Note

On Set Intersections

László Babai

Department of Algebra, Eötvös University, H-1088 Budapest, Muzeum krt. 6-8, Hungary

AND

Péter Frankl

Mathematical Institute of the Hungarian Academy of Science, H-1053 Budapest, Realtanoda u. 13–15, Hungary

Communicated by the Managing Editors

Received February 18, 1978

Let L be a finite set of nonnegative integers. Let k and n be natural numbers satisfying $n \ge k > \max L$. We call a family \mathscr{F} of k-subsets of an n-set X an (n, k, L)-system if $|F \cap F'| \in L$ for any $F, F' \in \mathscr{F}, F \neq F'$. We are interested in the maximum cardinality an (n, k, L)-system can have. We denote it by f(n, k, L).

Ryser [4] proved that $f(n, k, \{l\}) \leq n$. This result has been generalized by Ray-Chaudhuri and Wilson [3] to

$$f(n, k, L) \leqslant \binom{n}{|L|}.$$

Deza, Erdös and Frankl [1] obtained that for $n > n_0(k)$,

$$f(n, k, L) \leqslant \prod_{l \in L} \frac{n-l}{k-l}.$$

Deza, Erdös and Singhi [2] proved that

 $f(n, k, \{0, l\}) \leq n$ whenever $l \nmid k$.

In the present note we are discussing the possible generalizations of this last result.

THEOREM 1. Suppose that the greatest common divisor of the members of L does not divide k. Then $f(n, k, L) \leq n$.

Proof. Let p^{t} be a prime power which divides each $l \in L$ but does not divide k.

Let $\mathscr{F} = \{F_1, ..., F_m\}$ be an (n, k, L)-system consisting of subsets of $X = \{1, ..., n\}$. Let $a_j = (\alpha_{1j}, ..., \alpha_{nj})$ be the characteristic vector of F_j , i.e., $\alpha_{ij} = 1$ if $i \in F_j$ and $\alpha_{ij} = 0$ otherwise. We assert that the vectors $a_1, ..., a_m$ are linearly independent over the rationals. This implies the inequality $m \leq n$, hence the theorem.

Assume, to the contrary, that $\sum_{j} \gamma_{j}a_{j} = 0$, where we may suppose the γ_{j} 's to be integers with g.c.d. $(\gamma_{1}, ..., \gamma_{m}) = 1$. For $1 \leq q \leq m$, consider the inner product $0 = (a_{q}, \sum_{j} \gamma_{j}a_{j}) = \sum_{j} \gamma_{j}(a_{q}, a_{j}) = \sum_{j} \gamma_{j} |F_{q} \cap F_{j}| \equiv \gamma_{q} |F_{q}|$ (mod p^{f}). As $|F_{q}| = k \neq 0 \pmod{p^{f}}$, we infer $p |\gamma_{q}$. This holds for q = 1, ..., m, a contradiction.

THEOREM 2. Let $L = \{l_0, ..., l_{s-1}\}$ with $l_0 = 0$. Suppose we can choose $l_{i_1}, ..., l_{i_t}$ not necessarily different members of $L - \{0\}$ such that $\sum_{q=1}^{t} l_{i_q} = k$. Then for $n \ge 2k^2$ we have $f(n, k, L) \ge n^2/4k^2$.

Proof. Let p be the greatest prime not exceeding n/k. Then of course $p \ge n/2k$. Let us choose k pairwise disjoint p-subsets X_r of the n-set X; $X_r = \{x_r^1, ..., x_r^p\}$ (r = 1, ..., k). For $1 \le i, j \le p$ set

$$F_{i,j} = \{x_r^{h(r,i,j)}: r = 1, ..., k\},\$$

where

$$h(r, i, j) \equiv i + (q - 1)j \pmod{p}$$

for

$$\sum_{v=1}^{q} l_{i_v} < r \leqslant \sum_{v=1}^{q+1} l_{i_v} \qquad (0 \leqslant q < t).$$

Let $\mathscr{F} = \{F_{i,j}: 1 \leq i, j \leq p\}.$

We have $t \leq p$ since $t \leq k \leq n/2k \leq p$. Using this, one readily verifies that \mathscr{F} is an (n, k, L)-system. We conclude that

$$f(n, k, L) \ge p^2 \ge n^2/4k^2.$$

COROLLARY. Let n, k be positive integers and $L = \{l_0, l_1, ..., l_{s-1}\}$, where $0 = l_0 < l_1 < \cdots < l_{s-1}$, and $s \ge 3$. Assume that $n \ge 2k^2$ and $k \ge (s-2) l_{s-1}l_{s-2}$. Then $f(n, k, L) \ge n^2/4k^2$ or $f(n, k, L) \le n$ according to whether g.c.d. $(l_1, ..., l_{s-1})$ divides k or not.

Proof. By Theorem 1 we may suppose that g.c.d. $(l_1, ..., l_{s-1})$ divides k. This implies that $\sum_{i=1}^{s-1} \gamma_i l_i = k$ for some integers $\gamma_1, ..., \gamma_s$. Let us choose the γ_i 's such that the sum of the negative γ_i 's is maximal. We assert that none of the γ_i 's is negative.

For, assume $\gamma_j < 0$. Then

$$\sum_{i
eq j} \gamma_i l_i > k \geqslant (s-2) \ l_{s-1} l_{s-2}$$
 .

This implies that $\gamma_q l_q > l_{s-1} l_{s-2}$ for some $q \neq j$, hence $(\gamma_q - l_i) l_q > l_{s-1} l_{s-2} - l_j l_q \ge 0$. Now, setting $\delta_j = \gamma_j + l_q$, $\delta_q = \gamma_q - l_j$ and $\delta_i = \gamma_i$ for $i \neq j, q$, we arrive at a contradiction since $\sum_{i=1}^{s-1} \delta_i l_i = k$ but the sum of the negative γ_i 's is strictly less than the sum of the negative δ_i 's.

This proves that k can be written as a nonnegative integer linear combination of the l_i 's and $f(n, k, L) \ge n^2/4k^2$ follows by Theorem 2.

REFERENCES

- 1. M. DEZA, P. ERDÖS, AND P. FRANKL, Intersection properties of systems of finite sets, Proc. London Math. Soc. 36 (1978), 369-384.
- 2. M. DEZA, P. ERDÖS, AND N. M. SINGHI, Combinatorial problems on subsets and their intersections, *Advances in Math.*, in press.
- 3. D. K. RAY-CHAUDHURI AND R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), 737-744.
- 4. H. J. RYSER, An extension of a theorem of de Bruijn and Erdös on combinatorial designs, J. Algebra 10 (1968), 246-261.