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INTRODUCTION 

An important topic in Ramsey theory deals with solution sets of (systems 
of) homogeneous linear equations. Pioneered by the early work of Schur 
[I91 and van der Waerden [21], the subject received a major thrust with 
the fundamental results of Rado [17, 91 and, more recently, Deuber [4]. 
Essentially, these results guarantee for certain systems L, the existence of a 
function N,: Z+ + Z+, so that for any integer r>O and any partition of 
[NL(r)] := { 1,2, . . . . NL(r)} = C, u . . . u C, into r classes, some class Ci 
must contain a solution set for L. These systems are said to be partition 
regular. Often, the classes are called colors, the partition an r-coloring, and 
the corresponding solution sets monochromatic. 

In this paper, we investigate how the number of monochromatic solution 
sets of L grows for r-colorings of [N] as N + co. It will turn out 
(Theorem 1) that for every partition regular system L = L(x,, . . . . x,), if 
nL(N) denotes the number of n-tuples (xi, . . . . XL) which satisfy L, where 
1 <xi < N for all i, then there exists for each r, an absolute constant c,(L) 
so that for any r-coloring of [N] there are always at least c,(L) uL(N) 
monochromatic solution sets to L. In other words, in any r-coloring of 
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[N], the number of monochromatic solution sets is a positive fraction of 
the total number of solution sets. 

We also prove analogous results (Theorem 2) for systems of equations 
which always have solutions in any set XS 7 + with positive upper density. 
Such systems will be said to be density regular; an example of such a system 
is 

x1-x2=x*-x3= ... =xk-I-xk (*I 

The solution sets to (*) (with distinct xi) are just the k-term arithmetic 
progressions. The fact that (*) is density regular is exactly Szemeredi’s 
celebrated theorem [20]. Of course, in general, if L is density regular then 
it is partition regular. 

We will conclude the paper by discussing a number of related results and 
open problems. 

Three Equations 

Before presenting our main results, we first discuss three homogeneous 
linear equations which will be useful in illustrating the concepts we will 
need later: 

x+y=z, (1) 
x + y = 22, (2) 

x+ y=3z. (3) 

Although superficially similar, these equations exhibit the three different 
types of behavior we will focus on in this paper. 

To begin with, Eq. (3) is not partition regular. To see this, consider the 
following 4-coloring x of Z+. For each n E Z+. write n = 5@(5k, + 6,), 
where a, 2 0 and 6, = 1,2,3, or 4. Define x(n) = 6,. It is easy to check that 
(3) has no monochromatic solution under the coloring x. 

Next, we consider (2). Any solution (x, y, z) to (2) with x # y forms a 3- 
term arithmetic progression. The classic theorem of van der Waerden [21] 
shows that for all k and r, there exists a number W(k, r) so that for any 
r-coloring of [ W(k, r)] there is a monochromatic k-term arithmetic 
progression. Let W : = W(3, r) and assume that [IV] is r-colored. Consider 
the set of W-term arithmetic progressions AP(a, d) = (u + dx: 0 <x < W}, 
where 1 ,< a < N/2 and N/4 WC d < N/2 W. Clearly, each such AP(a, d) is 
contained in [iV] and, by the choice of W, must contain some 
monochromatic 3-term arithmetic progression Po,d. However, each such 
Pn,d can occur in at most ( y) different arithmetic progressions AP(a’, d’), 
since the first term of P,, might be the ith term of AP(a’, d’) and the last 
term of P,, might be the jth term of AP(a’, d’), and there are at most ( y) 
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possible choices for i < j. Thus, since there are essentially N2/8 W AP(a, d)‘s 
then [N] must contain at least N2/4 W3 monochromatic 3-term arithmetic 
progressions. Therefore, if u&N) denotes the minimum possible number of 
monochromatic solutions to Eq. (2) in any r-coloring of [N], then we have 
shown: 

FACT 1. 

0dN) ' crN2 

for an absolute positive constant c, (depending only on r). 

(4) 

Observe that this is to within a constant factor the most we could hope 
for, since there are only c’N2 3-term arithmetic progressions altogether in 
CNI. 

Finally, we treat Eq. (l), which is the most difficult of the three. One 
reason for this appears to be that while (2) is density regular, (1) is only 
partition regular and not density regular. It turns out that the analog to (4) 
also holds here. Namely, if u(i,(N) denotes the minimum possible number 
of monochromatic solutions to Eq. (1) in any r-coloring of [N], then we 
have: 

FACT 2. 

ucl,(N) > c:N2 

for an absolute positive constant c: (depending on r). 

(5) 

Proof. To begin, it is known (cf. [9]) that for each r, there is a number 
S= S(r) so that in any r-coloring of the set 2rs1 of subsets of [S], one can 
always find two nonempty disjoint subsets Z, Jc [S] such that Z, .Z and 
Zu J all have the same color. 

Next, for 1~ i < S, choose ai with 1 < ai < N/S so that 

cziz 2’-‘(mod 2’). (6) 

Note that the 2’ sums Cis, a,, ZG [S], are all distinct modulo 2’, and 
therefore, distinct. Thus, since each integer Cia,ai, ZG [S], is in [S] and 
so, has been assigned one of the r colors, we can assign the same color to 
the corresponding subset ZG [S]. By the definition of S= S(r), we can find 
in this r-coloring of 2 tsl, disjoint nonempty subsets I,, J,, E [S] so that I,, 
.Z,, and I, u Jo all have the same color. 

Now, since there are essentially N/S. 2’ ways of choosing ai, then there 
are altogether 

fi (N/S.2”)=NS 
i=l ss. 2s2 
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ways of choosing all the a,)~, 1 < i < S. On the other hand, consider 
some solution to (l), say a + b = c. We claim that there are at most 
c, Wye2 choices for a = (a,, . . . . a,) satisfying the required conditions. In 
view of (6), if 

a= 1 ai, b= c aj 
ic lo(a) je Jo(a) 

then the sets lo(Z) and J,,(G) are uniquely determined. This gives two 
equations for a,, . . . . a,. Thus, we lose two degrees of freedom in choosing 
ti, so that we only have c,N ‘- 2 choices instead of c2iVS. This implies that 
there must therefore be at least c:N2 different monochromatic solutions to 
( 1 ), and (5) is proved. B 

As in Fact 1, (5) is to within a constant factor best possible. 
In the next two sections, we will prove the corresponding extensions of 

(5) and (4) for (partition and density, respectively) regular systems of 
homogeneous linear equations over Z. 

Partition Regular Systems. 

We begin by recalling several relevant facts concerning partition regular 
systems (see also [4, lo]). 

For an I by k matrix A = (aV) of integers, denote by L = L(A) the system 
of homogeneous linear equations 

i auxj=O, l<i<l. (7) 
. j= I 

We can abbreviate this by writing 

AZ=& xc = (x,, . . . . Xk)l. 

We say that L is partition regular if for any r-coloring of Z +, there 
is always a solution to (7) with all xi having the same color. The matrix 
A is said to satisfy the columns condition if it is possible to re-order the 
column vectors a,, a,, . . . . Gk so that for some choice of indices 
1 <k, <k,< . . . <k,=k, if we set 

/=k,-,+I 

then 

(i) A,=O, 
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(ii) For 1 < ib t, Ai can be expressed as a rational linear com- 
bination of Gj, 1 < j < ki- 1. 

A classical result of Rado asserts the following. 

THEOREM [17, lo]. The system A.? = 0 is partition regular if and only if 
A satisfies the columns condition. 

Let us call a set XE Z + large if for any partition regular system AX = 0 
and any finite coloring of X, there is always a monochromatic solution to 
AZ=O. It was shown by Deuber [4] (settling a conjecture of Rado) that 
large sets have the following partition property: If X is large and 
x=x,u ... u X, then for some i, Xi is large. We next introduce some 
notation due to Deuber [4]. 

DEFINITION. 

N m,p,c := ((4, ...? A,,,): for some i<m, dj=O for j<i, &=c>O and 
IAkJ <p for k>i}. 

A set Y E Z + is called an (m, p, c) - set if 

Y= 
i 

f AiYi: (AI, 22, ...y J-m)~Nm,p,c 
i=l 

for some choice of yl, y,, . . . . y, > 0. 

As shown by Deuber, sets of solutions for partition regular systems 
AZ = 0 correspond to subsets of (m, p, c)-sets in the following way. 

Remark 1. Let A be an 1 by k matrix satisfying the columns condition, 
and let AI, A,, . . . . A, be the column vector sums coming from the definition 
of the columns condition. We can assume without loss of generality that A 
has rank 1. Then there exist k - 1 linearly independent solutions to AZ = 6 
which (by the columns condition) have the following form’: 

k, k,-k, k,-k,-, 

“II = (1, 1, ... . 1 ) ............... 0, 0, ... . 0 ) . ..) ....................................... 0, 0, ... . 0)’ 
w2 = (a 21 ) ... . a2k ,, ............ 1) 1) ... . 1 ) ... . ....................................... 0, 0, ,,., 0)’ 

w, = (a 11 ............................................ . ............................. c( rk,_,, 1, 1,. .. . 1)’ 

w,+1= (a ,+ 1,‘ ....................................... . ........................................... c1t+ 1,k Y  

@k-,= (ak- ,,, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ak-Lk)’ 

1 2’ denotes the transpose of 2; we will occasionally omit this if it is clear from context. 
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where all the aii are rational. Multiplying all the entries by a sufficiently 
large integer c, we obtain linearly independent vectors of the following 
form: 

Ul =(c,c ,..., c, 0 )...) 0 , -.., 0, . ..) 0)’ 

v2 = (B2,, ..., P2,k,’ c, . . . . c, 0, . ..) . . . . . . . . 0)’ 

6,; I = (B B 1’ 
(8) 

I+ 1.1, . . . . . . . . . . . . . . . . . . . . . . . . ..) . . . . . . . . . . . . . t+ 1.k 

6k-, = @-,,I, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bkp,,k)‘, 

where all entries are integers. Set p = Jmax Biil. Since every solution to 
AX = 0 can be expressed as a linear combination of the vectors v,, 
u2, . . . . Ok-,, say, i =Cf:: yiUi, then in fact each solution of AZ = 0 is 
always a subset of some (k-l, p, c)-set, and conversely, as claimed. 

We are now ready to give the following quantitative version of Rado’s 
theorem. 

THEOREM 1. Let A be an 1 by k matrix of rank I which satisfies the 
columns condition. Then for any r there exists c,(A) > 0 such that in any 
r-coloring of [N] there are at least c,(A) Nkp’ monochromatic solutions to 
the partition regular system Ax = 0. 

If we let v,(N, r) denote the minimum possible number of 
monochromatic solution sets to a system L whenever [N] is r-colored (so 
that u=(N) = rL(N, 1 )), then we have as an immediate consequence: 

COROLLARY 1. If L is partition regular then for any r there exists 
c,(L) > 0 so that 

uL(N, r) 2 c,(L) u&O 

Proof of Theorem 1. The proof will use the following version of 
Deuber’s theorem. 

THEOREM [S]. For every choice of m, p, c, and r there exist M, P, and C 
such that for any r-partition of 

J=J,uJ,v ... vJ,, 

582a/47/2-7 
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there exist pairwise disjoint sets B,, B,, . . . . B, E [Ml, and 

such that all linear combinations 

belong to a single class Jk for some k. 

Now, given our I by k matrix A of rank I satisfying the columns con- 
dition, we know by Remark 1 that the entries of the set of solution vectors 
of AZ = 6 all belong to some (k-Z, p, c)-set. Set m = k - 1 and let M, P, 
and C be the integers from Deuber’s theorem. Choose N> A4 to be very 
large. Consider all the M-tuples ( YI, Y,, . . . . Y,) of integers Yi satisfying 

o< Y& 
MC 

and Yi= (2P+ l)‘mod(2P+ l)M (9) 

for 1 G i < M. There are at least c1 NM such A4-tuples for some constant 
c1 > 0 not depending on N. For such an M-tuple (Y,, Y,, . . . . Y,), consider 
the (M, P, C)-set 

J( Y 1, . . . . Y,)= f AjYi. (A,, . ..) IZM)EN,,,,, 
i=l 

Let [N] = C1 u ... u C, be an r-coloring of [N]. By Deuber’s theorem we 
can find disjoint subsets B,, . . . . Bk.-,& [M] and yi = CJEB, tj Yj, 1 < 
\<jl d P, so that all the linear combinations Cy= I Aiyi, (A,, A,, . . . . A,) E 
N m,p,r, have the same color. In particular, I = CF:i y,ci (from (8)) is a 
monochromatic solution to the system Ai =O. This therefore gives, with 
multiplicity, at least c1 NM monochromatic solutions (one for each choice 
of ( Y1) . . . . YM)). Our proof will be complete if we can show that each of 
these solutions can occur at most NM -v-‘) times. 

To see this, suppose (x,, . . . . xk) is some solution obtained above, i.e., for 
some choice of ( yl, . . . . yk _ ,), the xi are fixed linear combinations of the yi. 
Then, we must show that the same monochromatic (m, p, c)-set is obtained 
at most NMp(k-‘) times. However, given yi, its residue modulo (2P + l)M 
uniquely determines the Aj, 1 6 j< M, from (9). Thus, the possible 
Y 1, . ..1 Y, must satisfy k-f linear equations, which involve pairwise 
disjoint sets of unknowns among them. This gives the required bound and 
the proof is complete. 1 



QUANTITATIVE THEOREMS 

Density Regular Systems 

Suppose Xc Z + is a set having positive upper 

limsup’XnCN1’>O 
N-a. N ’ 

The system 
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density, i.e., so that 

(10) 

is said to be density regular if for any set X of positive upper density there 
is a vector X satisfying (10) and having all entries belonging to X. 

If it happens that (10) has the vector X = i = (1, 1, . . . . 1) as a solution 
then, of course, for any k E Z +, X = k . i = (k, k, . . . . k) is also a solution. In 
this case, (10) is trivially density regular. However, the solution k. i is 
normally not considered to be very interesting. For example, for the density 
regular system 

x,-22x,+x,=0, 

the solutions (xi, x2, xj) are just the 3-term arithmetic progressions, 
provided the xi are distinct. 

With these considerations in mind, let us call the system (10) irredun- 
dant, if (10) does not imply that xi = xi for i # j. Also, let us call a solution 
x = (x1, . ..) xk) to (10) proper if all the xi are distinct. 

FACT 3. If AZ = 0 is irredundant then it has a proper solution. 

Proof: For each choice of i < j, let 9) = (x’,‘“, xy), . . . . xy)) be a solution 
to (10) with x!g) # x!q) , , which exists by hypothesis. Thus, for any integer N, 
X* = (x:, x:, . . . . xf) with 

icj 

is also a solution to (10) by linearity. However, if N > max,,,,(x~~i) then all 
x,? are distinct. 1 

FACT 4. An irredundant system AZ = 0 has a proper solution in every set 
X of positive upper density if and only if A . i = 0. 

ProojI First, since X has positive upper density then by Szemeredi’s 
theorem [20, 81, X contains arbitrarily long arithmetic progressions. Sup- 
pose X, = (b,, b,, . . . . bk) iS a proper SOhtiOII Of A.?, = 0, i.e., all the bk are 
distinct. Let B : = maxk b, and let P = (C + Ad: 1 E [B] } be a B-term 
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arithmetic progression in X. If i also satisfies A . i = 0 then so does the 
linear combination 

Z*=c.i +d&=(c+b,d,c+b,d, . . . . c+b,d), 

which is proper, and furthermore, has all entries in P c X, as desired. 
In the other direction, suppose AZ = 0 has a proper solution in every set 

of positive upper density. Let N > Ci,j JaVl, where av ranges over all entries 
of A. Consider the set Y = {Ny + 1: y E Z + > with (upper) density l/N. 
Suppose x‘ = (x1, . . . . x,) satisfies Ax = 0, where each xk = Ny, + 1 E Y. Thus, 

o=C~,xj=Ca~(N~~j+l)=NCaiiyj+Caii 
i i i i 

for 1 < i < m. By the choice of N, this implies that Cj aii = 0 for all i. This is 
exactly the statement that Ai = 0, as required. This completes the proof. 1 

THEOREM 2. Let A be an 1 by k matrix of rank 1 so that AZ =0 is 
irredundant and Ai = 0. Then for any E > 0 there is a constant c, = c,(A) > 0 
so that if N > N,(A, E) and XC_ [N] with (XI > EN then X must contain at 
least c, Nk-’ proper solutions X to AZ = 0. 

Proof. Let E > 0 be arbitrary (but fixed) and let X G [N] with ) XI > EN 
be given, where it will be useful to think of N as being very large. Since A 
has rank 1, the space of all (rational) solutions X to Ax = 0 has dimension 
k - 1. Let v0 = i, v,, . . . . 17, be linearly independent integer solutions to 
AZ = 0, where m := k-l- 1 and for Ui = (uil, . . . . rik)‘, we can assume 
without loss of generality, all uij 2 0 (since if not, then we can repeatedly 
add i to Ei until this is true). Define t : = 1 + maxV vii. 

For UEZ+ and each vector p = (y, , . . . . y,) with yi E Z +, define the 
m-box B,(j) to be the set 

{(a, Yl> a2 Y2, .**7 a,y,):O<ui<u, l<i<m). 

Further, define the projection n: B,(y) + h by 

4(a1 Yl, . . . . a~Ym))= f aiYi. 
i=l 

By the theorem of Furstenberg and Katznelson [7, 81, there is an integer T 
so that for any P= ( Yr , . . . . Y,,,) with Yi E Z +, if X* G BT( P) with 
IX*1 > (s/2) (BAY)1 = (s/2) T” then there exists a “translated” m-box 
A+B,(A,P)sX*, where A=(A, Y1 ,..., A,Y,) and A,, A, ,..., A,EZ+. 
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Now, consider the set of all integer vectors 9= (Y,, Y,, . . . . Y,) which 
satisfy the constraints: 

(i) 0~ Yi<c2N/mT, 1 <iQm; 

(ii) Yj= Tip1 (mod Tn), 1 <i<m. 

Note that if P== (a, Y,, . . . . a, Y,) E BT( P), P’ = (a; Yr, . . . . ah Y,) E BT( P) 
and rc(P)=7r(P’) then by (ii), 

m  

c aiT’-’ = f ajT” (mod T”), 
i=l i=l 

which in turn implies ai = a,! for all i, since 0 < ui, ai < T. Thus, n is l-to-l 
on BT( y). Also, by (i) 

0 < n(P) < E’N. 

Let us call an integer a E [N] “good” if 

B(u) := a + n(BT( P)) E [N] 

and 

IXn B(u)1 >; T”. 

It is easy to see that for a fixed constant 6 = 8(s) > 0, the set A = {a E [N]: 
a is good} satisfies 

By the choice of T, for each a E A, Xn B(u) contains the translated projec- 
tion 

Yo + 4&M, F)) 

for some Y,, A,, E Z +. Furthermore, by the choice of t, this in turn contains 
all components of the solution 

x= r,.i+ f A,YiGi 
i= 1 

to Ai! = 0. Since there are cN” + ’ ways to choose the Y,, Y,, . . . . Y, for a 
positive constant c (depending on E and A) then the theorem will be proved 
if we can show that no solution X to AZ = 0 can arise this way in more than 
a bounded number of ways. 

To see this, first note that since the (k - I) by k matrix V= (vii) formed 
from the (linearly independent) solution vectors Vi. 0 G i < k - 1, has rank 
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k- 1 then we can assume without loss of generality (by relabeling, if 
necessary) that the (k - 1) by (k - 1) submatrix v’ = (v~)~< i, j<kP I is non- 
singular. Suppose X = (x1, . . . . xk) has all its components xi lying in some set 
Y, + n(BT( P)) E [N], where P= (Y,, . . . . Y,,,) satisfies (i) and (ii). For each 
of the k! permutations g on [k], consider the vector X, = (x,(~), . . . . ?c,(~,). If 

,=O 

then by the nonsingularity of V’, the first k - 1 coordinates of X, determine 
all the Yi. Thus, each such X can arise from at most k! choices for the Yi. 

Finally, we observe that almost all of these c’Nk-’ solutions x to AZ = 0 
are proper solutions. This is because, by hypothesis, for i # j, the space of 
solutions f with xi = xi corresponds to a nontrivial dependence between the 
coefficients Y,, 1 < i < m, resulting in at most O(Nk ~ I- ‘) such solutions. 

This completes the proof of the theorem. 1 

Let or(N; E) denote the minimum possible number of proper solutions to 
a system L = L(A) which can belong to a set Xc [N] having 1x1 > EN. The 
following corollary is immediate. 

COROLLARY 2. If A is irredundant and L = L(A) is density regular (i.e., 
A . i = 0) then for any E > 0 there exists c,*(L) > 0 such that 

u;(N; 6) 2 c:(L) UAW, 

where u,(N) denotes the total number of solutions L has in [N], 

Canonical Colorings 

Suppose [N] is colored with some arbitrary number of colors and we 
would like to know what types of colored k-term arithmetic progressions 
must always occur. Monochromatic arithmetic progressions are no longer 
guaranteed since we might, for example, always decide to give each x E [N] 
a distinct color. In this case, however, we would find a k-term arithmetic 
progression with all its terms having distinct colors. We call such a coloring 
a one-to-one coloring. It turns out that one of these two possibilities must 
always occur. 

THEOREM (Erdiis and Graham [6]; see also [ 141). For any k E E +, if N 
is sufficiently large and [N] is arbitrarily colored then there must always 
exist a k-term arithmetic progression which is either monochromatic or 
colored one-to-one. 

We will call such colorings (for arithmetic progressions) canonical. The 
reader can find further information on canonical colorings for other struc- 
tures in [12, 13, 3, 15, 16, 223. 
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In the spirit of the preceding results, one could ask for the number of 
canonically colored k-term arithmetic progressions which must occur in an 
arbitrary coloring of [N]. The answer is given by the following result. 

THEOREM 3. For any k E Z + there exists a constant ck > 0 such that in 
any coloring of [N] there are always at least ck N2 canonically colored 
k-term arithmetic progressions. 

ProoJ: Let [N] = Uicl Ci be a coloring of [N] and suppose 0 < E < l/k3 
is fixed. 

There are two possibilities: 

(i) Suppose lCil > EN for some i. Then by Theorem 2 there are c, N2 
k-term arithmetic progressions which belong to Ci, and this case is 
finished. 

(ii) Suppose 1 Cjl 6 EN for all ic I. Since there are at most (121)(i) 
k-term arithmetic progressions which hit Ci in at least two elements then 
the total number of k-term arithmetic progressions which are not colored 
one-to-one is at most 

(11) 

where, of course, 

Since 

1 lCil = N. 
iel 

then the expression in (11) is maximized by taking as many Ci as possible 
to be as large as possible (in this case, of size EN). Thus 

.f,(‘ti’)(~)<f(~)~,lci12 
<; (;) i (EN)* 

Since for N large enough, [N] contains at least N2/2k distinct k-term 
progressions altogether, then there must be at least 

( > k-q N2+T2 
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monochromatic k-term arithmetic progressions, and the proof is com- 
plete. i 

The same techniques can be applied to density regular systems generally 
to give the following result. 

THEOREM 4. Suppose A is an irredundant I by k matrix of rank 1 and 
Ai= ThenforanykEZ+ there is a constant ck(A) such that in any color- 
ing of [N] there are at least ck(A) Nk-’ proper solutions X = (x1, . . . . xk) to 
Ax = 0 in [N] such that either the xi all have the same color or they all have 
distinct colors. 

Next we prove (cf. Theorem 5, below) the corresponding extension of 
Theorem 1. 

First we introduce some preliminaries. For m, p, c positive integers and 
i<m set 

N,,,,(i)= ((h, &, .-, A,);Aj=Oforj<i, li=cand lAjl<pforj>i}. 

Then 

N m,lw 

(cf. the definition of (m, p, c)-set). The next is a slight modification of the 
theorem proved by Lefmann [ 10, Satz 2.21. 

THEOREM. Let m, p, c be positive integers. Then there exist M, P, and C 
such that for any partition (into arbitrarily many classes) of 

say J=J,u ... u J,, there exist pairwise disjoint sets B,, B,, . . . . B, E [M] 
and 

Yi= C xj.Yjv l<lxjl<P,l<i<m, 
je& 

such that one of the following possibilities holds: 

(i) all linear combinations 

belong to a single class Jk for some k G s; 
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(ii) all linear combinations 

f 4 yi, (2 ,, . . . . An) E Nm,p.r, 
i= I 

beiong to different partition classes, i.e., tf Cy=, A, Y, E Jk and 
CT! 1 AIY, E J,., then k = k’ iff(ll,, . . . . A,,,) = (i’, , A;, . . . . A;,); 

(iii) for every j d m, all linear combinations CT!, LjYi, 
1 

;;y; j,I” 
) E Nm,p,c( j), belong to a single partition class J,+; however, ki # k,. 

Now, let Ax =O be partition regular (i.e., A satisfies the columns 
condition). Let U1, &, . . . . 6, -, be the vectors described in (8). Then 
Z=Ck:: y,Ui satisfies A,?=0 for every (k-I)-tuple of positive integers 
y,, )‘2, ..., Yk-1. Suppose now that the set [N] is partitioned into 
arbitrarily many classes, say, [N] = N, u ... u N,. For an arbitrary 
(k - I)-tuple (yl , . . . . yk !) consider a k-tuple of integers (x,, . . . . xk) formed 
by entries of the vector x=Cfi:: yiU,. We say that the partition 
N,u ... u N, restricted to (x,, . . . . xk) is canonical if one of the following 
possibilities holds: 

(i) all x , , . . . . xk belong to a single class N, for some j 6 s; 
(ii) all x 1, . . . . .‘ck belong to different partition ClaSSeS, i.e., if x, E J,, 

and xi’ E Jj; then i # i’ implies ji # jjS; 

(iii) let t be the integer from the definition of the columns condition 
and suppose k,, k2, . . . . k, are the integers defined by (8). Then there exist 
distinct j, , j,, . . . . j,, 1 < j;<s, 1 di< t, such that 

x, E Jj,, 

ki-1 <r<ki, i=l t. 3 ...> 

The same proof as that of Theorem 1 (with Deuber’s theorem replaced 
by Lefman’s theorem) now gives: 

THEOREM 5. Let A be an I by k matrix of rank I which satisfies the 
columns condition. Then there exists c(A) > 0 such that for any coloring of 
[N] there are at least c(A) Nk-’ canonical solutions to the partition regular 
system A.2 = (i. 

CONCLUDING REMARKS 

Note that we did not investigate what can be said about various 
constant factors. These questions, in full generality, are certainly very-hard. 

582a/47/2-8 
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However, for some equations one can get reasonable bounds, For example, 
in the case of Eq. (1) x + y = z, the constant c: in (5) satisfies 

-&:~(1+0(1)) 155’, (12) 

where o( 1) + 0 as r --) co and R is the smallest integer with the property 
that for any r-coloring of edges of the complete graph K, by r colors there 
always exists a monochromatic triangle. The known bounds for R are 

(see [ 1, 2]), where c1 > 0 is an appropriate constant. 
The upper bound in (12) comes from the following coloring of N. For 

XE [N], write x=Ciz,, a,15’,0~a,<15, to the base 15. Let p==(x) be 
the least i such that ai > 0. If p(x) > r/3, assign to x the color 0. If p(x) < r/3 
then assign to x the color 

3/4x) + 1 if a,= +l, 15 (mod 15) 

3/4x) + 2 if a,= +2, )3, +7(mod 15) 

3/4x) + 3 if a,= +4, 16 (mod 15). 

In this way, we use r + 1 colors, and the only color a monochromatic 
solution to x + y = z can have is the color 0. Thus, x, y, and z are all con- 
gruent to 0 (mod 15L”3A ) which implies the upper bound in (12). The same 
idea can be used with more complicated decompositions of Z/mZ into 
sum-free sets to give slight improvements of the upper bound in (12). 
However, even here the following principal problem remains. Is CL an 
exponential function of r? 
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