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INTRODUCTION 

In recent years, numerous Ramsey-type results have been established for 
a variety of algebraic and combinatorial structures. Theses include, for 
example, subsets of finite sets, subspaces of finite-dimensional vector spaces 
(over finite fields), solution sets of systems of homogeneous linear 
equations, sublattices of finite lattices, partitions of finite sets, sub- 
parameter sets of parameter sets, and subcategories of various categories, 
to name a few. The essence of such a result is to assert for some cdlection 
X of “rank .?’ objects and any integers k and r, the existence of another 
collection Y of rank 1 objects so that no matter how the set of all rank k 
subobjects occurring in Y are partitioned into r classes, there is always a 
“copy” x’ of X in Y which has all its rank k subobjects belonging to a 
single class. Such an X’ is sometimes called homogeneous. 

It turns out that in many cases it is possible to significantly strengthen 
results of this type by placing various restrictions both on the sought-&% 
collection Y as well as on the homogeneous collection A”. For example, one 
might require that Y spans no rank s objects unless X also does (Y is 
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restricted), or that the only rank k objects spanned by the points in X’ are 
those which correspond to rank k objects in X (A” is an induced copy of X 
in Y). 

Perhaps the most well-known such strengthening is the induced restric- 
ted Ramsey theorem for hypergraphs of NeSetCl and Rod1 [7] (see also 
~[S, 93 where stronger theorems are stated). 

The purpose of this note is to give proofs of the corresponding 
strengthenings for two of the cornerstone theorems in Ramsey theory, 
namely, the vector space Ramsey theorem [3], and the n-parameter set 
.Ramsey theorem [4]. As will be seen from the arguments, these techniques 
l(based in part on ideas introduced in [7]) are in fact applicable to many 
(other situations for which a basic Ramsey theorem already exists (cf. [ 141). 

PRELIMINARIES 

Let A = {a, ,..., 0,) be a fixed finite set and let B G A be nonempty. For 
non-negative integers k < n, we will define special subsets P,, called 
k-parameter sets, of the Cartesian product A”, in the following way 
(cf. [I4,21). 

For disjoint, nonempty subsets I, ,..., Zk of [n] = ( 1, 2 ,..., n 1, define P, to 
consist of all those (x ,,..., x,,) E A” such that: 

(i) If u, u E Z, for some j then x, =x,.; 
(ii) If UE [n]\UjZi then x,= h,, a fixed element of B. 

The elements of Ui Z, are usually called the moving coordinates of P, ; the 
elements of the (possibly empty) subset I,= [n]\UiZ, are called the con- 
stant coordinates of P,. In a certain sense, Pk is the combinatorial 
analogue of a k-dimensional afftne space over a q-element field (at least, 
when q is a prime power). Observe that 1 P,] = qk for k 3 0. A set XE A” is 
said to be an i-parameter subset of P, if X is an i-parameter set in A” and 
Xc P,. A discussion of various properties of k-parameter sets can be found 
in [4]. 

When q is a prime power and A = GF(q), more common substructures of 
A” are those of either k-dimensional afline or k-dimensional vector spaces 
over GF(q). Since we will be treating both k-parameter sets and k-dimen- 
sional spaces in A” simultaneously, we will call them both k-spaces in A” 
(although when we use the term we will always have one particular inter- 
pretation in mind). We will denote the set of k-spaces in A” by (“,), and 
their number by [;I. X will be called a subspace of A” if XE ($“) for some k, 
in which case k is called the dimension of X, denoted by dim X. 

The following statement expresses the basic Ramsey theorem for 
k-spaces. 
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We should remark that the case of this theorem for X-parameter sets 
with I= 1. k = 0, and B = A is known as the Hales--Jewett theorem [61. 
and will be needed in the proof of Proposition 2. 

ADVANCED PRELIMINARIES 

Before proceeding to our main result, we first need several additional 
results. For a finite set X, A”’ will denote the set of all 1X1-tuples (CI, : s E X). 
A map f’: A.‘-+ A ’ is called linear if ,f’( V) is a subspace of A ’ (written 
f’( V) < A ’ ) for each subspace 1’ of A-y. For Y c X. the projection map P k is 
defined by setting 

py((f7,: xEX))= (a,: j’E Y). 

It is easy to see that pv is linear. 
For Y c X, a subspace V < A ’ is called Y-transwrse if 

dim I; = dim p ,-( VI 

Note that in this case the projection map ,CJ~ is I - 1 on V. 
For sets X”‘,..., X’“‘, we define the amalgamated direct product 0, A “‘I 

to be the set of all tuples (a, : x E IJ;: , X”‘). 

PROFQSITION 1. Suppose ,ftir .sets A”“,..., A’(“” u’e have A”” n X” = 
Y#QI for 1 <i<j<m, and F (‘I is a Y-transverse k-space in AX”’ with 
all P,(F”)) = E, 1 < i < m. Then there is u unique Y-transverse k-spare 
F=F’l’F’2)...F(‘“l~O;AXI” satisfving p J F) = E and pp,t( F) = F”’ .fi)r 
1 <i<m. 

Proqfi Since each F”’ is Y-transverse then for each ti ~p,,(F’j’) = E, 
there is a unique point tiCi) E F”’ which has the same Y-coordinates as ii. 
That is, knowledge of the “Y-part” ci = p y(C’i’) is sufficient to reconstruct 
the remaining part of tic’). Thus, for any ii E E we can unique& extend it to 
an element B 6 0, A xc” (no contradictions can arise since X”’ n X’ j) = Y for 
i # j). In this way we obtain a Y-transverse set F satisfying p*(F) = E which 
is easily verified to be a subspace of 0, AX”‘. B 

A central notion used in the paper is the following. Suppose XI> Y, 
W 2 Y and ,f: A w + AX. Then f‘ is called Y-linear if .f is linear and for all 
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ii E A “‘, f(G) has the s ame Y-part as z Further, for Y-transverse subspaces 
U<AW, V<AXandfamiliesP~(~),9~(,Y),wesaythat9and9are Y- 
isomorphic if there exists a Y-linear map ,f: A W + AX which is 1 - 1 and 
which satisfies 

f(F)= (f(F): FEB) =‘@. 

A subspace HE (X) is called l-complete or simply complete if (7) c S 
holds. Let (.r) = {H ,,..., H,, } be the collection of all the complete k-spaces 
in F. Suppose now that Y c I’, E E (“,‘), U E (4,‘), p u( U) = E, and 8 c (:‘) 
is a family of Y-transverse spaces. Then necessarily (c) = {H, ,..., H,,) is a 
family of Y-transverse k-spaces satisfying p J Hi) = E, 1 < i < s. For every 
positive integer m we shall now define the mth Y-amalgamated power 9”’ 
of 9. To do this, let X”‘,..., X (“‘) be copies of X satisfying X’“‘n Xth’ = Y 
for 1 <a<h<m. For a subspace U of A”, let U’“) be the corresponding 
subspace of AX’“‘. Then we define 

,9”‘:=iFI’)F:“...Fj~~):F,~~andp,(F,)= ... =p,.(F,,,)) 

The next statement can be easily verified. 

PROPOSITION 2. (,‘,“I)= {G\‘)G~2’~..Gj;,“): G,E(.~), 16 i<m}. 

Let us now suppose that m = m(r, s) is so large that the conclusion of the 
IHales-Jewett theorem holds for partitioning the points of [s]“’ into r 
classes. 

PROPOSITION 3. For every partition of’ (,“,“‘) into r classes there exists an 
n-space U’ uith T*I” n U’ being Y-isomorphic to S and such that all its com- 
plete k-spaces are in the same class. 

ProoJ In view of Proposition 2, a partition of (.T”‘) can be regarded as 
a partition of [s]“I (recall that ( F) = {H, ,..., H, }). By the choice of m we 
(can find a homogeneous line L in [s]“‘. Let [m] = Cu M be the 
(corresponding partition into constant and moving coordinates. For in C, 
let G(i) be the “value” of the corresponding constant, and let G”’ be the 
~:opy of G(i) in Ax”‘. Thus the line L consists of the following complete 
k-spaces: 

L = {H” ) . . HI”‘). H”’ = G”’ , in C and HI” = HI”) for i, i’ E A41 I 

Let us now define a Y-linear map f: AX + @ i A?L”‘. 
For a point v E AX, let v’ = p ,,( v) denote the Y-part of v and v” = px J v) 

the (X- Y)-part of v. Then f is defined as follows. The Y-part off(v) is v’. 
For iE M, the (X(” - Y)-part of f(v) is v”. Finally for in C the (X”’ - Y)- 
part of ,f(v) is the (Xc’) - Y)-part of the unique element in G’” having 
Y-part v’. 



It is easy to check that ,f i> 1 -- 1 and I’-linear. Let ( = f(L) be the 
image of I;. We must show that .8”“’ n (‘,“) is Y-tsomorphic to 3. Indeed, 
it is clear that ,f’(F) c.F”‘P (‘, ). We must show that equality actually 
holds. Suppose that F= F, ‘. I;I,;“E (.F”‘o I’, 1) and pr(l;,) ::: := 
pr( F,,,) := E,. We have to show that I;, = F, for i. ;E M, and that for I e- C‘, 
Fj” is the unique l-space in G”’ with p J Fj”) = I:,,. 

Assume first that F, # F, for some i,,j~ M. Then for some 1’ E E,,, the uni- 
que elements in the two I-spaces F,, F, having Y-part 18 are distinct. 
However, this implies that the unique element in F with Y-part v is not in 
f(U), which is impossible. Next, assume that for some in C. Fi” is not the 
unique l-space in Gi” which projects onto E,,. Then F]‘) is not a subspace of 
Gj”. Therefore we can find v E E,, such that the unique element of F:” with 
Y-part 1’ is not in Gj”. However, then the unique element in P with Y-part 1’ 
is not in .f( U), a contradiction. This also proves that ( /iii ‘) = L. Since I, is 
homogeneous, the proof is complete. l 

THE MAIN RESULT 

THEOREM (Induced Restricted Ramsey Theorem for Spaces). Supposr 
F is a family of’ I-spaces in A ’ with /X( = II, and k > I and r are positive 
integers. Then there exists a set W and a ,family J& of l-spaces in A w so that 
for any partition of the set of k-spaces ( f) into r classes there alwal*s exists 
an n-space Z E (1:“) such that 

.F’= c’n 
Z 0 1, 

rF 

and with (,T’) homogeneous. Furthermore, lf’ A” contains no p-space P with 
(7) c 9 then A w contains no p-.rpace P’ with (7’) c ill. 

Note. By F’ z 9 we mean that 5’ is an induced isomorphic copy of F, 
i.e., there exists a 1 - 1 linear map ,f: AX --+ A w such that 

f(F)= {.f’(F): FEN) =.F’ 

Proof: To begin with, let t be an integer sufficiently large to guarantee 
that if the k-spaces of a t-space T are arbitrarily partitioned into r classes 
then some n-space S of T has (z) homogeneous. Let wO be a large integer 
[to be specified later) and consider a w,-element set W, an&a t-element set 
Y with YC W,,. Let the set (“,‘) of n-spaces in A’ be denoted by 

ID,, Dz,..., DC;]} and let the set (“,‘) of k-spaces in A ’ be denoted by 

{E,, E,,..., -Q}. Ch oose a collection of n-spaces in A w”, say H,, I?,,..., 
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H[;,], which are as disjoint as possible, i.e., pairwise disjoint or having 
pairwise intersection (0, O,..., 0) either in the case of vector spaces or in the 
case of parameter sets with the choice B= {0}, and furthermore, so that 
p ,(Hi) = Di, 1~ id [A]. Thus, p ,,: A w” + A ’ is 1 - 1 on each H,. This is 
certainly possible if w0 is taken sufficiently large. For each H,, let xg (7) 
be isomorphic to the given family 9. We define the zeroth configuration $f& 
to be the family U, Q iG r;, x. 

Suppose now that for some j < [ ;] we have defined the jth configuration 
%,,, consisting of a certain family of Y-transverse I-spaces in A w/ for some 
W, 2 Y (where u’, will denote 1 W,l ). We will now describe the construction 
of the family Vj + , . 

To start, first set E = E,, , and define 

9= {CMj:py(C&Ej. 

Set s=l(z)l and note that for GE(;), we have P,(G)=E. 
Fix a labelling of the s members of (5) say (z) = {H, ,..., H, ). We can 
consider the set of all sequences (G, ,..., G,,) as a Hales-Jewett cube [s]“‘. 
Let m = m(r, s) be the smallest integer so that in every partition of [s]“’ 
into r classes there is a homogeneous line. Let I7 be the set of all lines in 
[s]” and let Y, be a copy of Y for each ICE Z7. Further, let h: A ’ -+ E be a 
retract, i.e., h is linear and the restriction of h to E is the identity. Let W”‘, 
1 6 i< m, be a copy of W, and suppose that W”‘n W”’ = Y holds for 
1 d i < i’ < m. Finally, assume that the Y, are pairwise disjoint and disjoint 
from all the W”‘. Set W I+ I = (Ui w”‘) u (Un ‘xl. 

Now we are ready to define %‘,+ , . It will be the amalgamation of copies 
of %,, one copy %“7[) for each line n E I7, where the distinct copies will 
overlap only in specific ways. 

Let 7t E l7 be a line and let I be the set of constant coordinates, A4 the set 
of moving coordinates of rr, and G(i) the value the constant coordinate in I. 
We define a Y-linear map f,: A 4 -+ A wl+1 as follows. Suppose that v E A wf, 
and that v has Y-part v I and ( W, - Y)-part v2. Then u’ = f,( v) is defined to 
have Y-part v, and ( Wj:‘) - Y)-part v2 for each in M. Also, the Y,-part of u’ 
is v I for cr = rc, and h( v, ) for 0 # n. Finally, for i E Z, the ( W(j) - Y)-part of u’ 
is the ( W, - Y)-part of the unique vector u E G(i) having Y-part h(u, ). Since 
A4 # 0, f, is a 1 - 1 linear map, and it therefore defines an embedding of Vi 
into A y+l. Define @a) = f(y) and ‘3$+ , = Un, n VCn). Note that if a point v 
is contained in some space in both %P’) and @P’, n # 0, then p y(v) E E 
holds. Let us list (without proofs) two important properties of V,+ , , which 
can be verified in a straightforward way. Define W= IJ, W”‘. 

PROPOSITION 4. p&%7; + ,) = %‘r, the Cartesian product ef QT m times. 



126 I~KANIil . (;R,ZHAM. ,\%I) KOi)! 

We claim that %I;] satisfies the requirements of the Theorem. Ser 
X = %[; J and E= I?[; J Let us suppose that the I\-spaces of (1 ) arc par- 
titioned into r classes. Consider the set of complete X-spaces K E (‘t ) satisfy- 
ing p>.(K) = E. In view of Propositions 5 and 3. for some line n E I/, the 
copy %‘n) of “[;I , in % has tts complete h--spaces homogeneous. Set 

% =%‘n) and E=E[;] , and apply Propositions 5 and 3 again. Then we 
obtain an induced copy of Xc;] 2 so that all il.\ complete k-spaces which 
project onto E are homogeneous, as are those which project onto E 
course, these might be in different classes. 

r; 1’ Of 

Repeating this altogether [i] times we obtain an induced copy ot’ (f,,, 
with the property that the color of every complete k-space K E ( “I’J) depends 
only on p,(K). This defines a partition of the k-spaces of *1 ) rnto r classes. 
By the choice of t = / YI, there must be some n-space D, E ( 1,‘) with all its k- 
spaces in a single class. Thus. the corresponding family -f! = (‘I,) (-I (‘2.9 
has all its complete k-spaces ( : J in a single class, as required. It is now 
straightforward to check that the other requirements of the theorem arc 
satisfied by the choice ti = % [I ] This completes the proof. 1 

i, 

Ar\; APPLKATION ‘ro THE FINITE UNIONS THEOREM 

Recall that the special case A = IO, 1 ), B= [Oi, k = 1, I= s, of the 
Graham-Rothschild n-parameter set theorem is the following result of 
Folkman, Rado, and Sanders (cf. [ 51). 

FJNITE UNIONS THEOREM. Supposr that n > n,,(s, r) und all nonwzpt~~ 
subsets of an n-set are partionrd into r classes. Then one cun ,find pairwisr 
disjoint sets S, ,..., S, .so that ,fbr ull @ # IC [s], thr sets u,:-, S, uw in thr 
Same class. 

NeSet?il and RodI [ 11) gave a direct but somewhat involved proof of the 
following restricted version. Their result was announced in [lo]. 

RESTRICTED FINITE UNIONS THEOREM. For all positive integers r and s 
there exists a ,family .Y of finite sets having the ,following two properties: 

(i) If Cf- C/‘(l)” ._. ” </‘t” ’ -’ is an arbitrary partition then there 
exists j, I < ,j < Y, and pairwise disjoint sets S, ,..., S, E >Pl” such that 

u S, is in .‘/“I’ /Or all nonempt!, ,xfs ZC [s]; 
rc, 
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(ii) VS,,..., S.,, , are pairwise disjoint sets then there is a nonempty set 
I’C [s + 11 such that Uit, Si$ 9’ (i.e., Y contains no complete (s + I)- 
space). 

To obtain this result from our theorem it is sufficient to set A = 
B= {O}, k=l=l, Fan s-space andp=s+l. 

CONCLUDING REMARKS 

In our main theorem we considered the Ramsey theorem for families of l- 
subspaces. In other words we considered the pairs (U, ZJ where iJ is a 
space and I‘: ( y) --, (0, I} th e mapping describing which l-spaces are the 
members of our family 9. In [ 12, 131 Priimel proved the induced (but not 
restricted) version of our main theorem for the case when I? (7) -+ 
(0, I,..., h} and h is an arbitrary integer. Note that our proof (with no 
change) actually yields an induced restricted version of Priimel’s theorem 
for an arbitrary h (not just for h = 1 as treated in our main theorem). We 
gave the proof for the case h = I because it requires somewhat less notation 
and (we hope) is easier to follow. 

Finally, we point out that several special cases of the induced version of 
the main theorem were previously proved in [ 11. 
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