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Let L be a finite set of nonnegative integers. Let k and n be natural numbers 
satisfying n > k > max L. We call a family 9 of k-subsets of an n-set X an 
(n, k, L)-system if 1 F n I;’ 1 E L for any F, F’ E 9, F # F’. We are interested 
in the maximum cardinality an (n, k, L)-system can have. We denote it by 
f h k 0. 

Ryser [4] proved that f(n, k, (1)) < n. This result has been generalized by 
Ray-Chaudhuri and Wilson [3] to 

Deza, ErdBs and Frank1 [I] obtained that for n > n,,(k), 

Deza, ErdBs and Singhi [2] proved that 

fh k, &A 0) d n whenever 1+-k. 

In the present note we are discussing the possible generalizations of this 
last result. 

THEOREM 1. Suppose that the greatest common divisor of the members of L 
does not divide k. Then f (n, k, L) < n. 
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Proof. Let pf be a prime power which divides each I E L but does not 
divide k. 

Let 9 = (FI ,..., I&) be an (n, k, L)-system consisting of subsets of 
x = {l,..., IL!>. Let Uj = (c+i ,..., Q) be the characteristic vector of Fj , i.e., 
aij = 1 if i E Fl and aij = 0 otherwise. We assert that the vectors aI ,..., a, 
are linearly independent over the rationals. This implies the inequality m < n, 
hence the theorem. 

Assume, to the contrary, that Cj yjaj = 0, where we may suppose the yi’s 
to be integers with g.c.d. (yl ,..., ‘ym) = 1. For 1 < q < m, consider the 
inner product 0 = (a,, Cj yjaj) = Ci yj(a, , UJ = cj yi / F, n Fj 1 = ya j F, 1 
(mod pf). As 1 F, 1 = k 9 0 (modpf), we infer p 1 yp . This holds for 
q = I,..., m, a contradiction. 

THEOREM 2. Let L = {I,, ,..., i,-,} with I, = 0. Suppose we can choose 
4, ,..‘, Iit not necessarily d&%erent members of L - (01 such that & Ii, = k. 
Then for n 3 2k2 we have f (n, k, L) 3 n2/4k2. 

ProoJ Let p be the greatest prime not exceeding n/k. Then of course 
p 3 n/2k. Let us choose k pairwise disjoint p-subsets X,. of the n-set X; 
X, = (q-l,..., x,“} (r = I ,..., k). For 1 < i, j < p set 

F,,j = {~,h(~*~*‘): r = l,..., k}, 

where 

for 

h(r, i, j) = i + (q - 1)j (mod P) 

Let 9 = {Fi,j: 1 < i, j \< p}. 
We have t < p since t < k < n/2k < p. Using this, one readily verifies 

that 9r is an (n, k, L)-system. We conclude that 

f(n, k, L) 3 p2 > n2/4k2. 

COROLLARY. Let n, k be positive integers and L = {I,, , l1 ,..., Is-1), where 
0 = 10 < 11 < .‘. < IS-l, and s > 3. Assume that n > 2k2 and k 3 
(s - 2) l,J,-, . Then f (n, k, L) 3 n2/4k2 or f (n, k, L) < n according to 
whether g.c.d.(Z, ,..., 1,-J divides k or not. 

ProoJ: By Theorem 1 we may suppose that g.c.d.(l, ,..., I& divides k. 
This implies that 2:;’ yiIi = k for some integers y1 ,..., ys . Let us choose the 
yi)s such that th e sum of the negative yi’s is maximal. We assert that none of 
the yi’s is negative. 
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For, assume yY < 0. Then 

c yili > k 3 (s - 2) 1,-J-, . 
iij 

This implies that y,& > I,-,I,-, for some q # j, hence (yp - fj) Z, > 
Is-Iis- - Ijlq 7 x 0. Now, setting Si = yi + I,, 6, = ya - Ij and Si = yi for 
i # j, q, we arrive at a contradiction since Gil: Sili = k but the sum of the 
negative yi’s is strictly less than the sum of the negative &‘s. 

This proves that k can be written as a nonnegative integer linear combi- 
nation of the Ii’s and f  (n, k, L) > n2/4k2 follows by Theorem 2. 
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