Note

The Radon Transform on Abelian Groups

P. FRANKL

CNRS, Paris, France

AND

R. L. GRAHAM

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Communicated by Managing Editors

Received July 15, 1986

The Radon transform on a group A is a linear operator on the space of functions $f: A \to \mathbb{C}$. It is shown that if $A = \mathbb{Z}_p^n$ then the Radon transform with respect to a subset $B \subset A$ is not invertible if and only if B has the same number of elements in every coset of some maximal subgroup of A. The same does not hold in general for arbitrary finite abelian groups.

INTRODUCTION

Let A be a finite group and $B \subset A$, a subset. For every function $f: A \to \mathbb{C}$ one defines the function $F_B: A \to \mathbb{C}$, the Radon transform of f with respect to B by

$$F_B(a) = \sum_{b \in B} f(ab). \tag{1}$$

The principal problem we address here is: for which subsets B is the Radon transform invertible, i.e., knowledge of the function F_B determines f uniquely. Such sets are called *unique inversion* sets. Unique inversion sets were investigated in Diaconis and Graham [1], where particular attention is given to the case $A = \mathbb{Z}_2^n$.

The main result of this note gives a combinatorial description of unique inversion sets in \mathbb{Z}_p^N when p is a prime.

Let us say that B is uniformly distributed modulo the subgroup $A_0 < A$ if $|B \cap aA_0|$ is the same for all $a \in A$. Note that this implies $|A:A_0|$ divides |B|.

THEOREM 1.1. A subset $B \subseteq A = \mathbb{Z}_p^n$ is not a unique inversion set if and only if B is uniformly distributed modulo some maximal subgroup $A_0 < A$.

Remark. Most subsets B of \mathbb{Z}_p^n have size close to $p^n/2$. Since \mathbb{Z}_p^n has $(p^n-1)/(p-1)$ maximal subgroups, for such B, the problem whether B is a unique inversion set can be decided in time polynomial in |B|. On the other hand, in [1] it is shown that the existence of a polynomial time algorithm for general $B \subset \mathbb{Z}_2^n$ implies P = NP.

Proof of Theorem 1.1. One can look at (1) as a system of |A| linear equations in the |A| unknowns $\{f(a): a \in A\}$. Therefore B is a unique inversion set if and only if the coefficient matrix M(B) of (1) is nonsingular.

If A is abelian and K(A) denotes the character matrix of A, then it is easy to check that the Hermitian matrix $K(A)/\sqrt{|A|}$ can be used to bring M(B) into diagonal form, i.e., the matrix $K(A)M(B)K(A)^*/|A|$ is diagonal. This leads to the following.

PROPOSITION 2.1 (Frobenius, cf. [2]). Let $\{\psi_d: d \in A\}$ be the set of irreducible characters of the abelian group A. Then the eigenvalues of M(B) are the numbers $\psi_d(B) = \sum_{b \in B} \psi_d(b)$.

Let us now use this formula to prove Theorem 1.1. Suppose that $B \subset \mathbb{Z}_p^n$ is not a unique inversion set. Then there exists an element $d \in A$ so that $\sum_{b \in B} \psi_d(b) = 0$. Since the statement is trivially true for $B = \emptyset$, we may assume that B is non-empty. Consequently, $d \neq 1$ and thus $A_0 = \{a \in A : \psi_d(a) = 0\}$ is a maximal subgroup. For 0 < j < p, let us define $A_j = \{a \in A : \psi_d(a) = e^{2\pi i j/p}\}$. Then $A = A_0 \cup A_1 \cup \cdots \cup A_{p-1}$ is the decomposition of A into cosets of A_0 .

Setting $b_i = |B \cap A_j|$ for $0 \le j < p$, and $x = e^{2\pi i/p}$ we obtain

$$0 = \psi_d(B) = \sum_{j=0}^{p-1} b_j x^j.$$

Therefore the minimal polynomial $1+x+\cdots+x^{p-1}$ of $e^{2\pi i/p}$ must divide $b(x)=\sum_{j=0}^{p-1}b_jx^j$. Since deg $b(x)\leqslant p-1$, $b(x)=c(1+x+\cdots+x^{p-1})$ follows for some constant c. This proves $b_0=b_1=\cdots=b_{p-1}=c$, as desired.

The second implication of the theorem holds even for general groups. Let A_0 , A_1 ,..., A_{m-1} be the left cosets of A_0 in A in some order and suppose that for some b, $|B \cap A_j| = b$ holds for $0 \le j < m$. Consider the function f(a) defined by

$$f(a) = \begin{cases} 1 & a \in A_0, \\ -1 & a \in A_1, \\ 0 & \text{otherwise} \end{cases}$$

It is easily checked that $F_B(a) = \sum_{ab \in A_0, b \in B} 1 - \sum_{ab \in A_1, b \in B} 1 = b - B = 0$, i.e., $F_B(a)$ is identically zero.

Let us now investigate in more detail the case of general (abelian) groups. The simplest example of a nonunique inversion set is probably an arbitrary subgroup. Indeed, if B < A then the Radon transform F_B is constant on each left coset of B. Thus the space of the functions F_B has dimension at most n/|B|.

The same also holds if B is the disjoint union of right cosets of B.

PROPOSITION 2.2. Suppose that $D_1,..., D_r$ are subgroups of A satisfying $\sum_{i=1}^{r} 1/|D_i| < 1$ and B is the disjoint union of some right cosets of $D_1,..., D_r$. Then B is not a unique inversion set.

Proof. Let B_i be the subset of B which is the union of the right cosets of D_i . Let V_i denote the vector space of functions F_{B_i} . As we showed before dim $V_i \leq n/|D_i|$. Consequently $V_1, V_2, ..., V_r$ generate a subspace, say W_i , of dimension less than n. Since F_B is contained in W_i , the statement follows.

Remark. If $r \ge 2$, then the preceding conclusion holds even if $\sum_{i=1}^{r} 1/|D_i| = 1$, since the constant function is contained in each of the V_i . Thus, the simplest group for which Theorem 1.1 fails is \mathbb{Z}_{p^2} , taking as B the cyclic subgroup of order p in it.

For abelian groups one can actually compute dim V_i as follows.

PROPOSITION 2.3. Suppose that B is a coset of a subgroup D of the abelian group A. Then the dimension of the vector space of the functions $F_B(a)$ is n/|D|.

Proof. In view of Proposition 2.1 the dimension in question is simply the number of characters ψ_d with $\psi_d(B) \neq 0$. Now $|\psi_d(B)| = |B| \neq 0$ if $D \leq \text{Ker } \psi_d$, i.e., for all n/|D| characters of A/D. Otherwise $\psi = \psi_{d|D}$ is a non-trivial irreducible character of D, and consequently $(\psi, 1_D) = 0$, which implies $\psi_d(B) = 0$.

Using Proposition 2.2 we can get examples of groups of square-free order for which Theorem 1.1 fails. For example, in \mathbb{Z}_{30} the group of integers (mod 30) take $B = \{0, 1, 11, 15, 21\} = \{0, 15\} \cup \{1, 11, 21\}$. Then the corresponding Radon transform has only dimension 20.

However, by the Chinese remainder theorem, this approach cannot work for cyclic groups of order pq, p and q being distinct primes. Nevertheless, if A is slightly larger, e.g., if A has a non-trivial subgroup A_0 with $A/A_0 \cong \mathbb{Z}_{pq}$ then we do not have to worry about disjointness. Suppose that $B \subset A$ is such that the elements of B considered modulo A_0 form the union of one coset of \mathbb{Z}_p and one of \mathbb{Z}_q . In particular, |B| = p + q. Then B is not a unique

inversion set in view of Proposition 2.2, and in most cases it is not uniformly distributed modulo any maximal subgroup of A (a simple sufficient condition is (p+q, |A|) = 1). In this way we can show that Theorem 1.1 fails for all abelian groups except \mathbb{Z}_p^n and \mathbb{Z}_{pq} .

PROBLEM 2.4. Does Theorem 1.1 hold for $A = \mathbb{Z}_{pq}$? One can easily check that the answer is "yes" for \mathbb{Z}_{pq} . In general, a positive answer to the problem is equivalent to a negative one to the following.

PROBLEM 2.5. Let $\phi(x)$ be the pqth cyclotomic polynomial, i.e., $\phi(x) = (x-1)(x^{pq}-1)/(x^p-1)(x^q-1)$. Is there a polynomial $g(x) = \sum_{i=0}^{pq-1} \varepsilon_i x^i$ with $\varepsilon_i = 0$, 1 so that $\phi(x)$ divides g(x) but neither $x^{p-1} + \cdots + x + 1$ nor $x^{q-1} + \cdots + x + 1$ divides g(x).

Note added in proof. Peter Cameron has just shown that Theorem 1.1 does indeed hold for $A = \mathbb{Z}_{pq}$.

REFERENCES

- 1. P. DIACONIS AND R. L. GRAHAM, The Radon transform on \mathbb{Z}_2^k , Pacific J. Math. 118 (1985), 323-345.
- T. HAWKINS, Arch. Hist. Exact Sci. 7 (1970/71), 142–170; 8 (1971/72), 243–287; 12 (1974), 217–243.