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A graph G = (V, E) is said to be represented by a family F of nonempty sets if there is a 
bijection f:V--*F such that uv ~ E  if and only iff(u)Nf(v)q=~. It is proved that if G is a 
countable graph then G can be represented by open intervals on the real line if and only if G 
can be represented by closed intervals on the real line, however, this is no longer true when G 
is an uncountable graph. Similar results are also proved when intervals are required to have 
unit length. 

1. Introduction 

All graphs in this paper are simple but possibly infinite. A countable graph is 
one in which the vertex set is finite or countably infinite, whereas an uncountable 
graph is one with uncountably many vertices. 

A graph G = (V, E) is called an interval graph if there is a bijection f from V to 
a set F of intervals on the real line such that uv e E if and only if u 4: v and 
f (u)  Nf(v)  ~ f~. The graph G is then said to be represented by the intervals in F. 
If these intervals are required to have a property P then the graph is called a 
P-interval graph. For example, an open-interval graph, a unit-interval graph, a 
closed-unit-interval graph, etc. 

As far as finite graphs are concerned, there is no difference between the 
open-interval graphs and the closed-interval graphs; between the open-unit 
interval graphs and the closed-unit-interval graphs. Well, how about infinite 

graphs? 
We will prove three theorems. 

l]teorem 1. Let G be a countable graph. Then G is a closed-interval graph if and 
only if G is an open-interval graph. 

Let JR] and (R)  denote the graphs on the same vertex set R (the set of all real 
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numbers) having the edge sets 

(xy:O<lx-yl<~l} and {xy:O<lx-y[<l}, 
respectively. Note that JR] is a closed-unit-interval graph, 
open-unit-interval graph. 

and (R)  is an 

Theorem 2. [R] is not an open-interval graph, and ( R  ) is not a closed-interval 
graph. 

For a nonempty subset X of R, IX] denotes the subgraph of [R] induced by X. 
Similarly (X)  denotes the induced subgraph of (R) .  

A graph G is said to be embeddable in another graph H if G is isomorphic to an 
induced subgraph of H. Notice that any closed-unit-interval graph is embeddable 
in JR] and any open-unit-interval graph is embeddable in (R) .  As usual, Q 
denotes the set of all rational numbers. Then the graph [Q] and (Q)  are not 
isomorphic, because [Q] has a pair of vertices having a unique common neighbor 
(e.g. 1 and 3 have the unique common neighbor 2), while (Q)  has no such pair. 
Nevertheless, [Q] and (Q)  are embeddable into each other. 

Theorem 3. Let  X be a countable subset o f  R.  Then [X] is embeddable in ( Q ), 
and ( X )  is embeddable in [Q]. 

2. Proof of Theorem 1 

Let V be the vertex set of G and suppose that G is represented by 
closed-intervals {I.: u e V}. Let X be the set of all end-points of the intervals. 
Then X is a subset of the reals R. Since V is countable, so is X, and the elements 
of X can be enumerated as xl, x2, x3, . . . .  

Define functions f ,  :R ---> R (n = 1, 2, 3 , . . . )  inductively in the following way. 

{x ,orx-<x,, 
A(x) +½ for x > x l ,  f . ( x )  = [f . - l (X)  + 1/2" 

for x <~ x n, 

f o r x > x ,  (n>-2). 

Then each f .  is monotone increasing and 

1 
O<~f.(x) - f ._ l (x)  ~< 2- ~ . 

Hence we can define f :R--> R by f ( x )  = limn__,®fn(x). 
Now for each xl of X let 

yi = f (x i ) ,  zi = inf{f(xi  + e): e > O}. 

Then it is clear that xi < xj implies zi < yj < zj. We define open intervals J.,  u ~ V 
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as follows: 
If /~ = [xi, xj], then let J,, = (Yi, zj). Then it follows easily that 

Iu n /o  6:0 i fand  onlyif  J, ,nJv~O, 

hence {Jr,,: u e V} represents G. 
If {I,,: u e V} is a family of open intervals representing G then for I~ = (x,  xj), 

let J,, = [zi, yj]. Then the family (J,,: u e V} also represents G. [] 

3. Proof of Theorem 2 

Suppose JR] is represented by open intervals {Ix: x e R}.  Let O,, = I,,_~ O/~. 
Then since x is adjacent to x - 1 in [R], Ox is a nonempty open interval. If x < y 
then y is not adjacent to x - 1 in JR], and hence we have 

fJ= lx_l n lx nl ,_~ n l ,  = O,~ n o r 

Thus { O x : X ~ R }  is an uncountable set of disjoint open intervals. This 
contradicts the fact that "any set of disjoint open intervals of R contains at most a 
countable number of elements." 

Now suppose ( R )  is represented by dosed-intervals {]x:x eR} .  Since x and 
x - 1 are not adjacent in ( R ) ,  ]x-1 n ]x  = 0. Let Ox be the open interval between 
]x-~ and ]x- If x - 1 < y  <x, then y is adjacent to both x - 1 and x, and hence 
Jy n Jx-1 #: 0, Jr n Jx #: 0. This implies Ox c Jy, and hence Ox n Jr+n = ~ for 
n = +1, +2, . . . .  Thus Ox contains no end-points of the intervals Jz, z eR.  This 
implies O , , O O y = 0  for x ~ y .  Hence { O x : x e R }  is a set of disjoint open 
intervals, a contradiction. [] 

Remark.  Since the Euclidean n-space R n is separable, i.e., there is a countable 
subset everywhere dense in R n, it can be similarly proved that JR] cannot be 
represented by any family of open sets in R n. However, ( R )  can be represented 
by dosed subsets in R2: For each t of R,  let 

Ct={(x y) eR2:l<~y . . . .  t<~l 1 } , , x > ~ 2  . 
X X 

Then {Ct:te.R} represents ( R ) .  

4. Proof of Theorem 3 

Define X '  = {x - Ix] : x e X} O {0, 1}. Then X '  is a countable set. Arrange the 
elements of X '  in a sequence xl = 0, x2 = 1, x3, x4, . . . .  We assign inductively to 
these elements closed intervals l(xl), I ( X 2 ) , . . . ,  on the real line. Let l(xl)= 



100 P. Frankl, H. Maehara 

[ -~ ,  ~], l ( x2 )=  [3 z, I]. Suppose that the intervals I(xi) are defined for all i ~  < 
n (n I> 2) and satisfy that  

l(xi) 'S a r e  disjoint and xi < xj implies I(xi)  < l(xj), (1) 

where l(xi)< l(xj) means that the interval l(xi) lies entirely to the left of I(xj). 
Let xa=max{xi:xi<Xn+l,i<~n}, and xb=min{xj:xj>xn+l,j<-n}. Define 
I(xn+l) to be the (closed) middle third of the open interval between I(xa) and 
I(Xb). Then (1) is still satisfied. Hence we can define I(xn+2) similarly, and so on. 

Denote  x - Ix] by x '  and the midpoint of 1(x') by m(x'). Then x ' <  1 and by 
the definition of l(x'),  the length of I(x') and m(x') are rationals. We are going 
to define a map f from X to Q by 

f (x)  = Ix] + m ( x ' ) -  'adjusting term' g(x) 

so that f induces an isomorphism from IX] to ( f (X) ) .  Let 

g(x)=sign(x)[lengthofI(x')] + - ~ + . . . +  , 

where k is the absolute value of lxJ, and s ign(x)=  1 or 0 or - 1  accordingly as 
x > 0 or =0  or <0.  Since 1/4 + 1/4 2 + - - -  = ~, it is clear that m(x ' )  - g(x) ~ l (x ' ) .  
Hence we have 

m ( x ' ) < m ( y ' ) i m p l i e s O < ( m ( y ' ) - g ( y ) ) - ( m ( x ' ) - g ( x ) ) < l .  (2) 

Since g(x) is a rational number ,  f (x )= [xJ + m ( x ' ) -  g(x) is also a rational 
number.  Now we show that for x, y e X. 

i x - Y i  ~< 1 if and only if ~ f ( x ) - f ( y ) l  < 1. (3) 

First suppose 0 < y - x < 1. Then 

( [yJ  - txJ = 1 and y '  < x ' )  or (LyJ - txJ = 0  and y ' >  x ' ) .  

In either case it follows easily from (2) that 0 < f ( y )  - f ( x )  < 1. Next, suppose 
y - x  = 1. Then [yJ - [xJ = 1 and y '  = x' .  Since 

and 
x < 0--~ [sign(x) < 0 and I Lx J] > I Ly J I]--+ g(y) > g(x) 

x > 0--> [sign(y) > 0 and I LyJ I > I LxJ I] g(Y) > g(x), 

we have f (y )  - f(x)  = 1 - (g(y) - g(x)) < 1. 
Finally, suppose y - x  > 1. Then 

( L y J - L x J = l  and y ' > x ' )  or ( L y J - [ x J ~ > 2 ) .  

In either case f ( y )  - f ( x ) >  1 follows easily from (2). Thus (3) holds and therefore 
f induces an isomorphism from IX] to ( f ( X ) )  = ( Q ) .  This proves the first part of 
the theorem. To prove the second part we need only to replace the definition of f 
b y f ( x ) =  [xJ + m(x') + g(x). [] 


