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A simple short proof of the Johnson-Lindenstrauss lemma (concerning nearly 
isometric embeddings of finite point sets in lower-dimensional spaces) is given. This 
result is applied to show that if G is a graph on n vertices and with smallest eigen- 
value i then its sphericity sph(G) is less than cA2 log n. It is also proved that if G or 

its complement is a forest then sph(G) < c log n holds. Q 19%8 Academic Press, Inc. 

1. SOME UPPER BOUNDS ON THE SPHERICITY OF GRAPHS 

We state a slightly improved version of the JohnsonLindenstrauss 
lemma [4]. The proof-which is considerably shorter-will be given later. 

LEMMA. For an 6 (0 <E < +j and an integer n, let k(n, E)= 
r9(E2 - 2~~/3)-’ log nl+ 1. Ifn > k(n, E)‘, then for any n-point set S in R”, 
there exists a map f: S--t Rk”‘zE) such that 

(l--E) llf-~l12< IIf(f(u)ll’ 

<(I+&) 11u-u112 for all u, v in S 

Remark. In [4] the constant 9 is not specified. 

We are going to apply this lemma to the sphericity problem (see [2, 
5-81, and also [lo], where similar problems were considered). The 
sphericity of a graph G = (V, E), sph(G), is the smallest integer n such that 
thereisanembeddingf: V-+R”suchthatO<Ilf(u)-f(u)ll<l ifandoniy 
if uv E E. An eigenvalue of a graph G is an eigenvalue of its adjacency 
matrix A(G). I GI denotes the number of vertices of G. 

THEOREM 1. Let G be a graph with minimum eigenvalue Amin > -c 
(~22) and suppose that IGI > [12(2c- 1)210g IGIl’. Then sph(G)< 
12(2c - 1)2 log IGI. 
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ProoJ Let n = IGI and A(G) = (a,,) be the adjacency matrix of G. Then 
A(G) + cl is positive semi-definite, where Z is the identity matrix. Hence we 
can write A(G)+cZ=M.M’. Let x, be the ith row of M. Then 
ll~~-x,~li~=2~-2a~. Let s=1/(2c-1) and let S={xjeR”: i=l,...,n}. 
Since 

k(n, E)< 11.58(2c- 1)210g IGI < 12(2c- 1)210g IGI forc32, 

applying the lemma, we can conclude that there exists a map f: S -+ Rk(n,E) 
such that 

Ilf(xi)-f(xj)il*<2C(l -E) iff ~=l. 

Now setting g(x,) = (2c(l- s))-1/2 f(xJ, we have 

II dxJ - &j)ll 2 < 1 iff a,=l. 

Thus sph(G) < 12(2c- 1)2 log IGI. 1 

Reiterman, Rodl, and Siiiajova [12] showed by a different method that 
if G is a graph with maximum degree d, then 

sph(G)d 16(d+ 1)3 log(8 IGI (d+ 1)). 

Our next result is an improvement of this bound. 

COROLLARY 1. Let G be a graph with maximum degree d and suppose 
IG( > [12(2d- 1)2 log lG112. Then sph(G) < 12(2d- 1)‘log IGI. 

Proof: If the maximum degree of a graph G is at most d, then the 
maximum eigenvalue A,,, of G is also at most d (see, e.g., [14]). Since 
i mm 3 -klax holds generally, we have Amin 3 -d. Hence the corollary 
follows from Theorem 1. 1 

Let L(G) denote the line graph of G. Then it is well known that 
Amin B - 2 (see, e.g., [ 141). This implies the next result. 

COROLLARY 2. Let G be a graph with m edges. Then 

sph( L( G)) < 108 log m for m > (108 log m)‘. 

THEOREM 2. Let T be a tree with sufficiently large order. Then 
sph( T) < 105 log 1 Tj. 

ProoJ: Let ui (i= 1, . . . . n) be the vertices of T. For each ui, there is a 
unique path Pi from vi to vi. Let xi = (si, . . . . s,) in R”, where sj = 1 if vj 
appears in P, and si = 0 otherwise. Then the set S= {xl: i = 1, . . . . n> 
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satisfies that llxi -x, )I* = 1 if vi and uj are adjacent; 22 otherwise. Hence 
letting E = i and applying the lemma, we have a mapf: S -+ IP@“,&) such that 
l~f(xi)-f(xj)l12 <: if ui and vj are adjacent, >4 otherwise. Now letting 
g(x,) = (g)-‘/2f(~i), we have llg(x,) - g(x,)ll < 1 if and only if ui and uj are 
adjacent. Since k(n, E) = [(729/7) log n] + 1 < 105 log n, we have the 
theorem. 1 

Remark. Using a different method we could improve the constant 105 
to 7.3; see [3]. 

Concerning the sphericity of the complement of a tree or a forest, we 
have the following. 

THEOREM 3. For any forest F, sph(F) 6 8rlog, IFI 1. 

Proof: The proof is based on the result of Poljak and Pultr [ 111. They 
delined the “product” K; of r copies of the complete graph A& as the graph 
with vertices (x = (xi, . . . . x,): xi E V(K,)} and the edges {xy: xi # yi for 
every i}. They proved then that each forest F can be embedded as an 
induced subgraph in K;, where r = 4rlog, IFI 1. Now, let (G be the com- 
plement of K;. We show sph(G) 6 2r. Let u, v, w  be the vertices of an 
equilateral triangle of sidelength (l/r) ‘I2 in R2 centered at the origin of R*. 
Let X= ((si, . . . . s,): si = u or v or w} c R* x ... x R2 = R2’. If we connect 
each pair of points of X by a line segment whenever their distance is less 
than 1, then we have a geometric graph isomorphic to G. Hence 
sph(G) < 2r, and hence sph(F) < 8rlog, I FI 1. 1 

Remark. Recently, Reiterman, Rodl, and siiiajova [13] proved that 
sph(P) < 6 for every forest F. This result is further improved in [9] to 
sph(P) < 3. 

2. A SIMPLE SHORT PROOF OF 
THE JOHNSON-LINDENSTRAUSS LEMMA 

Let v be a unit vector in R” and H a “random k-dimensional subspace” 
through the origin, and let us define the random variable X as the square 
length of the projection of v onto H. 

PROPOSITION. Suppose t > E > 0, n > k2, k > 24 log n + 1. Then P, = 
Prob(lX-k/n1 >&k/n) < 2$exp(-(k- l)(s*/4-s3/6)). 

Proof: First we state a few easy consequences from the above restric- 
tion on k, n for later use: 

k/n -c l/20, kn > (5z)*, Jqzjyz > 1.4. 
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Note that to compute the above probability we can reverse the roles and 
take a fixed k-space H and then a random unit vector v (uniformly 
distributed on the surface of the unit sphere in R”). Let 0 be the angle 
between v and H. Then X= cos’ 0. Thus the event we are interested in is 

0 $ [arccos JjCGji&, arccos JFm]. 

Let Vi denote the surface area of the unit sphere in R’. We use the follow- 
ing formula (a proof of which will be given later): 

s 
n/2 

v, = V,(cos O)k-’ V,-,(sin O)n-k-1 de (valid for all 1 6 k < n). 
0 

(1) 

Let A(t) = arccos J(1 + t)k/n. Then 

where f(O) = (cos 19)~~’ (sin O)n-k-‘. Let us estimate the value of f(0) for 

0 = A(t) = arccos ,,/‘m. 

= (&)‘k- I)/2 ((n _ k)/@-“- 1)/z 
V 

C 

x(1+t)(k-‘)/2(1-tk/(n-k))(“~k~1)/2. 
\ / 

B 

Using the inequalities 

1 + t < exp(t - P/2 + t3/3), (1 - tk/(n - k))‘“- k)‘ctk) < l/e 

we obtain 

B < exp( t 

Since (n - k - 

- t2/2 + t3/3)(k - 1)/2) exp( - (tk/2)(n - k - l)/(n -k)). 

l)/(n - k) > (k - 1)/k for n > 2k, we infer 

B < exp( - (k - l)(t2/4 - t3/6)). 

Since 

A’(t)=dA(t)/dt=-(4(1+t)(l-(1+t)k/n))~1’2(k/n)”2, 

A”(t) = d’A(t)/dt’> 0, 
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and since k/n < l/20, using the mean value theorem, we have 

IA(-$)-A(-&)I=I($-&)A’([)l<+ IA’( 

= (k/n)‘/’ (8 - 4k/n)-‘12 < 0.36(k/n)lj2. 

Similarly 

IA(s)-A( < IA’(O)/ = (n/k)“j2 (4-4k/n)p1’2 

< 0.52(k/n)‘j2. 

Hence 

< 0.9(k/n)‘12 exp( -(k - 1)(s2/4 - s3/6)). (2) 

On the other hand, since f(0) is “unimodal” with maximum value at 

8 = arccos Jm, it follows that for t < -t or t > 1, B is less 
than exp( - (k - 1)/12). Hence 

j;l(1’BdO+?rr/2 Bd8<(n/2)exp(-(k-1)/12). (3) 
A( - l/2) 

Since s<$ and k-1>24logn, 

(7c/2) exp( -(k - 1)/12) < (n/2) exp( - (k - 1)(s2/4 - s3/6 + l/24)) 

< (z/2)n-’ exp( - (k - 1)(s2/4 - s3/6)) 

< 0.1(k/n)‘i2 exp( -(k - 1)(s2/4 - s3/6)). 

Combining (2) and (3) we get that the numerator of P, is less than 

V, V,pkC(k/n)‘i2 exp( -(k- 1)(s2/4-s3/6)). 

Now we estimate V,. Using the inequalities 

exp(t - t2/2) < 1 + t (t > 01, 

lie < (1 - tk/(n - k))((n-k)/(fk)) - 1 

we have that for t > 0, 

B>exp(t(k- 1)/2- t’(k- 1)/4) exp( -tk(n -k- 1)/(2(n - k- tk))) 

=exp(-(k-l)t2/4-(t/2)(1+(tk2-k)/(n-k-tk))). 
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Thus B>e-“4exp(-(k-l)t2/4) for O<t<+. Since 

Ide/dfl = IA’(t)] > (k/(52))“2 for O<z<$,n>k’, 

we have 

B d6’ > (k/(5n))‘12 e -‘I4 exp( - (k - 1) t’/4) df 

(letting c = (2/(k - 1)“‘) 

= e-‘/4(k/(5n)“2 (27~)“’ CT {1’4 (27-r)“’ a-' exp( -t2/(2a2)) dt. 
0 

(Using the standard normal distribution function Q(x), the last integral is 
represented as @(l/(40)) - Q(O).) S ince 1/(4a) = ((k- 1)/32)‘j2 > 1.4, and 
@( 1.4) - Q(O) = 0.4192, this is greater than 

Thus V, > V, V,, _ k C( 4n) -“‘. Therefore 

P, <2&exp(-(k-1)(~~/4-~~/6)). 1 

Proof of Formula ( 1). We have 

s 

42 
sina-’ 0 cosbV1 8 d0 = f T(a/2) r(b/2)/T((a + 6)/2) 

0 

(cf. [l, Sect. 534, Exercise 4a]). On the other hand, the surface of an 
n-dimensional sphere of radius 1 is 

V, = 27Y/2/r(n/2 ) 

(cf. [l, Sect. 676, Exercise 31). Thus 

V n-k V, = 4z”“/(r(k/2) r((n - k)/2)) 

and hence 

s 
42 

= sink-’ 8 cosnPkP1 0 de. 1 
” 
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Proof of the Lemma. Let S = { uI, . . . . II,> c R” and let H be a random 
k-space in R”, where k = k(n, E). Let wi be the projection of ui on H, 
i=l , . . . . n. We denote the event 

1 IIwi-wIj12/lIui-uIl12-k/nI>&k/n 

by E,. Then by the above proposition, 

Prob(El,) < 2 4 exp( - (k - 1)(~~/4 - ~~/6)) for i# j. 

Hence the probability that E, occurs for some i # j is less than 

0 
i 2 ,,h exp( - (k - 1)(.5’/4 - .z3/6)) < n9j4 exp( -log n914) = 1. 

Therefore there exists a k-space H in R” for which 

i.e., 

(1-c) Iluj-ujll*<(n/k) I/wj-wj/12<(1+~) ilui-uj/12 (i#j). 

Hence, lettingf(ui) = $& wi (i= 1, . . . . n), we obtain a desired embedding 
of S in k-dimension. 1 
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