Note

On Subsets of Abelian Groups with No 3-Term Arithmetic Progression

P. Frankl*
C.N.R.S., Paris, France
R. L. Graham
AT\&T Bell Laboratories
600 Mountain Avenue, Murray Hill, New Jersey 07974

AND
V. RödL*

FJFI CVUT, Prague, Czechoslovakia
Communicated by the Managing Editors
Received October 25, 1986

A short proof of the following result of Brown and Buhler is given: For any $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon)$ such that if A is an abelian group of odd order $|A|>n_{0}$ and $B \subseteq A$ with $|B|>\varepsilon|A|$, then B must contain three distinct elements x, y, z satisfying $x+y=2 z$. © 1987 Academic Press, Inc.

1. Introduction

Let N denote the set of positive integers, and for $n \in N$, let [n] denote the set $\{1,2, \ldots, n\}$. A well-known theorem of Roth $[\mathrm{R}]$ asserts that if $P \subseteq N$ contains no 3-term arithmetic progression, then P has upper density zero. That is, for every $\varepsilon>0,|P \cap[n]|<\varepsilon n$ holds for all sufficiently large n.

Brown and Buhler [BB1] proved the following generalization of Roth's result.

[^0]ThEOREM 1. For every $\varepsilon>0$ there exists $n_{0}=n_{0}(\varepsilon)$ with the following property. Suppose A is an abelian group of odd order, $|A|>n_{0}$. Then every subset $B \subset A$ with $|B|>\varepsilon|A|$ contains three distinct elements x, y, z with $x+y=2 z$.

For a finite set X, define $\binom{X}{k}:=\{F \subseteq X:|F|=k\}$. A family $\mathbf{F} \subseteq\binom{X}{k}$ is called a k-graph. It is called linear if $|F \cap G| \leqslant 1$ holds for all distinct $F, G \in \mathbf{F}$. Three distinct edges, F, G, H of a linear k-graph are said to form a triangle if the three intersections $F \cap G, G \cap H, H \cap F$ are all non-empty and distinct.

Theorem 2 (Ruzsa-Szemerédi [RS]). Suppose that \mathbf{F} is a linear 3 -graph on n vertices which contains no triangle. Then $|\mathbf{F}|=o\left(n^{2}\right)$.

For a simple proof of Theorem 2, see [EFR]. Here we show that Theorem 1 follows easily from Theorem 2.

2. Proof of Theorem 1

Suppose A is an abelian group of odd order and $B \subseteq A$ contains no three distinct elements x, y, z with $x+y=2 z$. Define $X=A \times[3]$ to be the $3|A|$-element set with general element $(a, i), a \in A, 1 \leqslant i \leqslant 3$. Now define a 3-graph \mathbf{F} as

$$
\mathbf{F}:=\{\{(a, 1),(a+b, 2),(a+2 b, 3)\}: a \in A, b \in B\}
$$

Clearly, $|\mathbf{F}|=|A||B|$. Also, \mathbf{F} is linear since any two elements of an edge uniquely determine the edge.

Suppose now to the contrary that \mathbf{F} contains a triangle, say

$$
\left\{\left(a_{i}, 1\right),\left(a_{i}+b_{i}, 2\right),\left(a_{i}+2 b_{i}, 3\right)\right\}, \quad i=1,2,3 .
$$

By symmetry, we may assume that

$$
a_{1}=a_{2}, \quad a_{1}+b_{1}=a_{3}+b_{3}, \quad a_{2}+2 b_{2}=a_{3}+2 b_{3}
$$

However, these equations imply

$$
2 b_{2}-2 b_{3}=a_{3}-a_{2}=a_{3}-a_{1}=b_{1}-b_{3}
$$

i.e.,

$$
2 b_{2}=b_{1}+b_{3}
$$

By the choice of B, this implies $b_{1}=b_{2}=b_{3}$ and thus, $a_{1}=a_{2}=a_{3}$, a contradiction. Thus, F contains no triangle.

Hence, by Theorem 2,

$$
|\mathbf{F}|=|A||B|=o\left(|A|^{2}\right),
$$

i.e.,

$$
|B|=o(|A|) \quad \text { as desired }
$$

Remark. The same proof can be used in the case when A is a d-dimensional affine space over $\mathrm{GF}\left(2^{t}\right), t \geqslant 2$. For the definition of edges in the proof, one replaces $a+2 b$ by $a+\gamma b$ where $\gamma \neq 0,1$ is an arbitrary element of $\mathrm{GF}\left(2^{t}\right)$. The conclusion then becomes: B contains three points on a line.

3. Some Lower Bounds

The most important special cases of Theorem 1 are when A is a cyclic group (corresponding to Roth's theorem) and when A is an affine space $A(d, q)$ of dimension d over $G F(q)$.
In both cases, stronger theorems are known. Szemerédi's theorem [S] asserts that sets with positive upper density contain arithmetic progressions of arbitrary length, while a recent result of Furstenberg and Katznelson [FK] implies that for any $\varepsilon>0$ and any prime power q there exists $d_{0}=$ $d_{0}(\varepsilon, q)$ so that the following is true: Every subset $B \subseteq A(d, q)$ with $|B|>$ $\varepsilon q^{d}, d>d_{0}$, contains all the points of some line in $A(d, q)$.

In view of [BB2] this implies the same statement if we replace lines by planes, spaces, etc.

Let $a_{q}(d)$ denote the maximum of $|B|$ where $B \subseteq A(d, q)$ contains no line. In the case of the integers, Behrend [B] showed that for every $\delta>0$ and $n>n_{0}(\delta)$ there exists $B \subseteq[n]$ with $|B|>n^{1-\delta}$ so that B contains no 3 -term arithmetic progression. We do not know if the corresponding statement holds for affine spaces.

Problem. Is it true that for every $\delta>0, q \geqslant 3$ and $d>d_{0}(\delta, q)$, there exists $B \subseteq A(d, q)$ which contains no line and satisfies $|B|>(q-\delta)^{d}$.

It is easy to construct such a B with $|B|=(q-1)^{d}$; simply take

$$
B=\left\{\left(b_{1}, \ldots, b_{d}\right): b_{i} \in G F(q) \backslash\{0\}, i=1, \ldots, d\right\} .
$$

To improve on this bound note that if $x \in G F(q)$ is fixed and $\left\{\left(b_{1}^{(i)}, \ldots, b_{d}^{(i)}\right)\right.$, $i=1, \ldots, q\}$ forms a line then the sets $F_{i}=\left\{j: b_{j}^{(i)}=x\right\}$ form a sunflower of size q, that is, $F_{1} \cap \cdots \cap F_{q}=F_{j} \cap F_{j^{\prime}}$ holds for all $1 \leqslant j<j^{\prime} \leqslant q$.

Let $f_{q}(d, r)$ denote the maximum of $|\mathbf{F}|$ where $\mathbf{F} \subseteq\binom{[d]}{r}$, and \mathbf{F} contains no sunflower of size q.

Proposition. For all positive integrs n, r, d, one has

$$
\begin{equation*}
a_{q}(n) \geqslant f_{q}(n, r)(q-1)^{n-r} \quad \text { and } \quad a_{q}(n d) \geqslant a_{q}(n)^{d} \tag{2}
\end{equation*}
$$

Proof. Let $\mathbf{F} \subseteq\binom{[n]}{r}$ be a family without sunflowers of size q which satisfies $|\mathbf{F}|=f_{q}(n, r)$.

Fix an element $x \in G F(q)$. For $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in A(n, q)$, define $F(\mathbf{b}):=$ $\left\{j: b_{j}=x\right\}$ and

$$
B:=\{\mathbf{b} \in A(n, q): F(\mathbf{b}) \in \mathbf{F}\} .
$$

Then B contains no line. To prove the second assertion, one simply notes that if B contains no line then

$$
B \oplus \cdots \oplus B \subseteq A(n, q) \oplus \cdots \oplus A(n, q)=A(d n, q)
$$

contains no line either.
If we knew the value of $f_{q}(n, r)$, then probably we could get fairly good lower bounds on $a_{q}(n)$.

Although this problem goes back to Erdös and Rado [ER], very little is known about $f_{q}(n, r)$.

For q odd, $n=2 q$ and $r=2$, one can take two disjoint complete graphs on q vertices each. This shows $f_{q}(2 q, 2) \geqslant q(q-1)$. Actually one has equality, but we do not need it. Using (1) we obtain

$$
a_{q}(2 d q) \geqslant(q-1)^{2 d q}\left(\frac{q}{q-1}\right)^{d}
$$

Using the fact that there is a collection of 3006 -element subsets of [18] without a sunflower of size three, one obtains $a_{3}(18) \geqslant 300 \cdot 12^{12}$ and thus $a_{3}(d) \geqslant(2.179)^{d}$ for $d>d_{0}$.

References

[B] F. A. Behrend, On sets of integers which contain no three elements in arithmetic progression, Proc. Nat. Acad. Sci. 23 (1946), 331-332.
[BB1] T. C. Brown and J. P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory A 32 (1982), 20-34.
[BB2] T. C. Brown and J. P. Buhler, Lines imply spaces in density Ramsey Theory, J. Combin. Theory A 36 (1984), 214-220.
[EFR] P. Erdös, P. Frankl, and V. Römi., The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combine 2 (1986), 113-121.
[ER] P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[FK] H. Fürstenaerg and Y. Katznelson, An ergodic Szemerédi theorem for \mathbb{P}-systems and combinatorial theory, J. Anal. Math. 45 (1985), 117-168.
[R] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
[RS] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq. Math. Soc. Janos Bolyai 18 (1978), 939-945.
[S] E. Szemerédi, On sets of integers containing no k clements in arithmetic progression, Acta Arith. 27 (1975) 199-245.

[^0]: * This work was performed while the authors were visiting AT\&T Bell Laboratories.

