A Helly Type Theorem for Hypersurfaces

M. DEZA AND P. FRANKL

C.N.R.S., 15 Quai Anatole France, 75700 Paris, France Communicated by the Managing Editors

Received February 25, 1986; revised July 25, 1986

It is proved that if $H_1, ..., H_m$ are hypersurfaces of degree at most d in *n*-dimensional projective space and $P_1, ..., P_m$ are points so that $P_i \notin H_i$ for all i and $P_i \in H_j$ for $1 \leq i < j \leq m$ then $m \leq \binom{n+d}{2}$. © 1987 Academic Press, Inc.

1. INTRODUCTION

Let Γ be a commutative field (finite or infinite) and let $P = P(n, \Gamma)$ be the *n*-dimensional projective space over Γ . Then every point $\mathbf{x} \in P$ can be expressed by n + 1 homogene coordinates $\mathbf{x} = (x_0, ..., x_n)$, not all zero and $(x_0, ..., x_n) = (\lambda x_0, ..., \lambda x_n)$ for $0 \neq \lambda \in \Gamma$.

By a hypersurface of degree d we simply mean the set of all points $\mathbf{x} \in P$ with $p(\mathbf{x}) = 0$, where $p(\mathbf{x})$ is a homogenous polynomial of degree d in the n+1 variables $x_0, x_1, ..., x_n$.

THEOREM 1. Suppose that $H_1, ..., H_m$ are hypersurfaces of degree at most d and $\mathbf{x}_1, ..., \mathbf{x}_m$ are points in P so that

- (i) $\mathbf{x}_{i} \notin H_{i} \ i = 1,..., m \ and$
- (ii) $\mathbf{x}_i \in H_i$ for $1 \leq i < j \leq m$ hold.

Then we have

$$m \leqslant \binom{n+d}{d}.$$
 (1)

We shall see later that (1) is best possible.

The next result is obviously analogous to Helly's theorem (cf. [DGK]) on convex sets.

COROLLARY 2. Suppose that $H_1,..., H_m$ are hypersurfaces of degree at most d in P so that the intersection of any choice of $\binom{n+d}{d}$ of them is nonempty. Then $\bigcap_{i=1}^m H_i \neq \emptyset$. One can use Theorem 1 to give a new proof of the following variation of a result of Lovász [L].

THEOREM 3. (Frankl [F], Kalai [K]). Suppose that $A_1, ..., A_m$ are (a-1)-dimensional subspaces in P and $B_1, ..., B_m$ are at most b-element subsets of P so that $A_i \cap B_i = \emptyset$ for all i, but $A_i \cap B_j \neq 0$ for i < j. Then

$$m \leq \binom{a+b}{b}.$$
 (2)

Let us mention that the original proofs of (2) use more involved, multilinear techniques but they allow to obtain (2) for the case when each B_i is a (b-1)-dimensional subspace also.

2. PROOF OF THEOREM 1

Let $l_i(\mathbf{x}) = \sum_{j=0}^n c_j^{(i)} x_j = 0$ be the equation for some hyperplane which does not contain \mathbf{x}_i . Let $q_i(\mathbf{x})$ be the defining polynomial of H_i , and let d_i be the degree of $q_i(\mathbf{x})$. Set $p_i(\mathbf{x}) = q_i(\mathbf{x}) l_i(\mathbf{x})^{d-d_i}$. Then $p_1(\mathbf{x}),..., p_m(\mathbf{x})$ are homogenous polynomials in n+1 variables and of degree d. The vector space of such polynomials over Γ has dimension $\binom{n+d}{d}$. Thus (1) will follow if we show that $p_1(\mathbf{x}),..., p_m(\mathbf{x})$ are linearly independent.

Suppose the contrary, i.e., suppose that $\sum_{j=1}^{m} \alpha_j p_j(\mathbf{x})$ is the zero-polynomial, and not all α_i are zero. Let *i* be the first index with $\alpha_i \neq 0$. Then

$$\sum_{j < i} \alpha_j p_j(\mathbf{x}_i) + \alpha_i p_i(\mathbf{x}_i) + \sum_{i < j} \alpha_j p_j(\mathbf{x}_i)$$
$$= \alpha_i p_i(\mathbf{x}_i) = \alpha_i q_i(\mathbf{x}_i) l_i(\mathbf{x}_i)^{d-d_i} \neq 0$$

a contradiction.

Next, we prove Corollary 2.

Suppose that $H_1 \cap \cdots \cap H_m = \emptyset$ and let us choose a subset $I \subseteq \{1, 2, ..., m\}$ of minimal size with the property $\bigcap_{i \in I} H_i = \emptyset$. By the minimal choice of I for every $i \in I$ we can find $\mathbf{x}_i \in \bigcap_{j \in (I-\{i\})} H_j$. Then $\mathbf{x}_i \notin H_i$ but $\mathbf{x}_i \in H_j$ for all $i \neq j \in I$. Thus Theorem 1 applies and gives $|I| \leq \binom{n+d}{d}$, which contradicts our assumption that the intersection of any $\binom{n+d}{d}$ hypersurfaces is non-empty.

To see that the bound $\binom{n+d}{d}$ is best possible take n+d hyperplanes in general position in P. Then the intersection of any n of them is a single point. Let $P_1, ..., P_{\binom{n+d}{d}}$ be these points. Let H_i be the union of the d hyperplanes not containing P_i . Then H_i is a hypersurface of degree d (its equation is the product of d linear equations) and $P_j \in H_i$ holds for all $j \neq i$.

3. PROOF OF THEOREM 3

From the assumptions it is clear that $n \ge a$. Let us first prove (2) for n = a and deduce the n > a case from this special case later.

If n = a, then A_i is a hyperplane, $1 \le i \le m$. Let $\mathbf{x}_i = (x_0, ..., x_a)$ be the point so that

$$A_i = \left\{ \mathbf{y}_i = (y_0, ..., y_a): \sum_{j=0}^a y_j x_j = 0 \right\}.$$

Also, for each $B_i = \{\mathbf{b}_i^{(1)}, ..., \mathbf{b}_i^{(|B_i|)}\}$ define H_i by the polynomial equation $p_i(x_0, ..., x_a) = \prod_{t=1}^{|B_i|} \sum_{j=0}^a z_j^{(t)} x_j = 0$, where $\mathbf{b}_i^{(t)} = (z_0^{(t)}, ..., z_n^{(t)})$.

Note that $p_i(x)$ is homogenous of degree $|B_i|$ and H_i is simply the union of $|B_i|$ hyperplanes.

Now x_i and H_i , i = 1, ..., m, satisfy the assumptions of Theorem 1, yielding $m \leq {\binom{a+b}{b}}$, as desired.

Suppose now that n > a and the statement has been proved for n-1. First we claim that one may assume that Γ is infinite. Indeed, if Γ is finite, then let Γ^* be an infinite extension field of Γ and consider $P^* = P \otimes_{\Gamma} \Gamma^*$, the *n*-dimensional projective space over Γ^* in which *P* is embedded. Let A_i^* be the unique (a-1)-dimensional subspace of P^* containing A_i . Then $A_i^* \cap B_i = \emptyset$, all *i* and $A_i^* \cap B_j \neq \emptyset$ for i < j.

From now on Γ is infinite. For $1 \le i \le m$ and $y \in B_i$ the subspace generated by A_i and y is *a*-dimensional. Since n > a and Γ is infinite, the union of these, at most *mb* subspaces does not cover *P*: let z be a point not covered by the union. Let *H* be an arbitrary hyperplane in *P*, not containing z.

Let \tilde{A}_i be the projection of A_i from z on H and \tilde{B}_i the projection of B_i on H. By the choice of z we have $\tilde{B}_i \cap \tilde{A}_i = \emptyset$ for $1 \le i \le m$. On the other hand $\tilde{A}_i \cap \tilde{B}_j \neq \emptyset$ for $1 \le i < j \le m$ is clearly maintained by the projection. Since dim H = n - 1 < n, the inequality $m \le {a+b \choose b}$ follows by induction.

4. CONCLUDING REMARKS

The proof of Theorem 1 was inspired by the paper of Koornwinder [Ko]. The special case of Theorem 1 when each H_i is the union of *d* hyperplanes was used in [DF] to obtain bounds on the maximal number of vectors in \mathbb{R}^n with given scalar products.

It would be interesting to find a proof without multilinear algebra for the following theorem of Füredi [Fü].

Suppose that t is a positive integer, $A_1,..., A_m$ is a collection of (a+t)-element sets, $B_1,..., B_m$ is a collection of (b+t)-element sets such that $|A_i \cap B_i| \le t, 1 \le i \le m$, and $|A_i \cap B_j| > t$ for $1 \le i < j \le m$. Then $m \le \binom{a+b}{b}$.

The case t = 0 corresponds to Theorem 3. It is easy to see that the bound $\binom{a+b}{a}$ is best possible: take $\mathcal{D} = \{D_1, ..., D_m\}$ as all *a*-subsets of an (a+b)-element set X. Let T be a t-element set disjoint to X and set $A_i = D_i \cup T$. Finally define $B_i = (X - D_i) \cup T$.

References

- [DGK] L. DANZER, B. GRÜNBAUM, V. KLEE, Helly's theorem and its relatives, in "Convexity," (V. Klee, Ed.), Proc. Symp. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963.
- [DF] M. DEZA AND P. FRANKL, Bounds on the maximum number of vectors with given scalar products, *Proc. Amer. Math. Soc.* 95, No. 2, (1985), 323-329.
- [F] P. FRANKL, An extremal problem for two families of sets, European J. Combin. 3 (1982), 125-127.
- [Fü] Z. FÜREDI, Geometrical solution of an intersection problem for two hypergraphs, European, J. Combin. 5 (1984), 133-136.
- [K] G. KALAI, Intersection patterns of convex sets, Israel J. Math. 48 (1984), 161-174.
- [Ko] T. KOORNWINDER, A note on the absolute bound for systems of lines, Proc. Koninklijke Nederl. Akad. Wet. 79 (1976), 152-153.
- [L] L. Lovász, Flats in matroids and geometric graphs, in "Comb. Surveys: Proc. 6th British Comb. Conference" (P.J. Cameron, Ed.), pp. 45–87, Academic Press, New York, 1977.