NOTE

OPEN-INTERVAL GRAPHS VERSUS CLOSED-INTERVAL GRAPHS

P. FRANKL
CNRS, Paris, France
H. MAEHARA
Ryukyu University, Okinawa, Japan

Received 27 June 1985
A graph $G=(V, E)$ is said to be represented by a family F of nonempty sets if there is a bijection $f: V \rightarrow F$ such that $u v \in E$ if and only if $f(u) \cap f(v) \neq \emptyset$. It is proved that if G is a countable graph then G can be represented by open intervals on the real line if and only if G can be represented by closed intervals on the real line, however, this is no longer true when G is an uncountable graph. Similar results are also proved when intervals are required to have unit length.

1. Introduction

All graphs in this paper are simple but possibly infinite. A countable graph is one in which the vertex set is finite or countably infinite, whereas an uncountable graph is one with uncountably many vertices.

A graph $G=(V, E)$ is called an interval graph if there is a bijection f from V to a set F of intervals on the real line such that $u v \in E$ if and only if $u \neq v$ and $f(u) \cap f(v) \neq \emptyset$. The graph G is then said to be represented by the intervals in F. If these intervals are required to have a property P then the graph is called a P-interval graph. For example, an open-interval graph, a unit-interval graph, a closed-unit-interval graph, etc.

As far as finite graphs are concerned, there is no difference between the open-interval graphs and the closed-interval graphs; between the open-unit interval graphs and the closed-unit-interval graphs. Well, how about infinite graphs?

We will prove three theorems.

Theorem 1. Let G be a countable graph. Then G is a closed-interval graph if and only if G is an open-interval graph.

Let $[\boldsymbol{R}]$ and $\langle\boldsymbol{R}\rangle$ denote the graphs on the same vertex set \boldsymbol{R} (the set of all real 0012-365X/87/\$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)
numbers) having the edge sets

$$
(x y: 0<|x-y| \leqslant 1\} \quad \text { and } \quad\{x y: 0<|x-y|<1\}
$$

respectively. Note that $[\boldsymbol{R}]$ is a closed-unit-interval graph, and $\langle\boldsymbol{R}\rangle$ is an open-unit-interval graph.

Theorem 2. $[\boldsymbol{R}]$ is not an open-interval graph, and $\langle\boldsymbol{R}\rangle$ is not a closed-interval graph.

For a nonempty subset X of $R,[X]$ denotes the subgraph of $[R]$ induced by X. Similarly $\langle X\rangle$ denotes the induced subgraph of $\langle\boldsymbol{R}\rangle$.

A graph G is said to be embeddable in another graph H if G is isomorphic to an induced subgraph of H. Notice that any closed-unit-interval graph is embeddable in $[\boldsymbol{R}]$ and any open-unit-interval graph is embeddable in $\langle\boldsymbol{R}\rangle$. As usual, \boldsymbol{Q} denotes the set of all rational numbers. Then the graph $[\boldsymbol{Q}]$ and $\langle\boldsymbol{Q}\rangle$ are not isomorphic, because [Q] has a pair of vertices having a unique common neighbor (e.g. 1 and 3 have the unique common neighbor 2), while $\langle\boldsymbol{Q}\rangle$ has no such pair. Nevertheless, $[\boldsymbol{Q}]$ and $\langle\boldsymbol{Q}\rangle$ are embeddable into each other.

Theorem 3. Let X be a countable subset of \boldsymbol{R}. Then $[X]$ is embeddable in $\langle\boldsymbol{Q}\rangle$, and $\langle X\rangle$ is embeddable in $[Q]$.

2. Proof of Theorem 1

Let V be the vertex set of G and suppose that G is represented by closed-intervals $\left\{I_{u}: u \in V\right\}$. Let X be the set of all end-points of the intervals. Then X is a subset of the reals \boldsymbol{R}. Since V is countable, so is X, and the elements of X can be enumerated as $x_{1}, x_{2}, x_{3}, \ldots$.

Define functions $f_{n}: \boldsymbol{R} \rightarrow \boldsymbol{R}(n=1,2,3, \ldots)$ inductively in the following way.

$$
f_{1}(x)=\left\{\begin{array}{ll}
x & \text { for } x \leqslant x_{1}, \\
x+\frac{1}{2} & \text { for } x>x_{1},
\end{array} \quad f_{n}(x)= \begin{cases}f_{n-1}(x) & \text { for } x \leqslant x_{n} \\
f_{n-1}(x)+1 / 2^{n} & \text { for } x>x_{n}(n \geqslant 2)\end{cases}\right.
$$

Then each f_{n} is monotone increasing and

$$
0 \leqslant f_{n}(x)-f_{n-1}(x) \leqslant \frac{1}{2^{n}}
$$

Hence we can define $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
Now for each x_{1} of X let

$$
y_{i}=f\left(x_{i}\right), \quad z_{i}=\inf \left\{f\left(x_{i}+\varepsilon\right): \varepsilon>0\right\}
$$

Then it is clear that $x_{i}<x_{j}$ implies $z_{i}<y_{j}<z_{j}$. We define open intervals $J_{u}, u \in V$
as follows:
If $I_{u}=\left[x_{i}, x_{j}\right]$, then let $J_{u}=\left(y_{i}, z_{j}\right)$. Then it follows easily that

$$
I_{u} \cap I_{v} \neq \emptyset \text { if and only if } J_{u} \cap J_{v} \neq \emptyset,
$$

hence $\left\{J_{u}: u \in V\right\}$ represents G.
If $\left\{I_{u}: u \in V\right\}$ is a family of open intervals representing G then for $I_{u}=\left(x_{i}, x_{j}\right)$, let $J_{u}=\left[z_{i}, y_{i}\right]$. Then the family $\left(J_{u}: u \in V\right\}$ also represents G.

3. Proof of Theorem 2

Suppose $[R]$ is represented by open intervals $\left\{I_{x}: x \in \boldsymbol{R}\right\}$. Let $O_{x}=I_{x-1} \cap I_{x}$. Then since x is adjacent to $x-1$ in $[R], O_{x}$ is a nonempty open interval. If $x<y$ then y is not adjacent to $x-1$ in $[R]$, and hence we have

$$
\emptyset=I_{x-1} \cap I_{x} \cap I_{y-1} \cap I_{y}=O_{x} \cap O_{y} .
$$

Thus $\left\{O_{x}: X \in R\right\}$ is an uncountable set of disjoint open intervals. This contradicts the fact that "any set of disjoint open intervals of \boldsymbol{R} contains at most a countable number of elements."
Now suppose $\langle\boldsymbol{R}\rangle$ is represented by closed-intervals $\left\{J_{x}: x \in \boldsymbol{R}\right\}$. Since x and $x-1$ are not adjacent in $\langle\boldsymbol{R}\rangle, J_{x-1} \cap J_{x}=\emptyset$. Let O_{x} be the open interval between J_{x-1} and J_{x}. If $x-1<y<x$, then y is adjacent to both $x-1$ and x, and hence $J_{y} \cap J_{x-1} \neq \emptyset, J_{y} \cap J_{x} \neq \emptyset$. This implies $O_{x} \subset J_{y}$, and hence $O_{x} \cap J_{y+n}=\emptyset$ for $n= \pm 1, \pm 2, \ldots$ Thus O_{x} contains no end-points of the intervals $J_{z}, z \in \boldsymbol{R}$. This implies $O_{x} \cap O_{y}=\emptyset$ for $x \neq y$. Hence $\left\{O_{x}: x \in \boldsymbol{R}\right\}$ is a set of disjoint open intervals, a contradiction.

Remark. Since the Euclidean n-space \boldsymbol{R}^{n} is separable, i.e., there is a countable subset everywhere dense in \boldsymbol{R}^{n}, it can be similarly proved that $[\boldsymbol{R}]$ cannot be represented by any family of open sets in \boldsymbol{R}^{n}. However, $\langle\boldsymbol{R}\rangle$ can be represented by closed subsets in \boldsymbol{R}^{2} : For each \boldsymbol{t} of \boldsymbol{R}, let

$$
C_{t}=\left\{(x, y) \in \boldsymbol{R}^{2}: \frac{1}{x} \leqslant y-t \leqslant 1-\frac{1}{x}, x \geqslant 2\right\} .
$$

Then $\left\{C_{i}: t \in \boldsymbol{R}\right\}$ represents $\langle\boldsymbol{R}\rangle$.

4. Proof of Theorem 3

Define $X^{\prime}=\{x-\lfloor x\rfloor: x \in X\} \cup\{0,1\}$. Then X^{\prime} is a countable set. Arrange the elements of X^{\prime} in a sequence $x_{1}=0, x_{2}=1, x_{3}, x_{4}, \ldots$ We assign inductively to these elements closed intervals $I\left(x_{1}\right), I\left(x_{2}\right), \ldots$, on the real line. Let $I\left(x_{1}\right)=$
$\left[-\frac{1}{3}, \frac{1}{3}\right], I\left(x_{2}\right)=\left[\frac{2}{3}, \frac{4}{3}\right]$. Suppose that the intervals $I\left(x_{i}\right)$ are defined for all $i \leqslant$ $n(n \geqslant 2)$ and satisfy that

$$
\begin{equation*}
I\left(x_{i}\right) \text { 's are disjoint and } x_{i}<x_{j} \text { implies } I\left(x_{i}\right)<I\left(x_{j}\right), \tag{1}
\end{equation*}
$$

where $I\left(x_{i}\right)<I\left(x_{j}\right)$ means that the interval $I\left(x_{i}\right)$ lies entirely to the left of $I\left(x_{j}\right)$. Let $x_{a}=\max \left\{x_{i}: x_{i}<x_{n+1}, i \leqslant n\right\}$, and $x_{b}=\min \left\{x_{j}: x_{j}>x_{n+1}, j \leqslant n\right\}$. Define $I\left(x_{n+1}\right)$ to be the (closed) middle third of the open interval between $I\left(x_{a}\right)$ and $I\left(x_{b}\right)$. Then (1) is still satisfied. Hence we can define $I\left(x_{n+2}\right)$ similarly, and so on.

Denote $x-\lfloor x\rfloor$ by x^{\prime} and the midpoint of $I\left(x^{\prime}\right)$ by $m\left(x^{\prime}\right)$. Then $x^{\prime}<1$ and by the definition of $I\left(x^{\prime}\right)$, the length of $I\left(x^{\prime}\right)$ and $m\left(x^{\prime}\right)$ are rationals. We are going to define a map f from X to \boldsymbol{Q} by

$$
f(x)=\lfloor x\rfloor+m\left(x^{\prime}\right)-\text { 'adjusting term' } g(x)
$$

so that f induces an isomorphism from $[X]$ to $\langle f(X)\rangle$. Let

$$
g(x)=\operatorname{sign}(x)\left[\text { length of } I\left(x^{\prime}\right)\right]\left(\frac{1}{4}+\frac{1}{4^{2}}+\cdots+\frac{1}{4^{k+1}}\right)
$$

where k is the absolute value of $\lfloor x\rfloor$, and $\operatorname{sign}(x)=1$ or 0 or -1 accordingly as $x>0$ or $=0$ or <0. Since $1 / 4+1 / 4^{2}+\cdots=\frac{1}{3}$, it is clear that $m\left(x^{\prime}\right)-g(x) \in I\left(x^{\prime}\right)$. Hence we have

$$
\begin{equation*}
m\left(x^{\prime}\right)<m\left(y^{\prime}\right) \text { implies } 0<\left(m\left(y^{\prime}\right)-g(y)\right)-\left(m\left(x^{\prime}\right)-g(x)\right)<1 . \tag{2}
\end{equation*}
$$

Since $g(x)$ is a rational number, $f(x)=\lfloor x\rfloor+m\left(x^{\prime}\right)-g(x)$ is also a rational number. Now we show that for $x, y \in X$.

$$
\begin{equation*}
|x-y| \leqslant 1 \text { if and only if }|f(x)-f(y)|<1 . \tag{3}
\end{equation*}
$$

First suppose $0<y-x<1$. Then

$$
\left(\lfloor y\rfloor-\lfloor x\rfloor=1 \text { and } y^{\prime}<x^{\prime}\right) \text { or }\left(\lfloor y\rfloor-\lfloor x\rfloor=0 \text { and } y^{\prime}>x^{\prime}\right) .
$$

In either case it follows easily from (2) that $0<f(y)-f(x)<1$. Next, suppose $y-x=1$. Then $\lfloor y\rfloor-\lfloor x\rfloor=1$ and $y^{\prime}=x^{\prime}$. Since

$$
x<0 \rightarrow[\operatorname{sign}(x)<0 \text { and } \| x\rfloor| |>\| y\rfloor \mid] \rightarrow g(y)>g(x)
$$

and

$$
x>0 \rightarrow[\operatorname{sign}(y)>0 \text { and }\|y\||>|\lfloor x\rfloor \|] \rightarrow g(y)>g(x),
$$

we have $f(y)-f(x)=1-(g(y)-g(x))<1$.
Finally, suppose $y-x>1$. Then

$$
\left(\lfloor y\rfloor-\lfloor x\rfloor=1 \text { and } y^{\prime}>x^{\prime}\right) \text { or }(\lfloor y\rfloor-\lfloor x\rfloor \geqslant 2) .
$$

In either case $f(y)-f(x)>1$ follows easily from (2). Thus (3) holds and therefore f induces an isomorphism from $[X]$ to $\langle f(X)\rangle \subset\langle\boldsymbol{Q}\rangle$. This proves the first part of the theorem. To prove the second part we need only to replace the definition of f by $f(x)=\lfloor x\rfloor+m\left(x^{\prime}\right)+g(x)$.

