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Let X = [l, n] be a finite set of cardinahty n and let 9 be a family of k-subsets 
of X. Suppose that any two members of $r intersect in at least t elements and 
for some given positive constant c, every element of X is contained in less than 
c 19 1 members of 9. How large 1 g 1 can be and which are the extremal 
families were problems posed by Erdos, Rothschild, and Szemeredi. In this paper 
we answer some of these questions for n > nO(k, c). One of the resuhs is the 
following: let t = 1, 3/7 c c < l/2. Then whenever g is an extremal family we 
can find a 7-3 Steiner system ZB such that 9 consists exactly of those k-subsets 
of X which contain some member of 3. 

I. INTRODUCTION 

Let n, t be positive integers. Let X = [l, TI] be the set of the first II positive 
integers. A family of subsets of X is called t-intersecting if any two members 
of it intersect in at least t elements. Erdos, Ko, and Rado [2] proved that if 9 
is a t-intersecting family of k-subsets of X and n > nO(k, t) then 1 9 1 < (;I:) 
with equality holding if and only if for some t-element subset Y of X we have 
9 = {FL X’ 1 1 F 1 = k, Y c F}. Hilton and Mimer [3] proved that if we 
exclude this family, i.e., if we make the additional assumption 1 fiFe9 F 1 < t, 
then we have for r = 1 

Equality holds in (1) if and only if for some x g X, D C X, 1 D 1 = k, 
x$D,andfl={P’CXi IFI =~,.xEF,F~D# a}u{D}. 

Let c be a real number, 0 < c < 1. Erdos, Rothschild, and Szemeredi 
(unpublished) have posed the following question. How large a l-intersecting 
family of k-subsets of X can be if no element of X is contained in more than 
c 1 9 1 members of 9. For the case c = 2/3, n > q,(k) they proved 
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INTERSECTING FAMILIES OF FINITE SETS 147 

TIey conjectured that for c = 3/5, n > n,,(k) 

and if 9 denotes the set of lines of a projective plane on [I, 71, then for 
c = 3/7 they suggested (PI > q,(k)) 

191 </2&a ={FCXi IFi = k, PEP,PCF]I. (4) 

In this paper we prove (2) and (4) in a stronger form, and obtain some 
analogous results for the case f > 2. The exact statement of the results is as 
follows. 

THEOREM I. Let S be a t-intersecting jiiily of k-element subsets of 
X = [I, n]. Sppose thut 1 flrE9 F 1 < t, and that 1 9 1 is maximal subject 
to these constraints. Then for n > n,,(k): 

(a) k>2t+lork=3,t= l.ThereexistDI,DzCX,DInDz=a, 
1 DI 1 = t, 1 Dz 1 = k - t + 1 such that 

g=FI={FCXi IFi =k,FnDz# @,DICF} 

u{FCXi IFi =k,FaDz,lFnDIi at- I}. 

(b) k < 2t + 1. There exists a (t + 2)-element subset D of Xsuch that 

P=Pz={FCXi lFl=k,iFnDl>t+l}. 

THEOREM 2. Let 9 be a t-intersecting famiIy consisting of k-subsets 
of X = [I, n]. Suppose that for some E, 0 < E < l/(t + 2) and for every ,j, 
I <,j < n we huve d(j) < (1 - E) 1 9 1. Then for n > nO(k, 2) 

with equality holding tf and only tffor some D c A’, 1 D 1 = t + 2 

F={FCXi IFI =kJFnD/ >t+l}. 

THEOREM 3. Let P be a l-intersecting family consisting of k-element 
subsets of X = [ 1, n]. Suppose that for some, 0 < 6 < l/14, and for every 
j, I < j < n d(j) < (i- - E) 1 9 1 hoZds. Suppose further that n > n,,(k, E) 
and that the cardinality of 9 is maximal with respect to these conditions. 
Then there exists a 7-element subset C of X, and 7 3-element subsets of it 
14 , & ,..., BJ which form a projective plane such that 

F={F’CXl jF[ =k, S, I <i<7, FZBi}. 
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THEOREM 4. Let fl be a family of l-intersecting k-subsets of X = [l, n]. 
Suppose that c, c are positive real constants, c > c. Suppose further that 
1 g 1 > c(~I:), n > nO(k, E). Then there exists an x E X such that 

THEOREM 5. Let 3 be a family of l-intersecting k-subsets of X = [1, n]. 
Suppose that 1 9 1 > (10 + l )(z:i) w h ere 6 < 1 is a positive constant. Then 
for n > nO(k, E) there exists an x E X such that 

d(x) > (; + O.Olej 19 I. 

THEOREM 6. Let F be a family of l-intersecting k-subsets of X = [l, n]. 
Suppose that for every j E X and for some constant c, 0 < 6 < 0.1 d(j) < 
(2 - E) 19 1 holds. Let the cardinality of s be maximal and suppose that 
n > n,,(k, E). Then there exists a 6-element subset Y of X and a collection 
SF = {Cl ,..., CIO} of 3-subsets of Y such that the Ci’s form a regular, l-inter- 
secting family and 9 = 9$,V = {FCXI IF\ = k, KG%, CCF}, 

THEOREM 7. Let P be a family of t-intersecting k-subsets of X = [l, n]. 
Let s be a natural integer and E a positive constant such that t > 2s(s - 1) 
and 6 < e(t, s) < l/t(t + 2s). Suppose that for every 1 <j < n d(j) < 
([(t + s)/(t + 2s)] + E) 1 9 1 holds. Suppose further that the cardinality of 9 
is maximal and n > n,,(k, s, t). Then for some (t + 2s)-element subset Z of X 
we have 

F={FCXl IFI =k, /F’nZi >t+s}. 

2. SOME DEFINITIONS AND LEMMAS 

A family of sets 99 = {BI ,..., Bd} is called a A-system of cardinality d 
if for D = BI n Bs n ... n Bd the sets BI - D,..., Bd - D are pairwise 
disjoint. Erdos and Rado [2] proved the existence of a function @(k, d) 
such that any family consisting of @(k, d) or more k-element sets contains d 
members forming a d-system of cardinality d. 

Let 9 be a t-intersecting family of k-subsets of X = [I, n]. Let us set: 
So) = {G C X 1 3F 6 9, G C F, VF’ E 9, 1 G n F’ 1 > t}. Obviously we have 
s c %F(t). 

Let us define the base 37 of 9 in the following way. 

c%? = {B E 9o’ 1 JF E F(i), F C B}. 
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Let us decompose 3? according to the cardinahty of its members, i.e., 
letusset~=~~~~~~~u~~~u~~~,l~<l~<~~~~l~whereforl <j<r 
4 + aLj consits of &-element sets. It follows from the definitions t < 11, 
Jr < k. 

LEMMA I. For 1 <j < r SYtj does not contain k - t + 2 d@erent members 
B 1 ,-.-, Bkpi+z forming a A-system of cardinality k - t + 2. 

ProoJ Suppose that the assertion is not true; i.e., we can find different 
sets Bi E Bzl , i = l,..., k - t + 2 such that setting B1 n Bz = D we have 
Bil n Biz = D for 1 < i1 < & < k - t + 2. As D C B1 E &?, it follows 
D $ Ptt). We obtain the desired contradiction if we show 1 F n D / > t for 
every FE F. Hence we may suppose that for some F G Zi= 1 F n D 1 < t 
holds.Let us set ]FnD] =t’.As for I <i<k-t+21FnBil >t, 
] F n (Bi - D)/ > t - t’. But the sets Bi - D are pairwise disjoint, so we 
obtain 1 F 1 > t’ + (k - t + 2)(t - t’) > k for t’ < t, a contradiction which 
proves the lemma. ’ 

Let us define 

LEMMA 2. If B E 93i1 and F E 9’=* then 1 B n F 1 2 t. 

ProoJ Let us suppose that on the contrary 1 B n F ] < t - 1 holds for 
some B E 3?i1 , FE .F*, By the definition of s* it follows (G - B) n F # @ 
for every G E .F, B C G; i.e., 3 = {G - B 1 B C G, GE F} is a family of 
(k - Q-sets of the (n - Q-element set X - B, each of them intersecting F, 
I F 1 < k. Hence l{F c 9 1 B C F}[ = 1 ~3 1 < k(E$:$ a contradiction which 
proves the lemma. 

BY Lemma 1 I gtj I .c 4k-f+zUjI < &+dW. 
By the definition of 3? for every FE g there exists B IZ 9 such that B c F. 

So the following holds: 

LEMMA ?. Let 9 be a t-intersecting family consisting of ,k-.sz&set~ of 
X = [l, TZ]. Let @ = St1 U 
Sfll -=c **- 

*a* u gir be the decomposition of the base of 
< I7 , and 9Yzi consists merely of &element sets. Then 

or in particular 

(5) 

where C~ , ckf are constants depending only an k. 



150 PETER FRANKL 

We need one more lemma. 

LEMMA 4. Suppose that for some positive integer b the base .g of the 
t-intersecting family cF has a member B of cardinality b. Then for some x E B 
the degree of x in 9, Le., the number of members of F containing x is at ieast 
WI I 91. 

Proof. For y 6 X let d(y) denote the degree of y in 9. As for FE 9 
jFnB1 at,wehave 

Hence for at least one x g B d(x) > t 1 9 l/l S9 1 = (t/b) 1 9r 1 holds. 
Q.E.D. 

3. THE PROOF OF THEOREMS 1 AND 2 

We start with the proof of Theorem 1. 
Let S? = 9rI u ... u SYzV be the base of g. We assert ZI = t + I. If 

/I = t holded then for B E S?l, B C F would follow for every FE Sr, yielding 
in FE9 F 1 > 1 B 1 = t, a contradiction. 

As both FI and &! satisfy the conditions, the maximality of 1 9 1 and (5) 
imply ZI < t + I. Hence lI = t + I. 

Now 9?il = 9;+l is a t-intersecting family. Again the maximality of 
1 9 1 and (5) imply 1 ai+I 1 > t + 2 > 3. 

Let Bl, Bz, Bs be three different elements of z~Y;+~ . We distinguish between 
two cases. 

a. Bl n Bz = Bz n Bs 

Let us set Dl = Bl n Bz . Then by the definition of 9? 1 Dl 1 > t. As 
Bl#Bz, lBll = lBzj = t+l, it follows IDI1 =t. Now we assert 
Dl C B for every B E L47i+l . If it is not true then we can find an x E Dl and 
a B E L?& such that x $ B. But 1 Bi n B 1 > t implies Bi n B = Bi - x for 
i = 1,2, 3. Hence we obtain B Zl ((Bl u Bz u B8) - x) i.e., 1 B 1 > t + 2, a 
contradiction. 

Now if SYi+I = {Bl ,..., B8}, then we can find s different elements x1 ,..., x,~ 
of X - Dl such that Bi = Dl u {xi} for i = l,..., s. As 1 9 [ > 1 F, 1, 
Lemma3yieldss>k-t+l.Ontheotherhands>k-t+2would 
contradict Lemma I, whence s = k - t + 1. 

Let F be a k-element subset of A, not-containing Dl but intersecting each 
of the B6’s in at least t elements. Let x be an element of Dl - F. Then 1 Bd 1 = 
t + I and 1 Bi n F > t imply F n Bd = Bi - x for i = l,..., s = t-k + 1. 
As 1 F 1 = k, it follows F = (Dl - x) u {xl ,..., x*-~+~}. 

Let us set Dz = {xl ,..., x+~+~ }. Then the maximality of S implies F = PI . 
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b. BI n Bz # Bz n Bs 

Let us set D = BI u Bz. 1 BI 1 = 1 Bz 1 = t + 1 and 1 BI n Bz 1 = t 
imply 1 D 1 = t + 2. Let us define C = BI n Bz, yI = BI - C, yz = 
Bz - C. As 1 Bz n Bs I= t, the condition BI n Bz # Bz n Bz implies that %? q 
B~,i.e.,~B~nC~~t-l.Using~B~nB~~~tfor~=l,2weobtainlB~nC~= 
t-l,{yI,yz}LBz. No~settingy~=C-BSitfollowsBS=D-yS. 
-%+I = VA ,..., Bs}. 1 9 1 > 1 ST2 1 implies by (5) s 2 t + 2. Let 4 < i < S. 
As 1 Bi n Bj 1 > t for j = 1,2, 3, BI n Bz # Bz n Bs implies 1 Bi n D 1 > 
t + 1 i.e., Bi CD. As s > t + 2 it follows Bi+I = {B C D 1 1 B 1 = t + 1. 
Now the maximality of ?T implies 9 = ST2 . 

For k = t + 1 F1 = 9Tz . A simple counting shows that for k > 2t + 1 
J Fr 1 > & 1, while for k < 2t + 1 1 <Fr 1 < 1 Fz 1 with equality holding if 
andonlyifk = 3, t = 1. Q.E.D. 

Now we prove Theorem 2. We proceed as in the proof of Theorem 1. 
Let9 = gz, u *.* u S?tV be the base of 9. Then we can see as in the case of 
Theorem 1 that for an 9 of maximal cardinality /I = t + 1, 1 S9t+1 1 2 t + 2. 
We choose again three djfferent elements BI , Bs, Ba of @i+1 and we distin- 
guish between the same two cases a and b. In the case a, we have BI n Bz = 
Bz n Bs = DI C B for every B E &+r . In view of Lemma 3 l{F G F 1 
0 IZ %+I , B G F}/ < C&I?). Hence for i E DI we have 

for n > q,(k, E), a contradiction. 
In the case b, i.e., BI n Bs # Bz n Bz, we prove, as in the case of Theorem 

1, B C (BI u BJ = D for every B E S?i+i . Then 1 S?i+1 1 > t + 2 implies 
%+I = {B C D 1 1 B 1 = t + 1. Now for any set G such that \ G n D 1 < t 
wecanfindBG9St+1satisfyinglGnBl<t-l,yielding\FnD\ >t+l 
for any FE 9. Hence 9 !Z Fz . Q.E.D. 

4. THE PROOF OF THEOREM 3 

Let 93 = L29t1 u 0.. u S?ir be the base of 9. By Lemma 3 the maximality 
of 1 F 1 implies l1 < 3. On the other hand by Lemma 4 Z1 > 3, whence 
Zl = 3. Let us set Bs’ = {BI ,..., Bs}. In view of (5) ,s > 7. 

Let us define for i = l,..., s 
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Then the cardinality of 9 can be expressed as follows 

Now the maximality of 1 ZF 1 implies for n > no(k) for example 

(7) 

On the other hand the definition of C~ implies C~ < I. Now we need a lemma. 

LEMMA 5. Let Bl ,..., B8 be a l-intersecting family of 3-sets. Let us 
suppose that to each of the sets a real number C~ is associated in such a way 
that 

0 < Ci < 1, i ci > 69 9. 
i=l 

Then we can$nd an element x of some of the sets in such a way that either 

or s = 7, and the Bi’s are the lines of a 7-3 projective plane. 

ProojI Let us suppose that cl is the maximal (one of the maximals) 
among the c~‘s. Let us consider two cases separately. 

a. For 2 < i < s 1 Bl n B< 1 = I 

We may suppose Bl = {I, 2, 3}. Let Cl ,..., Cu ; Dl ,..., DW ; El ,..., EW be 
the collection of the Bd’s i = 2,..., s which intersect Bl in 1, 2, 3, respectively. 
By symmetry reasons we may suppose u > u 2 w. By (9) u + u + w = s - 
I > 6. Let us first suppose u = a = w = 2. If 1 C1 n Cz 1 = [ Dl n DS 1 = 
1 ElnEg] = 1, then we may suppose C1 ={1,4,5}, Cz ={1,6,7}. As 
the B*‘s form a l-intersecting family we may assume Dl = {2,4, 61, Dz = 
{2, 5, 7}. Then it follows {El, Ez} = {{3, 4, 7}, {3, 5, 6}] i.e., the Bi’s form 
a 7-3 projective plane. 

Now we may assume that for example 1 Cl n Cz 1 = 2, or more precisely 
Cl = { 1,4,5], C2 = {l, 4,6>. If Dl does not contain 4, then by the inter- 
section property we obtain Dl = {2, 5, 61, and consequently DS being dif- 
ferent to Dl has to contain 4. The same argument yields that at least one of 
the sets El, Ez contains 4. Hence d(4) > 4. NOW using (8) and s = 7 we 
conclude 
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Hence we may assume u > 3. If v + w < 3, then we conclude 

By way of contradiction we obtain v + w > 4. If w < I, then the maximality 
of c1 implies 

Bj#(l.Z,3} 
3EBi 

Consequently, either for x = 1 or for x = 2 (10) holds. Hence w > 2. 
We assert 1 & n Ez 1 = 2. If it is not true then we may assume El = {3,4, 5}, 
Ez = {3,6,7}. As C1, Cz, C3 each intersect both El and Ez, by symmetry 
reasons we may suppose Cl = { 1,4, 6}, C2 = { 1, 5, 7}, C3 = { 1,4,7}. Now 
Dl and Dz both intersect El , Ez , C1 , CS, but the only such 3-set is {2,4, 7}, 
a contradiction. We may assume El = {3,4, 5}, Ez = {3,4,6}. Then at 
most one of the sets Ci , namely { 1, 5, 6}, and at most one of the sets Di , 
namely {2, 5,6} does not contain 4 which yields that (10) holds for x = 4. 

b. There exist 2 < j < s, such that [ Bl n Bj [ = 2 

By symmetry reasons we may assume j = 2, Bl = {I, 2,3], Bz = { 1,2,4}. 
If there is one more set, say B3, among the Bi’s which contains {I, 2}, then 
at most one of them, namely {3, 4} u (B3 - { 1, 2}) is disjoint to {1, 2}. 
Hence we obtain, using the maximality of c1 

Ix 
(1,2)nBj= 0 

showing that for either x = 1 or x = 2 (10) holds. The same argument yields 
that there are at least 2 sets among the Bi’S which are disjoint to {I, 21. 
Moreover if B3 ,..., Bu are these sets then 

i3 cj > Cl + c2 * (111 

By symmetry reasons, we may suppose that for 3 < j < u Bj = {3,4,,j + 2} 
If u > 5 then the l-intersecting property yield that the only Bi which can 
eventually be disjoint to {3,4} is {5,6, 7}. Now the maximality of c1 and (1 I) 
show that (10) holds for either x = 3 or x = 4. Now we may suppose u = 4. 
Let BG ,..., BQ be the sets among the Bd’s which are disjoint to {3, 4}. Then 
we have 
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Supposing that (IO) does not hold neither for x = 3 nor for x = 4 from (12) 
we obtain 

is cj > c3 + c4 = !3 Cj > Cl + C2 . (13) 

In particular by the maximality of cr ZI > 6. For IIs and B6 there are no 
other possibilities than {B5, B6} = {{5, 6, l}, {5, 6, 2}}. Hence 0 = 6 and the 
only &‘s disjoint to {5, 6} are & and B2 . Using (13) we obtain 

& et + 6;, ci = C6 + C6 + i cj - Cl - c2 > i ci . (14) 
8 , 3=1 j=l 

Equation (14) shows that for either x = 5 or x = 6 (10) holds which finishes 
the proof of the lemma. 

Now we apply the lemma to the proof of Theorem 3. 
By the assumption d(i) < (+ - 6) 1 9r 1 for 1 < i < n we obtain that the 

first alternative in Lemma 5 cannot hold. Hence s = 7 and Bl .,.., B, form 
a projective plane. By the definition of the base each element F of 3 intersects 
each of the sets Bi i = l,..., 7. As the 7-3 projective plane is 3-chromatic 
for each F G 9r there is a j, 1 < j < 7, such that Bj C F. Now the maximality 
of 9 yields 

F={FCXl IFI =k,Yj,l <,j<7,BjLF}. Q.E.D. 

5. THE PROOF OF THEOREM 4 AND SOME REMARKS 

Let a = glI u *a* u atr be the base of 9. As in the proof of Theorem 3 
we can prove /I = 3. Let s3 = {Bl ,..., Bs}. Let us define again 

Then for n > n,,(k) we have X:=1 C~ > c/2. 
Let cl be the maximal one among the c~‘s. Let us suppose first that 3 < 7. 

We may suppose Bl = {l, 2, 3}, and that 
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From (16) it follows 

whenever n > n,-,(k, E). Now let us suppose 3 2 8. Then by a result of Deza [ 1] 
we cannot have 1 Bi n Bj 1 = 1 for all the pairs 1 < i < .j < A Hence there 
are two sets, say Bil, Bi2, such that 1 Bil n Bis 1 = 2 and whenever.for a pair 
1 <i<j<s iBinBjl =2, then cil+c<Z>c&cj. We may assume 
Bfl = {I, 2, 3), Bis = {l, 2, 41. Let Bi7 ,..., Biu be the collection of the Bi’s 
which are disjoint to { 1,2}. By the l-intersection property each of these sets 
contains 3 and 4. Hence we may assume Bi = {3,4, ZI + 21 for ZJ = 3 ,..., u. 
If u > 5, then there is no 3-element set whichis disjoint to {3, 4} and intersects 
each of the sets Biu u = l,..., 5. Indeed, it should contain 5, 6, and 7 and it 
should meet { 1,2} as well. Hence in this case for n > PZ,,(/C, C) either 3 or 4 
is contained in at least 4 1 F 1 - O((z:i)) > (+ - 6) 1 F 1 members of F, a 
contradiction. In the case ZA = 4 the special choice of il , i2 implies 

a contradiction. Using the same argument we may assume ~4 = 3, 
Cja > Cjl + Cj * 
\BisnBjl’l. 

Hence by the definition of il , i2 for 1 < j < s, j # is 

If for every 1 <j < 3 Bj n { 1, 5} # GJ holds then we deduce d( 1) + d(5) > 
Xi=1 &!I;) = 1 9 1 + O((i:i)) > 2(+ - C) 1 9 1, a contradiction. Hence 
there exists a set, say Bib (and using the same argument an other one Bib) 
which is disjoint to {I, 5} ({2, 5], respectively). Using the l-intersection 
property of 99a we may assume Bid = {2, 3, 6}. Let us set Y = Bl u **- u Bs . 
If 1 Y 1 < 7 then we obtain xVGy &J) > & 1 Bi 1 Ci (;I:) = 3 1 9 1 + 
O((E:i)), yielding that for n > q,(k, C) for at least one JJ E Y d(y) > (3 - C) 
1 9 1 holds. So we may assume 1 Y 1 > 8. 

For BiE there are 3 essentially different possibilities: {I, 3, 7}, {1,4, 6}, 
{l, 3, 6}. However in the latter cases 1 Y 1 > 8 implies that there is a set, 
say Bi8 which is not contained in [l, 61. So we may assume 7 E Bi8 . We know 
] Bie n {3,4, 5]] = I. If 5 E Bio then Bj8 *does not contain either 3 or 4, but it 
intersects {2, 3, 6} and {l, 2, 3} nontrivially. Hence Bte = 12, 5, 7}, but this 
set is disjoint to both {I, 4, 6} and {l, 3, 6}, a contradiction. If Bib = { 1, 3, 6} 
then 4 E Bie yields essentially the same contradiction. Hence in this case 
3 c Bie , and by symmetry reasons we may assume Bie = { 1, 3, 7}. If Bie = 
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{I, 4,6}, then we have symmetry in 3 and 4. Hence we may assume 3 e Bia . 
Then Bi8 n Bi5 =# ,GJ and Bi4 n { 1,2,4} # ,@ imply Bi6 = {I, 3, 71. So we 
have proved that we may suppose Bi5 = {l, 3,7). As 1 Y 1 > 8, there is a 
member, say Bi6 of gB which is not contained in [l, 71. We may suppose 
8 G Bi6 . From 1 BfG n {3,4, 511 = 1, Bi6 n Bij # iz for j = 4, 5 it follows 
3 E Bi6 . AS {I, 2,41 n Bf8 # @ it follows that the third element of Bi8 is 
either 1 or 2. By symmetry reasons we may assume Bi6 = { 1, 3, 8}. If a set 
B 6 gs is disjoint to {I, 3} then it should be {2, 7, 8} as it has to intersect 
{l, 3,2}, { 1, 3, 7}, and {I, 3, 8}. But {2, 7, 8) n {3,4, 5} # @, a contradiction. 
Hence for every B E ga either I or 3 is contained in B, yielding 

for n > q,(k, e) i.e., either 1 or 3 has degree greater than ($ - e) ] .9 1. 
Q.E.D. 

Remark 1. The proof of Theorem 4 seems to foreshadow how complicated 
it will be to solve the same problem for the case 1 F 1 > c(i:z), u > 4 is 
given. The case u = 3 suggests that the bound given by the projective plane 
is optimal, i.e., there is always a point of degree > ([~/(a~ - u + I)] - e) 1 9 1 
for any positive l and n > n,,(k, 6). 

In the case u = 2 an easy modification of the argument of the proof of 
Theorem 2 yields that the optimal bound is 213. 

Remark 2. Erdos conjectured recently that if there exists a regular 
intersecting o-graph on m points then m < a2 - v + 1. If this conjecture 
is not true then there exists a family 9 = {D1 ,..., DJ of l-intersecting 
u-sets, which form a regular o-graph on m > u2 - ZJ + 2. Let us define 
fork>o9g={FCX\ IJ’j =k,~~~~,~~~}.Thenl~l~(~~~)but 
for any i E X d(i) < ([a/(~~ - 0 + 2)] + O(I) 1 9r 1. Thus if the bound given 
using the projective plane is optimal then the conjecture of ErdGs is true. 
So Theorem 4 establishes it for u = 3. 

6. THE PROOF OF THEOREMS 5 AND 6 

First we prove a lemma. 

LEMMA 6. Let A? = {BI ,..., B8} be a l-intersecting family of 3-subsets 
of [1, n]. Suppose thatfor 1 < i < s there is a constant C~ , 0 < C~ < I associated 
with the set Bi . Suppose further that for some 0 < 8 < I 

zl ci > lo + 8* (17) 
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Then there exists a j, 1 < j < n such that 

Proox It follows from (17) that s > 11. 
If for 1 < i1 < iz < s 1 Bil n Btz 1 = 1 then in view of a result of Deza [1] 

s < 7. Hence there exist two sets, say B, B’ e a such that 1 B n B’ 1 = 2. 
That is to say there exist 2-element subsets of A’ which are contained in more 
than one of the B{s. Let C be a 2-element set which is contained in a maximal 
number of the B<‘s. We may assume C = [l, 21, and that %Z = {{I, 2, 3}, 
{I, L4~~..., {I, 2, 41 are the Bi’S containing C. If B E g and B n C = .@ 
then the intersection property of &? implies [3, U] G B. Let g = {& ,..., DU} 
be the collection of the Bi’s disjoint to C. 

Let us suppose first 1 g 1 < 1. 
Let us divide the members of @ - (% u 9) into two families &I, 8’Z 

according to whether they intersect C in {l} or in {2}. By symmetry reasons 
we may assume 1 &I 1 > 1 G?~ 1. Suppose 1 G?~ 1 > 4. Let us consider first the 
case when there are two sets, say E, E’ E gZ such that 1 E n E’ 1 = 1. Let 
E = {2, e1 , e*J, E’ = {2, el’, eZ’} where er , eZ , er’ eZ’ are four different 
elements of [3, n]. The l-intersection property and 1 &1 1 > 1 &Z 1 > 4 imply 
gl = W, q, -c’L iI, 6, eZ’}, {l, eZ , el’}, {l, eZ , eZ’}}. But now we cannot 
find any 3-element set different from E, E’, containing 2, and nontrivially 
intersecting each member of &I . However this contradicts 1 G?~ 1 > 4. Now 
wemayassumelEnE’l~2forE,E’~~~.ThenthesetsE-2,E~~~ 
form a l-intersecting family of 2-element sets. Hence 1 &‘Z 1 2 4 implies that 
there exists an element r which is common to each of the sets E - 2, E F cF?~. 
Now 1 &I 1 > 4 and the l-intersection property entail that r belongs to every 
member of &I as well. Hence we have proved that every member of 98 - 9 
intersects {I, 2, r} in at least two points. If D E 9 then the l-intersection 
property implies r E D as otherwise D should contain all the different elements 
E - {2, r}, E G gZ, but 1 &Z 1 > 1 D 1. So we obtain 

Consequently for either j = 1 or j = 2 or j = r 

Suppose now 1 J?Z 1 < 3. Then every member of 2 - (gZ u 9) contains 1. 
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As 1 &z u 9 / < 4, we obtain 

i.e., (18) holds forj = 1. 
Now we must consider the case 1 9 1 2 2. As we proved [3, U] c D for 

every D e 9, this case is possible only for u = 4. Then the special choice of C 
implies 19 1 = 2. We may assume 9 = {{3, 4, 5}, {3, 4, 6]}. Let &’ = 
WI ,..., Em} be the collection of Bi’S disjoint to [3, 41. As each of the Ej’s 
contains 5 and 6 it follows from the maximal choice of C that w < 2. If w < 1 
then replacing [l, 21 by [3,4] we come back to the preceeding case 1 9 1 < 1. 
If w = 2 then the l-intersection property yields {,!ZI, E2) = {{5, 6, I), 
{5, 6,2}}. Now each of the remaining members of 9 has to intersect { 1, 21, 
{3,4), and {5, 61 . 

Thus being a 3-element set it is contained in [I, 61. But then the Erdos- 
Ko-Rado theorem yields 1 G’ 1 < (iz;) = 10 < 11, a contradiction. Q.E.D. 

Now we apply the lemma to the proof of the theorem. Let a’ = 
q u .*. u 9?l be the base of 9. Then as in the preceeding sections, 1 9 1 > 
(10 + c)(E:i) [mplies for n > &k, c) II = 3. We apply the lemma for 
S9 = gS and 

Setting Zi = e/2 the validity of (17) follows for n > nO(k, e). Now Lemma 6 
yields that there exists a,j e [l, rr] such that 

for fl > FI&, 6). 

Now we turn to the proof of Theorem 6. 

Q.E.D. 

Let us recall the proof of Lemma 6. Let us suppose that instead of 8 > 0 
we assume only 8 > -1. ft still ensures us of s > 10 but not of s > 11. 
However the fact 3 > 11 was used only at the very end of the proof. If we 
assume only s 2 10 then we have to deal yet with the case .GY consists of 10 
subsets of [l, 61. If there is an iG [l, 61 which is contained in at least 6, i.e., 
not contained in at most 4 members of 99 then for this i we have 
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Otherwise every element of [l, 61 has degree 5, i.e., B is a regular l-inter- 
secting family. Hence the proof of Lemma 6 yields: 

LEMMA 7. Let A? = {BI ,..., Bs} be a l-intersecting family of 3-subsets of 
[l, n]. Suppose that for 1 < i < .s there is a constant associated with the set Bi 
Suppose further that for some 8, - 1 < 8 < + 1, 

sl ci > lo + tj. (191 

Then either there exists a j E [ 1, n] for which (18) holds or the Bi’s form a 
regular, l-intersecting family of cardinaIity 10 on some 6-element subset 
YofX. 

Now we use Lemma 7 to prove Theorem 6. 
From the maximality of 1 % 1 it follows again that if # = BII u --* u S?lr 

is the usual decomposition of the base of 9 then 1r = 3. Moreover if we 
define 

then it follows ~~=I C~ > 10 - e. Setting 8 = -C it follows from Lemma 7 
that either we have for some j E X 

a contradiction or 1 gs 1 = 10 and for some 6-subset Y of X the members 
of .c%+~ form a l-intersecting, regnlar 3-graph on it. 

Now we prove that every subset of X intersecting nontrivially each member 
of as’ contains a member of as’. Obviously it suffices to prove that every 
4-element subset, .G of Y contains a member of a8’. As (i) = 2 * IO. C& 
contains exactly one of each 3-subset of Y and its complement. So if G does 
not contain any member of azf, then each one of the four 3-subsets of Y 
containing Y-G belongs to as’. From the l-intersection property it follows 
that the remaining members of PJ&’ intersect Y-G nontriviahy. Hence at 
least one of the two elements of Y-G is contained in at least 7 members of @at 
contradicting the regnlarity of it. Setting % = gs’ it follows now 9 C sV,* . 

Q.E.D. 
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7. THE PROOF OF THEOREM 7 

Let S? = S?+ u **a u gzr be the usual decomposition of the base on F. 
From the maximality of 1 9 1 it follows ZI < t + s. On the other hand 
Lemma 4 yields ZI > t + s, i.e., ZI = t + s. Let S?i+S = {BI ,.,., Bg}. The 
maximality of 1 9 1 implies q > (iz:S). Let us define 

We need a lemma. 

LEMMA 8. Let Bl ,..., BQ be a t-intersecting family of (t + s)-element 
subsets of A’ = [l, n]. Suppose q > (tz$. Then either there exists a (t + i)- 
element subset Y of X for some 0 < i < s, satisfying 1 B? f~ Y 1 > t + i - 
s + 1 for j = l,..., q, or there exists a (t + 2s)-set 2 such that {Bl ,..., Bg} = 
{BC.ZiB= t+s]. 

ProojI Let us consider the intersections Bl n Bj j = l,..., q. From the 
binomal identity 

it follows that either for some (t + Q-subset Y of Bl , 0 < i < s 

or q = ($?) and for every i, 0 < i < s, and every (t + i)-subset of Bl we 
have equality in (20). Let us consider the first possibility. We assert 
1 Bj n Y \ > t + i - s + I for 1 <j < q. Suppose that it is not true, i.e., 
for some 1 <j < q 1 Bi n Y 1 < t + i - s. The t-intersection property 
implies Bj n Y = t + i - s, and Bj 2 (B? - Y) for r = I and for the 
values of r satisfying Br n Bl = Y. Now (20) implies that for these values of r 
1 uv(BT - Y)l > s yielding 1 Bj 1 > t + i - s + (s - i) + s = t + s, a 
contradiction. 

From this argument follows that if the second possibility holds then not 
only we have equality in (20) for every 0 < i < s and every (t + i)-subset 
Y of Bl but there exists an s-element subset .Z,, of A’ - Bl such that SSr, = 
{B C X 1 B n Bl = Y, (B - Y) C Zy , 1 B 1 = t + s}. The statement of the 
lemma would follow if we proved Zy does not depend on Y, i.e., for Y, 
Y’ c Bl, 1 Y 1 = t + i, 1 Y’ 1 = t + i’ Zy = Zy, . If it is not true then we 
may assume that it does not hold for a pair Y, Y’ satisfying the additional 
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requirements Y u Y’ = B1, s > i. + i’. Now let us choose Be S& and 
B' E 9r+ in such a way that j(B - Y) n (B' - Y’)i < s - i - i’-it is 
possible as Zr # &s and s > i + i’. But then we have 1 B n B’ 1 < 
(t + i + i’ - S) + (S - i - i’) = t, a contradiction proving the lemma. 

Now we apply the lemma to the proof of the theorem. If the first possibility 
holds then it follows that for some element y E Y 

as t > 24~ - I), and n > n,,(k, S, t), a contradiction proving the theorem 
for this case. 

In the second case we have for some (t + 2s)-element subset 2 of X 
La t+s={BCZl IBI =t+d, and consequently [ F n Z 1 2 t + s for 
every FE 9 follows from the t-intersection property. 

Nowthemaximalityof 191 yieldsS={FCXi IFI =k, lFnZ[ 2 
t + $1. Q.E.D. 
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