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Let X = [1, n] be a finite set of cardinality n and let & be a family of k-subsets
of X. Suppose that any two members of F intersect in at least ¢ elements and
for some given positive constant ¢, every element of X is contained in less than
¢ | Z | members of #. How large | & | can be and which are the extremal
families were problems posed by Erdos, Rothschild, and Szemerédi. In this paper
we answer some of these questions for n > ny(k, ¢). One of the results is the
following: let 7 = 1, 3/7 < ¢ < 1/2. Then whenever # is an extremal family we
can find a 7-3 Steiner system & such that % consists exactly of those k-subsets
of X which contain some member of #.

1. INTRODUCTION

Let n, ¢ be positive integers. Let X = [1, n] be the set of the first # positive
integers. A family of subsets of X is called t-intersecting if any two members
of it intersect in at least  elements. Erdss, Ko, and Rado [2] proved that if &
is a t-intersecting family of k-subsets of X and n > ny(k, t) then | & | < (374
with equality holding if and only if for some z-element subset ¥ of X we have
F ={FCX| |F|=k, YCF}. Hilton and Milner [3] proved that if we
exclude this family, i.e., if we make the additional assumption | (res F| <1,
then we have for t = 1

R R (R B »

Equality holds in (1) if and only if for some xe X, DCX, |D| =k,
x¢D,and F ={FCX| |F| =k, xeF,FNnD +# @} U{D}.

Let ¢ be a real number, 0 < ¢ < 1. Erdds, Rothschild, and Szemerédi
{unpublished) have posed the following question. How large a 1-intersecting
family of k-subsets of X can be if no element of X is contained in more than
¢ | F | members of &. For the case ¢ = 2/3, n > ny(k) they proved

| F| < | Fy = {FCX| |Fl =k |FN[L3] =2 v}
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INTERSECTING FAMILIES OF FINITE SETS 147

They conjectured that for ¢ = 3/5, n > ny(k)
| F | <|Fs={FCX| |F| =k |Fn[L 5] =3}, 3)

and if 2 denotes the set of lines of a projective plane on [1, 7], then for
¢ = 3/7 they suggested (n > ny(k))

| F | < | Fp ={FCX| |F|=k, 3P 2, PCF}|. 4)

In this paper we prove (2) and (4) in a stronger form, and obtain some
analogous results for the case ¢ >> 2. The exact statement of the results is as
follows.

THEOREM 1. Let % be a t-intersecting family of k-element subsets of
X = [1, n]. Suppose that | (\rez F| < t, and that | F | is maximal subject
to these constraints. Then for n > ny(k):

Q) k>2t+lork =3,t= 1 Thereexist D, ,D,CX,D, N Dy, =0,
| Dy| =1t,|Dy| = k —t + 1 such that
F =H%H={FCX||F|=k,FNnD,+# 3, D, CF}
U{FCX| |F| =k, F2Dy,|FNDy| =1t — I}

(b) k < 2t + 1. There exists a (t + 2)-element subset D of X such that
F =F={FCX| |F|=k |FND|>t+ Il
THEOREM 2. Let & be a t-intersecting family consisting of k-subsets

of X = [1, n]. Suppose that for some e, 0 < e < 1/(t + 2) and for every j,
1 <j<nwehaved(j) <( —€) | F |. Then for n > nyk, 2)

Fl<a+( T (T

with equality holding if and only if for some DC X, | D| =1+ 2

F ={FCX||F| =k |FND| >t+ 1.

THEOREM 3. Let F be a l-intersecting family consisting of k-element
subsets of X = [1, n]. Suppose that for some, 0 < € < 1/14, and for every
o 1 <j<nd(j)<(§ — ¢ | F| holds. Suppose further that n > ny(k, €)
and that the cardinality of ¥ is maximal with respect to these conditions.
Then there exists a 7-element subset C of X, and 7 3-element subsets of it
/By, Bs ..., Byf which form a projective plane such that

F ={FCX||F|=k, 3, 1 <i<7, F2B.
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THEOREM 4. Let F be a family of 1-intersecting k-subsets of X = [1, n].
Suppose that c, e are positive real constants, ¢ > €. Suppose further that
| F | > c(}73), n > ny(k, €). Then there exists an x € X such that

d(x)}(%—e)lé‘"l.

THEOREM 5. Let # be a family of l-intersecting k-subsets of X = [, n).
Suppose that | F | > (10 + €)(+=3) where ¢ <1 is a positive constant. Then
Jfor n > ny(k, €) there exists an x € X such that

d(x) > (% + 0.016) | Z|.

THEOREM 6. Let F be a family of 1-intersecting k-subsets of X = [1, n.
Suppose that for every je X and for some constant ¢, 0 << e < 0.1 d(j) <
(2 — ¢) | F | holds. Let the cardinality of # be maximal and suppose that
n > ny(k, €). Then there exists a 6-element subset Y of X and a collection
E = {C} youes Cyg} 0of 3-subsets of Y such that the C;'s form a regular, 1-inter-
secting family and F = Fv o ={FCX| |F| =k, 3Ce¥, CCF},

THEOREM 7. Let & be a family of t-intersecting k-subsets of X = [1, n].
Let s be a natural integer and € a positive constant such that t > 2s(s — 1)
and € < €(t, s) << 1/t(t + 25). Suppose that for every 1 <j<n d(j) <
({(t + s)/(t + 28)] + €) | F | holds. Suppose further that the cardinality of F
is maximal and n > ny(k, s, t). Then for some (t -+ 2s)-element subset Z of X
we have

F ={FCX||F|l=k, |[FNZ|>t+sh.

2. SOME DEFINITIONS AND LEMMAS

A family of sets & = {By,..., Bg} is called a d-system of cardinality d
if for D = BN By N - N B, the sets B, — D,..., B; — D are pairwise
disjoint. Erd6és and Rado [2] proved the existence of a function ®(k, d)
such that any family consisting of @(k, d) or more k-element sets contains d
members forming a A-system of cardinality d.

Let & be a t-intersecting family of k-subsets of X = [1, n]. Let us set:
FO={GCX|IFeF,GCF,YFe#,|GNF'| =t} Obviously we have
F g F (t)'

Let us define the base # of # in the following way.

B ={Be FW|IFeFW FCB).
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Let us decompose # according to the cardinality of its members, i.e.,
let us set # == Qllu%’lzu U'%r’ll <l <-- <l whereforl <j<r
¢ # %, consits of J-element sets. It follows from the definitions ¢ <4,
Il <k

LemMa 1. Forl <j < r %, doesnot containk — t + 2 different members
By ..., By 4.5 forming a A-system of cardinality k — ¢t 4 2.

Proof. Suppose that the assertion is not true; i.e., we can find different
sets B,€ %, , i =1,.,k — 1+ 2 such that setting B, N B, = D we have
B r\B —Dforl < B <ip <k —1t+ 2 As DCB e, it follows
D e}é FW. We obtain the desired contradiction if we show | Fn D | >t for
every Fe #. Hence we may suppose that for some FeF |[FND| <t
holds. Let us set [FND| =t Asfor I <i<k—t+2|FNnB;|>1t,
|FN(B; — D)] =t —t'. But the sets B, — D are pairwise disjoint, so we
obtain | F| =t + (k — t + 2)(t — t') > k for t' < ¢, a contradiction which
proves the lemma.

Let us define

B, = BE%III{FEW|B€F}|>I‘(1¢ 51:})2

LeMMA 2. IfBe %, and Fe F* then | BNF| >t

Proof. et us suppose that on the contrary | BN F| <t — 1 holds for
some B e %, , Fe F*. By the definition of #* it follows (G — B)N F +# &
for every Ge #, BC G; ie., ¥ ={G— B|BCG,GeF} is a family of
(k — I)-sets of the (n — /,)-element set X — B, each of them intersecting F,
|F| <k .Hence {(FeF |BCF}| = | ¥ | <k(G _1), a contradiction which
proves the lemma.

By Lemma 1 | %, | < ¢i_s10(l)) < dria(k).

By the definition of # for every F € & there exists B € # such that BC F.
So the following holds:

LEMMA 3. Let F be a z-znZersectmg Samily consisting of k-subsets of

= [Ln]. Let # =%, U =\ B, be the decomposition of the base of
3" /<<l ,and B, consists merely of I-element sets. Then

Fr<@ (D) el ) )

or in particular

11 <e (p 20, ©)

where ¢, , ¢, dre constants depending only on k.
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We need one more lemma.

LeMMA 4. Suppose that for some positive integer b the base # of the
t-intersecting family F has a member B of cardinality b. Then for some x € B
the degree of x in F, i.e., the number of members of F containing x is at least
(t/b) | #|.

Proof. For ye X let d(y) denote the degree of y in F. As for Fe F
|FNB| = t, we have

Y dix) = | F 1.
xX€B
Hence for at least one xeB d(x) =t | F |/| #| = (¢/b) | # | holds.
Q.E.D.

3. THE PrRoOOF OF THEOREMS 1 AND 2

We start with the proof of Theorem 1.

Let Z = 32,1 (WL U'%, be the base of #. We assert [, = ¢+ 1. If
h, = t holded then for Be %, B C F would follow for every F e #, yielding
| Nres F| = | B| = t, a contradiction.

As both # and %, satisfy the conditions, the maximality of | % | and (5)
imply ;, <t-+1.Hence ; =t + 1.

Now .@;l = %,,, is a t-intersecting family. Again the maximality of
| # | and (3) imply | #;,, | =1+ 2 = 3.

Let B, , B, , B; be three different elements of #;,, . We distinguish between
two cases.

a. B,nB,=B,NB,

Let us set D, = B, N\ B,. Then by the definition of & | D, | >t. As
By # By, |B|=|By| =1t+1, it follows | D;| =t. Now we assert
D, C B for every Be &#,,, . If it is not true then we can find an x € D, and
a Be %#,,; such that x ¢ B. But | B, " B| > t implies B, " B = B, — x for
i=1,2,3. Hence we obtain B2 (B, U B,UB;) —x)ie, | B|=t+2,a
contradiction.

Now if #;,, = {B, ..., B,}, then we can find s different elements x, ,..., x,
of X — D; such that B, = D, u{x;} for i = 1,...,5. As | F | =|% |,
Lemma 3 yields s = k — ¢ 4+ 1. On the other hand s > k& — ¢ + 2 would
contradict Lemma 1, whence s = k — ¢t + 1.

Let F be a k-element subset of 4, not-containing D, but intersecting each
of the B,’s in at least ¢ elements. Let x be an element of D, — F. Then | B; | =
t+1land | B,NF>=timply FNB, =B;—xfori=1,.,s=t—k + 1.
As | F| =k, it follows F = (Dy — X) U {X] yoeey Xp_psa)-

Let us set Dy = {x ,..., Xp_;11}- Then the maximality of & implies F = % .
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b. B,N B, # B,N B,

Let us set D =B, UB,. |By| = |B| =t+1and |BNB;| =1
imply |D|=1t+2. Let us define C=B,nB,, 3y =8 —-C, y, =
B, — C. As| B, n B; | =t, the condition B, N B, == B, N B, implies that ¥ ¢
B,,ie.,|B,NC|<t—1.Using| B;NB,| >tfori=1,2weobtain| B,NC|=
t — 1, {y1, ys} € By. Now setting y; = C — By it follows B; = D — y,.
By ={By s, B} | F| = | %, | implies by (5) s =t + 2. Let 4 <i <s.
As |B;nB;| >t forj=1,2,3 BNB,#* B,N B, implies | B,ND| >
t+1ie, B;CD. As s >t+ 2 it follows B;,; ={BCD| |B| =1+ 1.
Now the maximality of # implies # = %, .

For k =t 4+ 1 # = 4%, . A simple counting shows that for k > 2¢ + |
| F1| > %, 1, while for k <2t + 1 | # | < || with equality holding if
and only if k = 3, ¢ = 1. Q.E.D.

Now we prove Theorem 2. We proceed as in the proof of Theorem 1.
Let # = e%l (VEREV) gl, be the base of #. Then we can see as in the case of
Theorem 1 that for an % of maximal cardinality, = ¢+ 1,| Ba | =t + 2.
We choose again three djfferent elements B, , B, , B; of #; ., and we distin-
guish between the same two cases ¢ and b. In the case a, we have B, N\ B, =
B, N B, = D, C B for every Be %,.,. In view of Lemma 3 |{Fe % |
ABe#,,.,, BCF} < afis llz) Hence for i € D, we have

d(i);lﬁ{—ck(z:::g)>(1—e)13‘"|

for n > ny(k, €), a contradiction.

In the case b, i.e., B, N B, #= B, N By, we prove, as in the case of Theorem
1, BC(B, U B,) = D for every Be%,,,. Then | #,,,| =t + 2 implies
#,..={BCD||B|=1t+1. Now for any set G such that | GNn D | <t
we can find B € %, satisfying | GN B| <t — l,yielding| FND| =t + 1
for any Fe #. Hence # C %, . Q.E.D.

4. THE PROOF OF THEOREM 3
Let & = % * U %, be the base of #. By Lemma 3 the maximality
of | # | 1mp11es 11 < 3. On the other hand by Lemma 4 /, > 3, whence
5, = 3. Let us set By’ = {B,,..., B;}. In view of (§) s = 7.
Let us define fori = 1,..., s

{(FeF | F2BY

)
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Then the cardinality of % can be expressed as follows
Fl=Yealp )oY 0
Now the maximality of | & | implies for n > ny(k) for example
Y ¢ > 6,9, ®
i
On the other hand the definition of ¢, implies ¢; < 1. Nov;f we need a lemma.
LemMA 5. Let By,.., B, be a l-intersecting family of 3-sets. Let us

suppose that to each of the sets a real number c; is associated in such a way
that

0<e <1, Ye¢>609 ©

i=1

Then we can find an element x of some of the sets in such a way that either

=

Zci>

i|xeB;

i e (10)

or s =, and the B;’s are the lines of a 1-3 projective plane.

Proof. Let us suppose that ¢, is the maximal (one of the maximals)
among the ¢;’s. Let us consider two cases separately.

a. For2<i<s|B,nB;|=1

We may suppose B; = {1, 2, 3}. Let Cy,...,Cy; Dy ..., D, ; Ey,..., E, be
the collection of the B;’s i = 2,..., s which intersect B, in 1, 2, 3, respectively.
By symmetry reasons we may suppose ¥ v 2w. By QDu+v+w=1s5—
1 >6. Letusfirstsupposeu = v =w=2.If |C,NC,| = | D, N\D,| =
| EyNE,| =1, then we may suppose C; ={1,4,5}, C, ={1,6,7}. As
the B;’s form a l-intersecting family we may assume D, = {2,4, 6}, D, =
{2,5,7}. Then it follows {E,, E,} = {{3,4, 7}, {3, 5, 6}} i.e., the B/’s form
a 7-3 projective plane.

Now we may assume that for example | C; N C, | = 2, or more precisely
C, ={1,4,5, C, ={1,4,6}. If D, does not contain 4, then by the inter-
section property we obtain D, = {2, 5, 6}, and consequently D, being dif-
ferent to D, has to contain 4. The same argument yields that at least one of
the sets E, , E, contains 4. Hence d(4) > 4. Now using (8) and 5 = 7 we
conclude

7
T e>39>1Y ¢
i=1

4<B,
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Hence we may assume « > 3. If v + w < 3, then we conclude

By way of contradiction we obtain v+ w 2= 4. If w < 1, then the maximality
of ¢, implies

e+ Ya=a+Ya— Y =Y.

1€B; 2€B; i=1 B,#{1,2,3} =1
3€B;

Consequently, either for x = 1 or for x = 2 (10) holds. Hence w > 2.
We assert | E; N E, | = 2. If it is not true then we may assume E;, = {3, 4, 5},
= {3,6,7}. As C,, C;, C; each intersect both E, and E,, by symmetry
reasons we may suppose C; = {1,4,6}, C, = {1,5,7}, C3 = {1, 4, 7}. Now
D, and D, both intersect E, , E,, C, , Cy, but the only such 3-set is {2, 4, 7},
a contradiction. We may assume E, = {3,4, 5}, E, = {3,4,6}. Then at
most one of the sets C;, namely {1, 5, 6}, and at most one of the sets D;,
namely {2, 5, 6} does not contain 4 which yields that (10) holds for x = 4.

b. There exist 2 <j < s, such that | B "\ B;| = 2

By symmetry reasons we may assume j = 2, B, = {1,2,3}, B, = {1, 2, 4}.
If there is one more set, say B, , among the B,’s which contains {1, 2}, then
at most one of them, namely {3, 4} U (B; — {1, 2}) is disjoint to {1,2}.
Hence we obtain, using the maximality of ¢,

s 8
Yatyazatatat)ya— ) g=)e

1€B; 2¢B; i=1 (L2)NB;=2 i=1
showing that for either x = 1 or x = 2 (10) holds. The same argument yields
that there are at least 2 sets among the B,’s which are disjoint to {I, 2}.
Moreover if B, ,..., B, are these sets then

Y e >e+e. (68))
3=3
By symmetry reasons, we may suppose thatfor3 <j <<u B, = {3,4,j + 2}
If u >> 5 then the l-intersecting property yield that the only B; which can
eventually be disjoint to {3, 4} is {5, 6, 7}. Now the maximality of ¢, and (11)
show that (10) holds for either x = 3 or x = 4. Now we may suppose ¢ — 4.
Let B;,..., B, be the sets among the B,’s which are disjoint to {3, 4}. Then
we have

Zci+zci=ca+c4+zci_zcj~ (12)
j=5

3eB; 4€B, =1
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Supposing that (10) does not hold neither for x = 3 nor for x = 4 from (12)
we obtain

Ye>eta=Ycag>a+e. (13)
i=5 =3

In particular by the maximality of ¢; v > 6. For B; and B, there are no
other possibilities than {B;, Bs} = {{5, 6, 1}, {5, 6, 2}}. Hence v = 6 and the
only B/’s disjoint to {5, 6} are B, and B, . Using (13) we obtain

Yot Ya=¢qtet+tYao—a—a>Y . (14)
5e8; 6€B, i=1 j=1

Equation (14) shows that for either x = 5 or x = 6 (10) holds which finishes

the proof of the lemma.

Now we apply the lemma to the proof of Theorem 3.

By the assumption d(i) << (} — €) | Z | for 1 <i < n we obtain that the
first alternative in Lemma 5 cannot hold. Hence s = 7 and B, .,.., B, form
a projective plane. By the definition of the base each element F of # intersects
each of the sets B; i = 1,..., 7. As the 7-3 projective plane is 3-chromatic
for each Fe # thereisaj, | <j < 7, such that B; C F. Now the maximality
of F yields

F ={FCX||F|=k 3j,1<j<7, B,CF). Q.E.D.

5. THE PROOF OF THEOREM 4 AND SOME REMARKS

Let # = .%1 Uy e%’,r be the base of #. As in the proof of Theorem 3
we can prove I, = 3. Let #,' = {B, ,..., B,). Let us define again

_ {Fe#,B,CF}|
oG
k—3

Then for n > ny(k) we have ¥;_, ¢; > ¢/2.

Let ¢, be the maximal one among the ¢;’s. Let us suppose first that s < 7.
We may suppose B; = {1, 2, 3}, and that

(1) = Z ¢ 2 Z ¢ 2 Z ¢; - (15)

1eB; 2€B; 3eB;

i

From (15) we obtain

13 1¢ 2 1 A 3 &
d'(1)>01+§ZCiZ§ZCi+§Cl>(§+ﬁ)20i=7zci- (16)
i=1
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From (16) it follows

=33 a(i 3+ 0( ) > G-1%

whenever n > n,y(k, €). Now let us suppose s > 8. Then by a result of Deza [1]
we cannot have | B; N B;| = 1 for all the pairs 1 < i < j <{s. Hence there
are two sets, say B; , B, , such that | B, NB, | =2 and whenever for a pair
1<i<j<s |B,nNB;| =2, then e+ =6+ We may assume
B, ={1,2,3}, B; = {1,2, 4}. Let B; s, B, be the collection of the B,’s
which are disjoint to {1, 2}. By the l-intersection property each of these sets
contains 3 and 4. Hence we may assume B, = {3,4,v+ 2} forv = 3,..,u
If u > 5, then there is no 3-element set which is disjoint to {3, 4} and intersects
each of the sets B,-v v = 1,..., 5. Indeed, it should contain 5, 6, and 7 and it
should meet {1, 2} as well. Hence in this case for n > ny(k, €) either 3 or 4
is contained in at least 3 | F| — O((37}) > (2 — ¢) | F| members of F, a
contradiction. In the case u = 4 the special choice of i , i, implies

1) +d = (e + e, — e — e+ Y a3 3+ 0((f )

> Yl 3) v o) =2 G917

i=1

for n > nyk, e,

a contradiction. Using the same argument we may assume u = 3,
¢;, > ¢; +c¢; . Hence by the definition of i, i, for 1 <j<s, j#i
| B;, " B;| = 1.

If for every 1 <j < sB;N{l,5} = @ holds then we deduce d(1) + d(5) =
i) =|F | +0(H>22—¢ | F|, a contradiction. Hence
there exists a set, say B; (and using the same argument an other one B;)
which is disjoint to {1, 5} ({2, 5}, respectively). Using the l-intersection
property of %, we may assume B;, ={2,3,6}. Letusset Y = B, U -+ U B,.
If | Y| <7 then we obtain Zyeyd(y)>2, 11 B GG )—3 | | +
O((3-)), yielding that for n > ny(k, €) for at least one ye Y d(y) > (3 — ¢€)
| # | holds. So we may assume | Y| > 8.

For B, there are 3 essentially different possibilities: {1, 3, 7}, {1, 4, 6},
{1, 3, 6}. However in the latter cases | Y| > 8 implies that there is a set,
say B; which is not contained in [1, 6]. So we may assume 7 € B;, . We know
| B;, N {3,4,5}| = 1. If 5€ B; then B, does not contain either 3 or 4, but it
intersects {2,3,6} and {1, 2, 3} nontr1v1ally Hence B, = {2, 5,7}, but this
set is disjoint to both {1, 4, 6} and {1, 3, 6}, a contradiction. If B, =1{1,3,6}
then 4 € B; yields essentially the same contradiction. Hence in this case
3€B,, , and by symmetry reasons we may assume B, ={1,3,7.1If B; =
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{1, 4, 6}, then we have symmetry in 3 and 4. Hence we may assume 3 € B; .
Then B; N B, # o and B; N{l,2,4} %+ @ imply B; = {l,3,7}. So we
have proved that we may suppose B, = {1,3,7}. As | Y| >8, there is a
member, say B; of #; which is not contained in [1, 7. We may suppose
8€B . From lB N{3,4,5 =1, B N B; #+ @ for j = 4,5 it follows
3 eB . As {1, 2, 4 NB, + o it follows that the third element of B, is
either 1 or 2. By symmetry reasons we may assume B, = {l1,3,8}. If a "set
Be %, is disjoint to {1, 3} then it should be {2, 7, 8} as it has to intersect
{1,3,2},{1,3,7},and {1, 3, 8}. But {2, 7, 8) N {3, 4, 5} * @, a contradiction.
Hence for every B € 4, either 1 or 3 is contained in B, yielding
d) ) =Y ey _3) =2 1%

for n > ny(k, €) i.e., either 1 or 3 has degree greater than (3 —¢) | F |.
Q.E.D.

Remark 1. The proof of Theorem 4 seems to foreshadow how complicated
it will be to solve the same problem for the case | # | > c(3°2), v >4 is
given. The case v = 3 suggests that the bound given by the projective plane
is optimal, i.e., there is always a point of degree = ([v/(v* —v + 1)] — €) | F |
for any positive € and n > ny(k, €).

In the case v = 2 an easy modification of the argument of the proof of
Theorem 2 yields that the optimal bound is 2/3.

Remark 2. Erdos conjectured recently that if there exists a regular
intersecting v-graph on m points then m < v? — v -+ 1. If this conjecture
is not true then there exists a family 2 = {D,,..., D,} of l-intersecting
v-sets, which form a regular »-graph on m > v — v 4 2. Let us define
fork >v%Fy ={FCX| |F|=k,3De 9, DCF}. Then | # | > (}22) but
for any i€ X d(i) < ([v/@?® — v + 2)] -+ o(1) | & |. Thus if the bound given
using the projective plane is optimal then the conjecture of Erdds is true.
So Theorem 4 establishes it for v = 3.

6. THE PROOF OF THEOREMS 5 AND 6

First we prove a lemma.

LEMMA 6. Let # = {B,,..., B} be a l-intersecting family of 3-subsets
of [1, n). Suppose that for 1 < i < sthereis a constant ¢; ,0 << ¢; < 1 associated
with the set B, . Suppose further that for some 0 << 8 <1

i ¢; > 104 8. (7
i=1
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Then there exists a j, 1 <j < n such that

ZQ‘? 6+

' 88 Z ¢ - (18)
jeB; =1

Proof. It follows from (17) that s > 11.

Iffor 1l <<i, <i, <s| B, "B, | =1 then in view of a result of Deza [1]
s < 7. Hence there exist two sets, say B, B’ # such that | BN B | = 2.
That is to say there exist 2-element subsets of X which are contained in more
than one of the B;’s. Let C be a 2-element set which is contained in a maximal
number of the B;s. We may assume C = [, 2], and that ¥ = {{1, 2, 3},
{1, 2,4},...,{1, 2, u}} are the B/’s containing C. If Be# and BN C = g
then the intersection property of & implies [3, u] C B. Let 2 = {D,,..., D,}
be the collection of the B,’s disjoint to C.

Let us suppose first | 2| < 1.

Let us divide the members of & — (¥ U &) into two families &, &,
according to whether they intersect C in {1} or in {2}. By symmetry reasons
we may assume | &, | > | &, |. Suppose | &, | = 4. Let us consider first the
case when there are two sets, say E, E'€ &, such that | EN E’| = 1. Let
E=1{2,e,e), E' ={2,¢/,e,} where e ,e,,e e’ are four different
elements of [3, n]. The l-intersection property and | &, | > | &, | = 4 imply
& ={l,e,¢/}, {l,e,,8}, {1,e5, &'}, {1, €5, €,'}}. But now we cannot
find any 3-element set different from E, E’, containing 2, and nontrivially
intersecting each member of &, . However this contradicts | &, | > 4. Now
we may assume | ENE’| =2 for E, E'€&,. Then the sets E — 2, Ec &,
form a 1-intersecting family of 2-element sets. Hence | &, | > 4 implies that
there exists an element r which is common to each of the sets E — 2, E€ &, .
Now | €, | = 4 and the l-intersection property entail that r belongs to every
member of &; as well. Hence we have proved that every member of # — &
intersects {1, 2, r} in at least two points. If D e 2 then the l-intersection
property implies 7 € D as otherwise D should contain all the different elements
E—{2,r},Ecé&,,but| &, > | D|. So we obtain

Yeat+t Yot Yea=2Y -1
i=1

1eB; 2€B, r€B;

Consequently for eitherj = lorj=2orj=r

2% =1 Q-0+ )T 648 ¢
iezﬂ';'-cz> 3 Z 3 /10+82c

Suppose now | &, | < 3. Then every member of & — (£, U 2) contains 1.
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As | &, U D | < 4, we obtain

L= 2 4/(‘10+3)§

i.e., (18) holds for j = 1.

Now we must consider the case | 2 | == 2. As we proved [3, 4] C D for
every D € 2, this case is possible only for u = 4. Then the special choice of C
implies | & | = 2. We may assume 2 = {{3,4, 5}, {3,4,6}). Let & =
{Ey ..., Ey} be the collection of B,’s disjoint to [3, 4]. As each of the E,-’s
contains 5 and 6 it follows from the maximal choice of Cthat w << 2. If w <
then replacing [1, 2] by [3, 4] we come back to the preceeding case | | < I.
If w=2 then the I-intersection property yields {E,, E,} = {{5, 6, 1},
{5, 6, 2}}. Now each of the remaining members of # has to intersect {1, 2},
{3, 4}, and {5, 6} .

Thus being a 3-element set it is contained in [I, 6]. But then the Erds-—
Ko-Rado theorem yields | Z | < (§1) = 10 < 11, a contradiction. Q.E.D.

LELE
= (&
075

Now we apply the lemma to the proof of the theorem. Let %
Jl (U uﬁ, be the base of #. Then as in the preceeding sections, | & 1
(10 + )} 1mphes for n > nyk,€) I, = 3. We apply the lemma for
B = #, and

|Fe# | B;CF|
(‘1' =
3
k—3
Setting 6 = ¢/2 the validity of (17) follows for n > ny(k, €). Now Lemma 6
yields that there exists a j € [1, n] such that

=5y el 3ol 29

for n > ny(k, ). Q.E.D.

for B,e4%,.

(z 001e)f5fg

Now we turn to the proof of Theorem 6.

Let us recall the proof of Lemma 6. Let us suppose that instead of § > 0
we assume only 6 > —1. It still ensures us of s > 10 but not of s > 11.
However the fact s >> 11 was used only at the very end of the proof. If we
assume only s >> 10 then we have to deal yet with the case Z consists of 10
subsets of [1, 6]. If there is an i € [1, 6] which is contained in at least 6, i.e.,
not contained in at most 4 members of # then for this i we have

s 6+8 S
ZC] ,-;C] /10+8jglcj'

i€B;
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Otherwise every element of [1, 6] has degree 5, i.e., & is a regular l-inter-
secting family. Hence the proof of Lemma 6 yields:

LEMMA 7. Let # = {B,,..., B,} be a l-intersecting family of 3-subsets of
[1, n). Suppose that for 1 < i < s there is a constant associated with the set B;
Suppose further that for some 8, —1 < & < +1,

Y ¢, > 10+ 8. (19)
i=1

Then either there exists a j € [1, n] for which (18) holds or the B;’s form a
regular, l-intersecting family of cardinality 10 on some 6-element subset
Yof X.

Now we use Lemma 7 to prove Theorem 6.

From the maximality of | # | it follows again that if #' = .% ) 96’,
is the usual decomposition of the base of & then /[, = 3. Moreover if we
define

N o
c; = Ml_&g‘d for Bi c %3”
3
k—3
then it follows ¥;_, ¢; > 10 — . Setting § = —e it follows from Lemma 7
that either we have for some je X
6 4 3
d) 25— 1F1+0((, _4)) > E—¢1#1 for n>nik o,
a contradiction or | Z; | = 10 and for some 6-subset Y of X the members

of #, form a l-intersecting, regular 3-graph on it.

Now we prove that every subset of X intersecting nontrivially each member
of &, contains a member of #,". Obviously it suffices to prove that every
4-element subset, ‘G of Y contains a member of #,". As (§) = 2-10. %4,
contains exactly one of each 3-subset of ¥ and its complement. So if G does
not contain any member of %;’, then each one of the four 3-subsets of Y
containing Y-G belongs to #,'. From the l-intersection property it follows
that the remaining members of %, intersect Y-G nontrivially. Hence at
least one of the two elements of Y-G is contained in at least 7 members of %’
contradicting the regularity of it. Setting € = %, it follows now # C %, & .

Q.ED.
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7. THE PROOF OF THEOREM 7

Let Z = 53’,1 (UEERV) %r be the usual decomposition of the base on #.
From the maximality of | % | it follows /; <<t -+ s. On the other hand
Lemma 4 yields [, >t + s, e, § =t + s Let #,, = {By,.., Byj. The
maximality of | # | implies ¢ = ({1%). Let us define

_ [Fe % | B,CF}|

i)

i

We need a lemma.

Lemma 8. Let By,.., B, be a t-intersecting family of (¢t + s)-element
subsets of X = [1, n]. Suppose q = (*{I%). Then either there exists a (1 + i)~
element subset Y of X for some 0 <i <<s, satisfying | B;,NY| =t +i—
s+ 1 forj=1,..,q, or there exists a (t + 2s)-set Z such that {B, ,..., B;} =
{(BCZ|B=1+s.

Proof. Let us consider the intersections B, N B, j = 1,..., g. From the

binomal identity
t+2sy & (tEsy S
G =2l )
it follows that either for some (¢ -~ i)-subset Y of B, , 0 <<i <s
Dy = (Bl <j<qBnB=Y]>(") (20)

or ¢ = (:*2%) and for every i, 0 <i <s, and every (¢ + i)-subset of B, we
have equality in (20). Let us consider the first possibility. We assert
| B;NY|{=t+i—s5-+1for 1 <j<gq. Suppose that it is not true, ie.,
for some 1 <<j<<q |B;NnY|<t-+i—s The tintersection property
implies B,NY=¢+i—s, and B;2(B,— Y) for r =1 and for the
values of r satisfying B, N B, = Y. Now (20) implies that for these values of r
IUB, - Y)| >s yielding |B;|>t+i—s+(—i)+s=t+s a
contradiction.

From this argument follows that if the second possibility holds then not
only we have equality in (20) for every 0 <<i < s and every (¢ + i)-subset
Y of B, but there exists an s-element subset Zy of X — B, such that &, =
{BCX|BNB, =Y, (B—Y)CZ,,|B}| =1+ s}. The statement of the
lemma would follow if we proved Z, does not depend on Y, i.e., for Y,
YCB,,|Y|=t+1i|Y|=t+i Zy = Zy.If it is not true then we
may assume that it does not hold for a pair Y, Y’ satisfying the additional
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requirements YU Y’ = B, ,s >i+i. Now let us choose Be %, and
B'e9, in such a way that |((B—Y)N(B —Y)| <s—i—i—it is
possible as Zy # Zy- and s > i + i’. But then we have | B N B'| <
(t+i+i'—s)+(s—i—i)=1t a contradiction proving the lemma.

Now we apply the lemma to the proof of the theorem. If the first possibility
holds then it follows that for some element y e ¥

d(y)>t+i_s+1 15"_|+0((Z:t_s_1))

t+i t—s—1
t—s+1, t+s
> F I+ 00 F ) > (g + 0 9) 1 7 |

as t > 2s(s — 1), and n > nyk, s, t), a contradiction proving the theorem
for this case.

In the second case we have for some (¢t + 2s)-element subset Z of X
B, ={BCZ||B|=1t+s}, and consequently |FNZ|>t+ s for
every F € & follows from the t-intersection property.

Now the maximality of | # | yields & = {FCX| |F| =k, |FNZ| >
t+ s} Q.E.D.
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