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A graph G = (V, E) is said to be represented by a family F of nonempty sets if there is a
bijection f:V — F such that uv € E if and only if f(u) Nf(v)+#@. It is proved that if G is a
countable graph then G can be represented by open intervals on the real line if and only if G
can be represented by closed intervals on the real line, however, this is no longer true when G
is an uncountable graph. Similar results are also proved when intervals are required to have
unit length.

1. Introduction

All graphs in this paper are simple but possibly infinite. A countable graph is
one in which the vertex set is finite or countably infinite, whereas an uncountable
graph is one with uncountably many vertices.

A graph G = (V, E) is called an interval graph if there is a bijection f from V to
a set F of intervals on the real line such that uv € E if and only if ¥ #v and
f(u) Nf(v) # 8. The graph G is then said to be represented by the intervals in F.
If these intervals are required to have a property P then the graph is called a
P-interval graph. For example, an open-interval graph, a unit-interval graph, a
closed-unit-interval graph, etc.

As far as finite graphs are concerned, there is no difference between the
open-interval graphs and the closed-interval graphs; between the open-unit
interval graphs and the closed-unit-interval graphs. Well, how about infinite
graphs?

We will prove three theorems.

Theorem 1. Let G be a countable graph. Then G is a closed-interval graph if and
only if G is an open-interval graph.

Let [R] and (R) denote the graphs on the same vertex set R (the set of all real
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numbers) having the edge sets
(xy:0<|x—y|=1} and {xy:0<|x-y|<1},

respectively. Note that [R] is a closed-unit-interval graph, and (R) is an
open-unit-interval graph.

Theorem 2. [R] is not an open-interval graph, and (R) is not a closed-interval
graph.

For a nonempty subset X of R, [X] denotes the subgraph of [R] induced by X.
Similarly (X) denotes the induced subgraph of (R).

A graph G is said to be embeddable in another graph H if G is isomorphic to an
induced subgraph of H. Notice that any closed-unit-interval graph is embeddable
in [R] and any open-unit-interval graph is embeddable in (R). As usual, Q
denotes the set of all rational numbers. Then the graph [Q] and (Q) are not
isomorphic, because [@] has a pair of vertices having a unique common neighbor
(e.g. 1 and 3 have the unique common neighbor 2), while (Q) has no such pair.
Nevertheless, [@] and (Q) are embeddable into each other.

Theorem 3. Let X be a countable subset of R. Then [X] is embeddable in {(Q),
and (X) is embeddable in [Q].

2. Proof of Theorem 1

Let V be the vertex set of G and suppose that G is represented by
closed-intervals {I,: u € V}. Let X be the set of all end-points of the intervals.
Then X is a subset of the reals R. Since V is countable, so is X, and the elements
of X can be enumerated as x,, x,, x3, . . . .

Define functions f,:R—R (n =1, 2, 3, . . .) inductively in the following way.

fn—l(x) forxsxn,

== {f,.-l(x) +1/2" forx>x, (n22).

X forx<x,,
x+1 forx>x,,

A ={
Then each f, is monotone increasing and

0<£ux) ~fas() <35

Hence we can define f: R — R by f(x) = lim,_,.. f,(x).
Now for each x, of X let

yi = f(x;), z; = inf{f(x; + £): £ >0}.

Then it is clear that x; <x; implies z; <y; <z We define open intervals J,, u e V
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as follows:
If I, = [x;, x;], then let J, = (y;, 2;). Then it follows easily that

I,NI,+#0 if and only if J, NJ, #8,

hence {J,: u € V} represents G.
If {I,:u eV} is a family of open intervals representing G then for I, = (x;, x;),
let J, = [z;, y;]. Then the family (J,: u € V'} also represents G. O

3. Proof of Theorem 2

Suppose [R] is represented by open intervals {{,:xeR}. Let O, =1,_,NI,.
Then since x is adjacent to x — 1 in [R], O, is a nonempty open interval. If x <y
then y is not adjacent to x — 1 in [R], and hence we have

g=I._,NL.NIL,_,NL=0,NO0,.

Thus {O,: X eR} is an uncountable set of disjoint open intervals. This
contradicts the fact that “any set of disjoint open intervals of R contains at most a
countable number of elements.”

Now suppose (R) is represented by closed-intervals {J,: x e R}. Since x and
x — 1 are not adjacent in (R),J,_; NJ, =@. Let O, be the open interval between
J.-1and J,. If x —1<y<x, then y is adjacent to both x —1 and x, and hence
J,NI,_1#0,J,NJ.#@. This implies O,<J,, and hence O,NJ,,,=@ for
n=+1, £2,.... Thus O, contains no end-points of the intervals J,, z € R. This
implies O,N O, =0 for x#y. Hence {O,:x€R} is a set of disjoint open
intervals, a contradiction. O

Remark. Since the Euclidean n-space R" is separable, i.e., there is a countable
subset everywhere dense in R”, it can be similarly proved that [R] cannot be
represented by any family of open sets in R”. However, (R ) can be represented
by closed subsets in R%: For each ¢ of R, let

1 1
C,={(x,y)eRz:—Sy-—tsl-——,x22}.
X X

Then {C,: t € R} represents (R).

4. Proof of Theorem 3

Define X' = {x — |x]: x e X} U {0, 1}. Then X' is a countable set. Arrange the
elements of X' in a sequence x; =0, x, =1, x3, X4, . . . . We assign inductively to
these elements closed intervals I(x,), I(x;), ..., on the real line. Let I(x,)=
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[-3, 3], I(x2) =[5, 3)- Suppose that the intervals I(x;) are defined for all i<
n (n =2) and satisfy that

I(x;)’s are disjoint and x; <x; implies I(x;) <I(x;), ¢))

where I(x;) <I(x;) means that the interval I(x;) lies entirely to the left of I(x;).
Let x,=max{x;:x;<X,.,i<n}, and x,=min{x;:x;>x,,,,j<n}. Define
I(x,+1) to be the (closed) middle third of the open interval between I(x,) and
I(x,). Then (1) is still satisfied. Hence we can define I(x,,.,) similarly, and so on.

Denote x — |x]| by x' and the midpoint of I(x') by m(x'). Then x' <1 and by
the definition of I(x'), the length of I(x') and m(x’) are rationals. We are gomg
to define a map f from X to Q by

f(x) = x| + m(x') — ‘adjusting term’ g(x)
so that f induces an isomorphism from [X] to (f(X)). Let

g(x) = sign(x)[length of I(x’ )]( y 412 -+ %),

where k is the absolute value of [xJ, and sign(x) 1 or 0 or —1 accordingly as

x>0 or =0 or <0. Since 1/4 +1/4*>+ - - - =1, it is clear that m(x') — g(x) € I(x').
Hence we have
m(x') <m(y') implies 0 < (m(y") — g(y)) — (m(x") — g(x)) <1. )

Since g(x) is a rational number, f(x)= |x] + m(x’) — g(x) is also a rational
number. Now we show that for x, y € X.
|x —y| <1if and only if |f(x) — f(y)| < 1. (3)

First suppose 0 <y —x <1. Then
(ly] - lx] =1and y'<x')or (|y] — |x] =0 and y’' >x").

In either case it follows easily from (2) that 0 <f(y) — f(x) <. 1. Next, suppose
y—x=1. Then |y] — [x] =1 and y’ =x'. Since

x <0—>[sign(x)<O0and ||[x]|>|ly]]]—g(y) >g(x)
and
x>0—[sign(y)>0and || y]|>||x]|]—>g(y) > g(x),

we have f(y) —f(x)=1-(g(y) —g(x)) <1.
Finally, suppose y —x >1. Then

(ly] = lx]=1and y'>x") or (ly]-Ix]=2).

In either case f(y) — f(x) > 1 follows easily from (2). Thus (3) holds and therefore
f induces an isomorphism from [X] to (f(X)) = (@) This proves the first part of
the theorem. To prove the second part we need only to replace the definition of f

by f(x) = |x| + m(x") +g(x). O



