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A short proof of the following result of Brown and Buhler is given: For any E > 0 
there exists n, = no(E) such that if A is an abelian group of odd order IAl > no and 
BG A with IBI >&IAI. then B must contain three distinct elements X, y, z satisfying 
x + y = 22. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

Let N denote the set of positive integers, and for n E N, let [n] denote 
the set { 1, 2,..., n}. A well-known theorem of Roth [R] asserts that if P s N 
contains no 3-term arithmetic progression, then P has upper density zero. 
That is, for every E > 0, 1 P n [n] 1 < sn holds for all sufficiently large n. 

Brown and Buhler [BBl ] proved the following generalization of Roth’s 
result. 

* This work was performed while the authors were visiting AT&T Bell Laboratories. 
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THEOREM 1. For every E >O there exists n,=q,(E) with the following 
property. Suppose A is an abelian group of odd order, 1 Al > n,. Then every 
subset Bc A with IBI > EIAI contains three distinct elements x, y, z with 
x+ y=2z. 

For a finite set X, define (f):={FsX: (I;[ =k}. A family FE(~) is 
called a k-graph. It is called linear if (Fn Cl < 1 holds for all distinct 
F, G E F. Three distinct edges, F, G, H of a linear k-graph are said to form a 
triangle if the three intersections F n G, G n H, H n F are all non-empty 
and distinct. 

THEOREM 2 (Ruzsa-Szemeredi [RS] ). Suppose that F is a Zinear 
3-graph on n vertices which contains no triangle. Then IFI = o(n’). 

For a simple proof of Theorem 2, see [EFR]. Here we show that 
Theorem 1 follows easily from Theorem 2. 

2. PROOF OF THEOREM 1 

Suppose A is an abelian group of odd order and BE A contains no 
three distinct elements x, y, z with x + y = 22. Define X= A x [3] to be the 
3(Al-element set with general element (a, i), a E A, 1 6 i < 3. Now define a 
3-graph F as 

F:={{(a,l),(a+b,2),(a+26,3)}:a~A,b~B}. 

Clearly, IFI = 1 Al 1 BI. Also, F is linear since any two elements of an edge 
uniquely determine the edge. 

Suppose now to the contrary that F contains a triangle, say 

{ (ai, I), (ai + bi, 2), (ai + 2bi, 3)}, i = 1, 2, 3. 

By symmetry, we may assume that 

aI = a2, a,+b,=a,+b,, a2+2b2=a,+2b,. 

However, these equations imply 

2b,-2b,=a,-a,=a,-a,=b,-b,, 

i.e., 
2b, = b, + b,. 

By the choice of B, this implies b, = b2 = b3 and thus, a, = a2 = a3, a con- 
tradiction. Thus, F contains no triangle. 
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Hence, by Theorem 2, 

IFI = IAl 14 = 4lAl’h 

i.e., 

I4 =4lAl) as desired. 

Remark. The same proof can be used in the case when A is a d-dimen- 
sional affine space over GF(2’), t > 2. For the definition of edges in the 
proof, one replaces a + 2b by a + yb where y # 0, 1 is an arbitrary element 
of GF(2’). The conclusion then becomes: B contains three points on a line. 

3. SOME LOWER BOUNDS 

The most important special cases of Theorem 1 are when A is a cyclic 
group (corresponding to Roth’s theorem) and when A is an afline space 
A(d, q) of dimension d over GF(q). 

In both cases, stronger theorems are known. Szemeredi’s theorem [S] 
asserts that sets with positive upper density contain arithmetic progressions 
of arbitrary length, while a recent result of Furstenberg and Katznelson 
[FK] implies that for any E > 0 and any prime power q there exists do = 
do(t, q) so that the following is true: Every subset Bc A(d, q) with IBI > 
Eqd, d> do, contains all the points of some line in A(d, q). 

In view of [BB2] this implies the same statement if we replace lines by 
planes, spaces, etc. 

Let a,(d) denote the maximum of )BI where Bs A(d, q) contains no line. 
In the case of the integers, Behrend [B] showed that for every S > 0 and 
n > rr0(6) there exists B c [n] with I BI > rr’ -’ so that B contains no 3-term 
arithmetic progression. We do not know if the corresponding statement 
holds for afline spaces. 

PROBLEM. Is it true that for every 6 > 0, q 2 3 and d> d,(6, q), there 
exists B c A(d, q) which contains no line and satisfies I BI > (q - 8)‘. 

It is easy to construct such a B with I BI = (q - 1)“; simply take 

B= ((bl,..., b,): biEGF(q)\{O}, i= l,..., d}. 

To improve on this bound note that if x E GF(q) is fixed and {(by),..., b$)), 
i=l >..*, q} forms a line then the sets Fi = {j: bj’) = x} form a sunflower of 
size q, that is, F, n . . . nF,=FjnFj, holds for all ldj<j’Qq. 

Let f&d, r) denote the maximum of IFI where F E ( ‘:I), and F contains 
no sunflower of size q. 
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PROPOSITION. For all positive integrs n, r, d, one has 

a,(n) 2 f,(n, r)(q - 1)” ~ ’ and a& nd) 2 a&n Y’. (2) 

Proof Let F G ([;I) be a family without sunflowers of size q which 
satisfies IFI =fy(n, r). 

Fix an element XE GF(q). For b= (b,,..., b,)~A(n, q), define F(b) := 
{j: b]=x} and 

B:= (bEA(n, q): F(b)EF} 

Then B contains no line. To prove the second assertion, one simply notes 
that if B contains no line then 

B@ ... @BsA(n, q)@ ... @A(n,q)=A(dn, q) 

contains no line either. 

If we knew the value of f,(n, r), then probably we could get fairly good 
lower bounds on a,(n). 

Although this problem goes back to ErdGs and Rado [ER], very little is 
known about f&n, r). 

For q odd, n = 2q and r = 2, one can take two disjoint complete graphs 
on q vertices each. This shows f,(2q, 2) 2 q(q - 1). Actually one has 
equality, but we do not need it. Using (1) we obtain 

a,(2dq)a(q- 1)2dq 

Using the fact that there is a collection of 300 6-element subsets of [18] 
without a sunflower of size three, one obtains a3( 18) > 300. 1212 and thus 
a,(d) 2 (2.179)d for d> d,. 
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