then there exists a $y \in X$ such that $y \in A$ holds for every $A \in \mathscr{A}$.

Proof of the Lemma. If we can find $A_{1}, A_{2} \in \mathscr{A}$ such that $\left|A_{1} \cap A_{2}\right|=1$, then in view of the preceding lemma $A_{1} \cap A_{2} \subset A$ for any $A \in \mathscr{A}$, and we are done. Hence we may assume that for every $A_{1}, A_{2} \in \mathscr{A}$ we have

$$
\begin{equation*}
\left|A_{1} \cap A_{2}\right| \geqslant 2 \tag{20}
\end{equation*}
$$

We know that \mathscr{A} consists of 3 - and 4 -element sets, and by the definition of \mathscr{A} we have in view of (10) for $n>n_{0}(k)$

$$
\begin{equation*}
|\mathscr{A}| \geqslant \frac{\left|E_{1}\right|}{6} \geqslant \frac{n^{2}}{20} \tag{21}
\end{equation*}
$$

Suppose that for $A_{1}, A_{2} \in \mathscr{A}$ we have $A_{1} \cap A_{2}=\left\{y_{1}, y_{2}\right\}$. Let us set

$$
A_{1}-\left\{y_{1}, y_{2}\right\}=D_{1}, \quad A_{2}-\left\{y_{1}, y_{2}\right\}=D_{2}, \quad\left\{y_{1}, y_{2}\right\}=D_{3}
$$

In view of (2) for $A \in \mathscr{A}, D_{3} \nsubseteq A$ we have

$$
A \cap D_{i} \neq \varnothing \quad \text { for } i=1,2,3
$$

Hence the number of such A 's is less than $\left|D_{1}\right| \cdot\left|D_{2}\right| \cdot\left|D_{3}\right| \cdot n \leqslant 8 n$. Consequently by (21) the set $D=\left\{A-D_{3} \mid D_{3} \subset A \in \mathscr{A}\right\}$ has cardinality at least $n^{2} / 30$. As it consists of 1 - and 2 -sets and $n>n_{0}(k)$, it contains four pairwise disjoint members $D_{4}, D_{5}, D_{6}, D_{7}$. But then for every $A \cap \mathscr{A}$, $D_{3} \subset A$ implies, in view of (20), $A \cap D_{i} \neq \varnothing, 3 \leqslant i \in 7$, which is impossible since $|A| \leqslant 4$. Thus, in this case $D_{3} \subset A$ for every $A \in \mathscr{A}$.

The only remaining case is when for every $A_{1}, A_{2} \in \mathscr{A}$ we have

$$
\begin{equation*}
\left|A_{1} \cap A_{2}\right| \geqslant 3 \tag{22}
\end{equation*}
$$

But (22) and $\left|A_{1}\right| \leqslant 4$ imply $|\mathscr{A}| \leqslant 4 n$, a contradiction, proving the lemma.
Let y be the (or one of the) element(s) contained in every $A \in \mathscr{A}$. Let us set

$$
\mathscr{E}=\left\{E \in \mathscr{E}_{1} \mid y \notin E\right\}
$$

Obviously we have $|\mathscr{E}| \geqslant\left|\mathscr{E}_{1}\right|-(n-1)$. Let us set $B=\left\{b \in(X-y) \mid d_{E}(b)=\right.$ $n / 2\}$, where $d_{E}(b)$ denotes the degree of b in the graph \mathscr{E}.

Using that, in view of (10) we have

$$
|\mathscr{E}| \geqslant\left|\mathscr{E}_{1}\right|-(n-1)=\left(\frac{n}{2}\right)-\left|\mathscr{E}_{2}\right|-(n-1) \geqslant\left(\frac{n}{2}\right)-\left(c_{k}^{\prime}+1\right) n
$$

we deduce

$$
2|\mathscr{E}|=\sum_{x \in X} d_{E}(x)=|B| \frac{n}{2}+(n-|B|) n=n^{2}-|B| \frac{n}{2}
$$

Or equivalently,

$$
\begin{equation*}
|B| \leqslant \frac{\left(c_{k}^{\prime}+1\right) n+n}{n / 2}=2 c_{k}^{\prime}+4 \tag{23}
\end{equation*}
$$

Proposition. If $F \in \mathscr{F}, y \notin F$ then

$$
\begin{equation*}
|F \cap B| \geqslant k-1 . \tag{24}
\end{equation*}
$$

Suppose for some $F(24)$ is not true. Let z_{1}, z_{2} be two different elements of $F-B$.

As $z_{1}, z_{2} \in B$ we can find $v_{1}, v_{2} \in(X-F)$ such that $\left\{z_{1}, v_{1}\right\},\left\{z_{2}, v_{2}\right\} \in \mathscr{E}$.

By the definition of $A(E)$, and $A\left(\left\{a_{l}, v_{i}\right\}\right)$ for $i=1,2$ we can find G_{1}, G_{2} such that

$$
G_{i} \in \mathscr{G}\left(y,\left\{a_{i}, v_{i}\right\}\right), \quad G_{i} \cap F=\left\{z_{i}\right\} \quad(i=1,2) .
$$

Now setting $F_{1}=\{y\} \cup G_{1}, F_{2}=\{y\} \cup G_{2}$ these two sets and F form a triangle, a contradiction, proving the proposition.

Let d denote the number of sets $F \in \mathscr{F}$ satisfying $y \notin F$. We have
Corollary.

$$
\begin{equation*}
d<n-2^{2 c_{k}^{\prime}+4} . \tag{25}
\end{equation*}
$$

In view of (23) and (24) we have

$$
d \leqslant(n-|B|)\binom{|B|}{k-1}+\binom{|B|}{k}<n 2^{2 c_{k}^{\prime}+4}
$$

proving (25).
Now we are in position to prove that in \mathscr{F} there is a vertex of degree not exceeding $\frac{1}{2}\binom{n=2}{k=2}$.

For this purpose let $F \in \mathscr{F}, y \notin F$. Such an edge exists by our assumptions. We claim that for at least $k-1$ vertices x of F

$$
\begin{equation*}
d_{F}(x)<\frac{1}{2}\binom{n-2}{k-2} \tag{26}
\end{equation*}
$$

holds. Suppose it is not true and let x_{1}, x_{2} be two different vertices of F for which (26) is not true. Let us set $\mathscr{D}_{i}=\left\{F \in \mathscr{F} \mid\left\{x_{i}, y\right\} \subset F\right\}$. In view of (25) and $n>n_{0}(k)$ for $i=1,2$ we have

$$
\begin{equation*}
\left|\mathscr{D}_{i}\right|>(k-1)\binom{n-3}{k-3} . \tag{27}
\end{equation*}
$$

Hence we can find $F_{i} \in \mathscr{D}_{i}$ such that $F_{i} \cap F=\left\{x_{i}\right\}$ for $i=1,2$; that is, F, F_{1}, F_{2} form a triangle which proves Theorem 3.

4. The Proof of the Conjecture of Erdös

In view of Theorem 1 there is an $n_{0}^{*}=n_{0}^{*}(k)$ such that for $n>n_{0}^{*}(k)$ and an \mathscr{F} without triangles we have

$$
|\mathscr{F}|<2\binom{n-1}{k-2} .
$$

Let us choose $n_{0}^{\prime}(k)=2 \max \left\{n_{0}^{*}(k), n_{0}(k)\right\}$, where $n_{0}(k)$ is the bound in Theorem 3.

Suppose Theorem 4 doesn't hold for some $n>n_{0}^{\prime}(k)$, and some $\mathscr{F}(n)$. We apply Theorem 3, obviously in this case (iii) holds. Let us set

$$
\mathscr{F}(n-1)=\{F \in \mathscr{F}(n), x \in F\} .
$$

We have

$$
\begin{aligned}
|\mathscr{F}(n-1)| & =|\mathscr{F}(n)|-d_{F(n)}(x)>\binom{n-1}{k-1}-\frac{1}{2}\binom{n-2}{k-2} \\
& =\binom{n-2}{k-1}+\frac{1}{2}\binom{n-2}{k-2} .
\end{aligned}
$$

Now we consider the family $\mathscr{F}(n-1)$ on $n-1$ vertices and apply Theorem 3, omit a vertex of degree less than $\frac{1}{2}\binom{n-3}{k-2}$, obtain $\mathscr{F}(n-2)$, and so on until we obtain $\mathscr{F}([n / 2])$.

Let us estimate the cardinality of $\mathscr{F}([n / 2])$.

$$
\begin{aligned}
\left|\mathscr{F}\left(\left[\frac{n}{2}\right]\right)\right| & >|\mathscr{F}(n)|-\sum_{i=1}^{[(n+1) / 2]} \frac{1}{2}\binom{n-i-1}{k-2} \\
& \geqslant\binom{[n / 2]-1}{k-1}+\sum_{i=1}^{[(n+1) / 2]} \cdot \frac{1}{2}\binom{n-i-1}{k-2} \\
& \geqslant\binom{[n / 2]-1}{k-1}+\frac{[n / 2]}{2}\binom{[n / 2]-2}{k-2} \geqslant 2\binom{[n / 2]-1}{k-1},
\end{aligned}
$$

a contradiction, since $\mathscr{F}([n / 2]) \subset \mathscr{F}(n)$ contains no triangle, and $n \geqslant 2 n_{0}^{*}(k)$. Thus Theorem 4 is proved.

5. The Conjecture of Chvátal

We partition \mathscr{F} into $\mathscr{F}_{0}, \mathscr{F}_{1}, \mathscr{F}_{2}$ according to $F \in \mathscr{F}$ contains 0,1 or at least two ($k-1$) subsets which are not contained in any other $F^{\prime} \in \mathscr{F}$. In Section 2 we proved there are no $F, F^{\prime}, F^{\prime \prime} \in \mathscr{F}_{0}, D \subset F,|D|=r$ which satisfy (2), i.e., they form a Δ-system with kernel of cardinality r.

For $k>3 r$ applying the methods of [6] we can deduce that

$$
\begin{equation*}
\left|\mathscr{F}_{0}\right| \leqslant c_{k}\binom{n-r-1}{k-r-1} \tag{28}
\end{equation*}
$$

for some constant c_{k}.

Let us count the number of pairs $(G, F), G \subset F \in \mathscr{F},|G|=k-1$.

$$
|\mathscr{F}| \cdot k \leqslant\left|\mathscr{F}_{1}\right|+2\left|\mathscr{F}_{2}\right|+\left(\binom{n}{k-1}-\left|\mathscr{F}_{1}\right|-2\left|\mathscr{F}_{2}\right|\right)(n-k+1),
$$

or equivalently

$$
n\left|\mathscr{F}_{1}\right|+(2 n-k)\left|\mathscr{F}_{2}\right|+k\left|\mathscr{F}_{0}\right| \leqslant(n-k+1)\binom{n}{k-1}
$$

dividing by n and rearranging

$$
\begin{equation*}
\left|\mathscr{F}_{0}\right|+\left|\mathscr{F}_{1}\right|+\left|\mathscr{F}_{2}\right| \leqslant\binom{ n-1}{k-1}+\frac{n-k}{n}\left(\left|\mathscr{F}_{0}\right|-\left|\mathscr{F}_{2}\right|\right) \tag{29}
\end{equation*}
$$

As we may assume $|\mathscr{F}| \geqslant\binom{ n-1}{k-1}$ we obtain from (29) and (28), $\left|\mathscr{F}_{0}\right| \leqslant c_{k}\binom{n-r-1}{k-r-1}$, and consequently

$$
\begin{equation*}
\left|\mathscr{F}_{1}\right| \geqslant\binom{ n-1}{k-1}-2 c_{k}\binom{n-r-1}{k-r-1} . \tag{30}
\end{equation*}
$$

Now we define G, as in the proof of Theorem 3, i.e., the family of the unique ($k-1$) subsets of \mathscr{F}_{1}. Moreover let us define

$$
\mathscr{P}=\left\{H| | H|=k-1,|\left\{F \in \mathscr{F}_{1}\left|H \subset \mathscr{F}_{1}\right| \geqslant \geqslant k+1\right\} .\right.
$$

Using (30) we derive (we count the pairs (F, H), $F \in \mathscr{F}_{1},|H|=k-1$, $H \notin \mathscr{G})$

$$
\begin{equation*}
\left|\mathscr{F}_{1}\right|(k-1) \leqslant|\mathscr{H}|(n-k-1)+\left(\binom{n-1}{k-2}+2 c_{k}\binom{n-r-1}{k-r-1}-|\mathscr{H}|\right) k . \tag{31}
\end{equation*}
$$

From (31) we obtain for some constant c_{k}^{\prime}.

$$
|\mathscr{H}| \geqslant\binom{ n-1}{k-2}-c_{k}^{\prime}\binom{n-r-1}{k-r-1} .
$$

Let us define for $B \subset X,|B|=r$

$$
\mathscr{X}_{G}(B)=\{G \in \mathscr{G} \mid B \subset G\}, \quad \mathscr{O}_{H}(B)=\{H \in \mathscr{X} \mid B \subset H\} .
$$

Let us set further

$$
\begin{aligned}
\mathscr{B}= & \left\{B \subset X||B|=r,| \mathscr{D}_{\mathscr{C}}(B) \leqslant \frac{r+1}{r+2}\binom{n-r}{k-r},\right. \\
& \left.\mathscr{D}_{\mathscr{N}}(B) \left\lvert\, \leqslant \frac{1}{2(r+2)}\binom{n-r}{k-r}\right.\right\} .
\end{aligned}
$$

Counting the number of pairs $(B, E), B \subset E, E \in(\mathscr{G} \cup \mathscr{Z}),|B|=r$ we get

$$
\begin{align*}
& \binom{n}{k-1}\binom{k-1}{r}-c_{k}^{\prime}\binom{n-r-1}{k-r-1}\binom{k-1}{r} \tag{32}\\
& \leqslant\binom{ n}{r}\binom{n-r}{k-r-1}-|\mathscr{B}| \frac{1}{2(r+2)}\binom{n-r}{k-r} .
\end{align*}
$$

As $n>n_{0}(k, r)$, (32) yields \mathscr{B} is empty, i.e., for every r-element subset B of X either

$$
\left\lvert\, \mathscr{D}_{\mathscr{G}}(B)>\frac{r+1}{r+2}\binom{n-r}{k-r} \quad\right. \text { or } \quad\left|\mathscr{D}_{\mathscr{F}}(B)\right|>\frac{1}{2(r+2)}\binom{n-r}{k-r}
$$

Let us set

$$
\mathscr{E}_{1}=\left\{B \subset X| | B|=r,| \mathscr{D}_{\mathscr{S}}(B)>\frac{r+1}{r+2}\binom{n-r}{k-r}\right\} .
$$

From the proof of Theorem 1 it follows that there are no 3 sets F, F^{\prime}, $F^{\prime \prime} \in \mathscr{F}_{1}$ which form a Δ-system with kernel $D,|D|=r$, and $D \subset G(F)$. Hence we may proceed with \mathscr{E}_{1} as in the proof of Theorem 1 , and prove that there are two elements $x_{1}(E), x_{2}(E)$ such that for almost every $G, E \subset G$ the complement of G is either $x_{1}(E)$ or $x_{2}(E)$, then we define for $E \in \mathscr{E}_{1}$ the set $A(E)$ satisfying

$$
E \subset A(E), \quad|A(E)-E|=1 \quad \text { or } \quad 2 .
$$

Next we prove that the intersection of any $r+1$ member of $\mathscr{A}=$ $\left\{A(E) \mid E \in \mathscr{E}_{1}\right\}$ is non-empty.

From this and $|A|>c(k, r)\binom{n}{r}$ we derive that there is a $y \in X$ such that $y \in A$ for every $A \in \mathscr{A}$. Then at last we are in a posititon to prove that every member of \mathscr{F} contains y. Suppose the contrary and let $F_{0} \in \mathscr{F}, y \in F_{0}$. Let $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subset F_{0}, \quad x_{r+1} \in\left(X-F_{0}\right), \quad x_{r+1} \neq y . \quad$ Let us set further $E_{i}=\left\{x_{j} \mid 1 \leqslant j \leqslant r+1, j \neq i\right\}$.

For $E_{i} \in \mathscr{E}_{1}$ we choose $G_{i} \in \mathscr{G}$ such that its complement is y and $G_{i} \cap F=$ $E_{i}-\left\{x_{r+1}\right\}$ (its is possible by the definition of $A\left(E_{i}\right)$ and $y \in A\left(E_{i}\right)$). We put
$F_{i}=G_{i} \cup\{y\}$ in this case. For $E_{i} \notin \mathscr{E}_{1}$ we can find $H_{i} \in \mathscr{O}$ such that $H_{i} \cap F=E_{i}-\left\{x_{r+1}\right\}$ as $\left|\mathscr{D}_{\mathcal{F}}\left(E_{i}\right)\right|>(1 / 2(r+2))\binom{n-r}{k-r-1}$.

By the definition of \mathscr{O} we can find $F_{i} \in \mathscr{F}_{i}, H_{i} \subset F_{i}$ such that

$$
\left(F_{i}-H_{i}\right) \cap F=\varnothing .
$$

Now the sets $F_{0}, F_{1}, 1, \ldots, 1, F_{r}$ form an r-dimensional simplex, a contradiction, which proves the theorem.

References

1. J. C. Bermond and P. Frankl, On a conjecture of Chvatal on m-intersecting hypergraphs, Bull. London Math. Soc. 9 (1977), 310-312.
2. V. Chvátal, An intersection theorem for finite sets, J. London Math. Soc. 9 (1979), 355-359.
3. R. Duke and P. Erdős, Systems of finite sets having a common intersection, in "Proceedings, 8th South-Eastern Conference on Combinatorics, Graph Theory and Computing, Boca Katon, 1977," pp. 247-252.
4. P. Erdös, Topics in combinatorial analysis, in "Proceedings, Second Louisiana Conference on Combinatorics, Graph Theory and Computing" (R. C. Mullin et al., Eds.), Louisiana State Univ., Bâton Rouge, 1971, pp. 2-20.
5. P. Frankl, Spencer systems satisfying an additional condition, J. Combinatorial Theory Ser. A 20 (1976), 1-11.
6. P. Frankl, Extremal problems and coverings of the space, European J. Comb. 1 (1980), 113-119.
7. P. Turán, Eine extremal Aufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
