Note

On Set Intersections

László Babai

Department of Algebra, Eötvös University, H-1088 Budapest, Muzeum krt. 6-8, Hungary
AND
Péter Frankl

Mathematical Institute of the Hungarian Academy of Science, H-1053 Budapest, Realtanoda u. 13-15, Hungary

Communicated by the Managing Editors
Received February 18, 1978

Let L be a finite set of nonnegative integers. Let k and n be natural numbers satisfying $n \geqslant k>\max L$. We call a family \mathscr{F} of k-subsets of an n-set X an (n, k, L)-system if $\left|F \cap F^{\prime}\right| \in L$ for any $F, F^{\prime} \in \mathscr{F}, F \neq F^{\prime}$. We are interested in the maximum cardinality an (n, k, L)-system can have. We denote it by $f(n, k, L)$.

Ryser [4] proved that $f(n, k,\{l\}) \leqslant n$. This result has been generalized by Ray-Chaudhuri and Wilson [3] to

$$
f(n, k, L) \leqslant\binom{ n}{\mid L} .
$$

Deza, Erdös and Frankl [1] obtained that for $n>n_{0}(k)$,

$$
f(n, k, L) \leqslant \prod_{l \in L} \frac{n-l}{k-l}
$$

Deza, Erdös and Singhi [2] proved that

$$
f(n, k,\{0, l\}) \leqslant n \quad \text { whenever } \quad l+k .
$$

In the present note we are discussing the possible generalizations of this last result.

Theorem 1. Suppose that the greatest common divisor of the members of L does not divide k. Then $f(n, k, L) \leqslant n$.

Proof. Let p^{t} be a prime power which divides each $l \in L$ but does not divide k.

Let $\mathscr{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ be an (n, k, L)-system consisting of subsets of $X=\{1, \ldots, n\}$. Let $a_{j}=\left(\alpha_{1 j}, \ldots, \alpha_{n j}\right)$ be the characteristic vector of F_{j}, i.e., $\alpha_{i j}=1$ if $i \in F_{j}$ and $\alpha_{i j}=0$ otherwise. We assert that the vectors a_{1}, \ldots, a_{m} are linearly independent over the rationals. This implies the inequality $m \leqslant n$, hence the theorem.

Assume, to the contrary, that $\sum_{j} \gamma_{j} a_{j}=0$, where we may suppose the γ_{j} 's to be integers with g.c.d. $\left(\gamma_{1}, \ldots, \gamma_{m}\right)=1$. For $1 \leqslant q \leqslant m$, consider the inner product $0=\left(a_{q}, \Sigma_{j} \gamma_{j} a_{j}\right)=\sum_{j} \gamma_{j}\left(a_{q}, a_{j}\right)=\Sigma_{j} \gamma_{j}\left|F_{q} \cap F_{j}\right| \equiv \gamma_{q}\left|F_{q}\right|$ $\left(\bmod p^{f}\right)$. As $\left|F_{q}\right|=k \not \equiv 0\left(\bmod p^{f}\right)$, we infer $p \mid \gamma_{q}$. This holds for $q=1, \ldots, m$, a contradiction.

Theorem 2. Let $L=\left\{l_{0}, \ldots, l_{s-1}\right\}$ with $l_{0}=0$. Suppose we can choose $l_{i_{1}}, \ldots, l_{i_{t}}$ not necessarily different members of $L-\{0\}$ such that $\sum_{q=1}^{t} l_{i_{q}}=k$. Then for $n \geqslant 2 k^{2}$ we have $f(n, k, L) \geqslant n^{2} / 4 k^{2}$.

Proof. Let p be the greatest prime not exceeding n / k. Then of course $p \geqslant n / 2 k$. Let us choose k pairwise disjoint p-subsets X_{r} of the n-set X; $X_{r}=\left\{x_{r}{ }^{1}, \ldots, x_{r}{ }^{p}\right\}(r=1, \ldots, k)$. For $1 \leqslant i, j \leqslant p$ set

$$
F_{i, j}=\left\{x_{r}^{h(r, i, j)}: r=1, \ldots, k\right\},
$$

where

$$
h(r, i, j) \equiv i+(q-1) j \quad(\bmod p)
$$

for

$$
\sum_{v=1}^{q} l_{i_{v}}<r \leqslant \sum_{v=1}^{q+1} l_{i_{v}} \quad(0 \leqslant q<t) .
$$

Let $\mathscr{F}=\left\{F_{i, j}: 1 \leqslant i, j \leqslant p\right\}$.
We have $t \leqslant p$ since $t \leqslant k \leqslant n / 2 k \leqslant p$. Using this, one readily verifies that \mathscr{F} is an (n, k, L)-system. We conclude that

$$
f(n, k, L) \geqslant p^{2} \geqslant n^{2} / 4 k^{2} .
$$

Corollary. Let n, k be positive integers and $L=\left\{l_{0}, l_{1}, \ldots, l_{s-1}\right\}$, where $0=l_{0}<l_{1}<\cdots<l_{s-1}$, and $s \geqslant 3$. Assume that $n \geqslant 2 k^{2}$ and $k \geqslant$ $(s-2) l_{s-1} l_{s-2}$. Then $f(n, k, L) \geqslant n^{2} / 4 k^{2}$ or $f(n, k, L) \leqslant n$ according to whether g.c.d. $\left(l_{1}, \ldots, l_{s-1}\right)$ divides k or not.

Proof. By Theorem 1 we may suppose that g.c.d. $\left(l_{1}, \ldots, l_{s-1}\right)$ divides k. This implies that $\sum_{i=1}^{s-1} \gamma_{i} l_{i}=k$ for some integers $\gamma_{1}, \ldots, \gamma_{s}$. Let us choose the γ_{i} 's such that the sum of the negative γ_{i} 's is maximal. We assert that none of the γ_{i} 's is negative.

For, assume $\gamma_{j}<0$. Then

$$
\sum_{i \neq j} \gamma_{i} l_{i}>k \geqslant(s-2) l_{s-1} l_{s-2} .
$$

This implies that $\gamma_{Q} l_{q}>l_{s-1} l_{s-2}$ for some $q \neq j$, hence $\left(\gamma_{q}-l_{j}\right) l_{q}>$ $l_{s-1} l_{s-2}-l_{j} l_{q} \geqslant 0$. Now, setting $\delta_{j}=\gamma_{j}+l_{q}, \delta_{q}=\gamma_{q}-l_{j}$ and $\delta_{i}=\gamma_{i}$ for $i \neq j, q$, we arrive at a contradiction since $\sum_{i=1}^{s-1} \delta_{i} l_{i}=k$ but the sum of the negative γ_{i} 's is strictly less than the sum of the negative δ_{i} 's.

This proves that k can be written as a nonnegative integer linear combination of the l_{i} 's and $f(n, k, L) \geqslant n^{2} / 4 k^{2}$ follows by Theorem 2 .

References

1. M. Deza, P. Erdös, and P. Frankl, Intersection properties of systems of finite sets, Proc. London Math. Soc. 36 (1978), 369-384.
2. M. Deza, P. Erdös, and N. M. Singhi, Combinatorial problems on subsets and their intersections, Advances in Math., in press.
3. D. K. Ray-Chaudhuri and R. M. Wison, On t-designs, Osaka J. Math. 12 (1975), 737-744.
4. H. J. Ryser, An extension of a theorem of de Bruijn and Erdös on combinatorial designs, J. Algebra 10 (1968), 246-261.
