On Intersecting Families of Finite Sets

PETER FRANKL

Department of Mathematics, Eötvös L. University of Budapest, Budapest, Hungary Communicated by the Managing Editors

Received October 20, 1976

Let X = [1, n] be a finite set of cardinality n and let \mathscr{F} be a family of k-subsets of X. Suppose that any two members of \mathscr{F} intersect in at least t elements and for some given positive constant c, every element of X is contained in less than $c |\mathscr{F}|$ members of \mathscr{F} . How large $|\mathscr{F}|$ can be and which are the extremal families were problems posed by Erdös, Rothschild, and Szemerédi. In this paper we answer some of these questions for $n > n_0(k, c)$. One of the results is the following: let t = 1, 3/7 < c < 1/2. Then whenever \mathscr{F} is an extremal family we can find a 7-3 Steiner system \mathscr{B} such that \mathscr{F} consists exactly of those k-subsets of X which contain some member of \mathscr{B} .

1. INTRODUCTION

Let *n*, *t* be positive integers. Let X = [1, n] be the set of the first *n* positive integers. A family of subsets of X is called *t*-intersecting if any two members of it intersect in at least *t* elements. Erdös, Ko, and Rado [2] proved that if \mathscr{F} is a *t*-intersecting family of *k*-subsets of X and $n > n_0(k, t)$ then $|\mathscr{F}| \le {\binom{n-t}{k-t}}$ with equality holding if and only if for some *t*-element subset Y of X we have $\mathscr{F} = \{F \subseteq X \mid |F| = k, Y \subseteq F\}$. Hilton and Milner [3] proved that if we exclude this family, i.e., if we make the additional assumption $|\bigcap_{F \in \mathscr{F}} F| < t$, then we have for t = 1

$$|\mathscr{F}| \leq {\binom{n-1}{k-1}} - {\binom{n-k-1}{k-1}} + 1.$$
(1)

Equality holds in (1) if and only if for some $x \in X$, $D \subset X$, |D| = k, $x \notin D$, and $\mathscr{F} = \{F \subset X \mid |F| = k, x \in F, F \cap D \neq \emptyset\} \cup \{D\}$.

Let c be a real number, 0 < c < 1. Erdös, Rothschild, and Szemerédi (unpublished) have posed the following question. How large a 1-intersecting family of k-subsets of X can be if no element of X is contained in more than $c \mid \mathcal{F} \mid$ members of \mathcal{F} . For the case c = 2/3, $n > n_0(k)$ they proved

$$|\mathscr{F}| \leq |\mathscr{F}_{3,2} = \{F \subseteq X \mid |F| = k, |F \cap [1,3]| \ge 2\}|.$$

$$146$$
(2)

0097-3165/78/0242-0146\$02.00/0 Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved. They conjectured that for c = 3/5, $n > n_0(k)$

$$|\mathscr{F}| \leq |\mathscr{F}_{5,3} = \{F \subseteq X \mid |F| = k, |F \cap [1, 5]| \ge 3\}|,$$
(3)

and if \mathscr{P} denotes the set of lines of a projective plane on [1, 7], then for c = 3/7 they suggested $(n > n_0(k))$

$$|\mathscr{F}| \leqslant |\mathscr{F}_{\mathscr{P}} = \{F \subset X \mid |F| = k, \exists P \in \mathscr{P}, P \subset F\}|.$$
(4)

In this paper we prove (2) and (4) in a stronger form, and obtain some analogous results for the case $t \ge 2$. The exact statement of the results is as follows.

THEOREM 1. Let \mathscr{F} be a t-intersecting family of k-element subsets of X = [1, n]. Suppose that $|\bigcap_{F \in \mathscr{F}} F| < t$, and that $|\mathscr{F}|$ is maximal subject to these constraints. Then for $n > n_0(k)$:

(a) k > 2t + 1 or k = 3, t = 1. There exist D_1 , $D_2 \subseteq X$, $D_1 \cap D_2 = \emptyset$, $|D_1| = t$, $|D_2| = k - t + 1$ such that

$$\mathscr{F} = \mathscr{F}_1 = \{F \subseteq X \mid |F| = k, F \cap D_2 \neq \emptyset, D_1 \subseteq F\}$$
$$\cup \{F \subseteq X \mid |F| = k, F \supseteq D_2, |F \cap D_1| \ge t - 1\}.$$

(b) $k \leq 2t + 1$. There exists a (t + 2)-element subset D of X such that

$$\mathscr{F} = \mathscr{F}_2 = \{F \subset X \mid |F| = k, |F \cap D| \ge t+1\}.$$

THEOREM 2. Let \mathscr{F} be a t-intersecting family consisting of k-subsets of X = [1, n]. Suppose that for some ϵ , $0 < \epsilon < 1/(t + 2)$ and for every j, $1 \leq j \leq n$ we have $d(j) \leq (1 - \epsilon) | \mathscr{F} |$. Then for $n > n_0(k, 2)$

$$|\mathscr{F}| \leq (t+2) \binom{n-t-2}{k-t-1} + \binom{n-t-2}{k-t-2},$$

with equality holding if and only if for some $D \subseteq X$, |D| = t + 2

$$\mathscr{F} = \{F \subseteq X \mid |F| = k, |F \cap D| \ge t+1\}.$$

THEOREM 3. Let \mathscr{F} be a 1-intersecting family consisting of k-element subsets of X = [1, n]. Suppose that for some, $0 < \epsilon < 1/14$, and for every $j, 1 \leq j \leq n \ d(j) \leq (\frac{1}{2} - \epsilon) | \mathscr{F} |$ holds. Suppose further that $n > n_0(k, \epsilon)$ and that the cardinality of \mathscr{F} is maximal with respect to these conditions. Then there exists a 7-element subset C of X, and 7 3-element subsets of it $|B_1, B_2, ..., B_7|$ which form a projective plane such that

$$\mathscr{F} = \{F \subseteq X \mid |F| = k, \exists i, 1 \leq i \leq 7, F \supseteq B_i\}.$$

PETER FRANKL

THEOREM 4. Let \mathscr{F} be a family of 1-intersecting k-subsets of X = [1, n]. Suppose that c, ϵ are positive real constants, $c > \epsilon$. Suppose further that $|\mathscr{F}| > c\binom{n-3}{k-3}$, $n > n_0(k, \epsilon)$. Then there exists an $x \in X$ such that

$$d(x) \ge \left(\frac{3}{7} - \epsilon\right) \mid \mathscr{F} \mid.$$

THEOREM 5. Let \mathscr{F} be a family of 1-intersecting k-subsets of X = [1, n]. Suppose that $|\mathscr{F}| > (10 + \epsilon)\binom{n-3}{k-3}$ where $\epsilon < 1$ is a positive constant. Then for $n > n_0(k, \epsilon)$ there exists an $x \in X$ such that

$$d(x) > \left(\frac{3}{5} + 0.01\epsilon\right) \mid \mathscr{F} \mid.$$

THEOREM 6. Let \mathscr{F} be a family of 1-intersecting k-subsets of X = [1, n]. Suppose that for every $j \in X$ and for some constant ϵ , $0 < \epsilon < 0.1$ $d(j) < (\frac{3}{5} - \epsilon) | \mathscr{F} |$ holds. Let the cardinality of \mathscr{F} be maximal and suppose that $n > n_0(k, \epsilon)$. Then there exists a 6-element subset Y of X and a collection $\mathscr{C} = \{C_1, ..., C_{10}\}$ of 3-subsets of Y such that the C_i 's form a regular, 1-intersecting family and $\mathscr{F} = \mathscr{F}_{Y,\mathscr{C}} = \{F \subset X \mid |F| = k, \exists C \in \mathscr{C}, C \subset F\}$,

THEOREM 7. Let \mathscr{F} be a family of t-intersecting k-subsets of X = [1, n]. Let s be a natural integer and ϵ a positive constant such that t > 2s(s - 1)and $\epsilon < \epsilon(t, s) < 1/t(t + 2s)$. Suppose that for every $1 \leq j \leq n \quad d(j) < ([(t + s)/(t + 2s)] + \epsilon) | \mathscr{F} |$ holds. Suppose further that the cardinality of \mathscr{F} is maximal and $n > n_0(k, s, t)$. Then for some (t + 2s)-element subset Z of X we have

$$\mathscr{F} = \{F \subset X \mid |F| = k, |F \cap Z| \ge t + s\}.$$

2. Some Definitions and Lemmas

A family of sets $\mathscr{B} = \{B_1, ..., B_d\}$ is called a Δ -system of cardinality d if for $D = B_1 \cap B_2 \cap \cdots \cap B_d$ the sets $B_1 - D, ..., B_d - D$ are pairwise disjoint. Erdös and Rado [2] proved the existence of a function $\Phi(k, d)$ such that any family consisting of $\Phi(k, d)$ or more k-element sets contains d members forming a Δ -system of cardinality d.

Let \mathscr{F} be a *t*-intersecting family of *k*-subsets of X = [1, n]. Let us set: $\mathscr{F}^{(t)} = \{G \subseteq X \mid \exists F \in \mathscr{F}, G \subseteq F, \forall F' \in \mathscr{F}, | G \cap F' | \ge t\}$. Obviously we have $\mathscr{F} \subseteq \mathscr{F}^{(t)}$.

Let us define the base \mathscr{B} of \mathscr{F} in the following way.

$$\mathscr{B} = \{ B \in \mathscr{F}^{(t)} \mid \nexists F \in \mathscr{F}^{(t)}, F \subset B \}.$$

Let us decompose \mathscr{B} according to the cardinality of its members, i.e., let us set $\mathscr{B} = \mathscr{B}_{l_1} \cup \mathscr{B}_{l_2} \cup \cdots \cup \mathscr{B}_{l_r}$, $l_1 < l_2 < \cdots < l_r$ where for $1 \leq j \leq r$ $\phi \neq \mathscr{B}_{l_j}$ consits of l_j -element sets. It follows from the definitions $t \leq l_1$, $l_r \leq k$.

LEMMA 1. For $1 \leq j \leq r \mathscr{B}_{l_j}$ does not contain k - t + 2 different members $B_1, ..., B_{k-t+2}$ forming a Δ -system of cardinality k - t + 2.

Proof. Suppose that the assertion is not true; i.e., we can find different sets $B_i \in \mathcal{B}_{l_i}$, i = 1, ..., k - t + 2 such that setting $B_1 \cap B_2 = D$ we have $B_{i_1} \cap B_{i_2} = D$ for $1 \leq i_1 < i_2 \leq k - t + 2$. As $D \subset B_1 \in \mathcal{B}$, it follows $D \notin \mathscr{F}^{(t)}$. We obtain the desired contradiction if we show $|F \cap D| \geq t$ for every $F \in \mathscr{F}$. Hence we may suppose that for some $F \in \mathscr{F} |F \cap D| < t$ holds. Let us set $|F \cap D| = t'$. As for $1 \leq i \leq k - t + 2 |F \cap B_i| \geq t$, $|F \cap (B_i - D)| \geq t - t'$. But the sets $B_i - D$ are pairwise disjoint, so we obtain $|F| \geq t' + (k - t + 2)(t - t') > k$ for t' < t, a contradiction which proves the lemma.

Let us define

$$\mathscr{B}'_{l_1} = \left\{ B \in \mathscr{B}_{l_1} \mid |\{F \in \mathscr{F} \mid B \in F\}| > k \binom{n - l_1 - 1}{k - l_1 - 1} \right\}.$$

LEMMA 2. If $B \in \mathscr{B}'_{l_1}$ and $F \in \mathscr{F}^*$ then $|B \cap F| \ge t$.

Proof. Let us suppose that on the contrary $|B \cap F| \leq t - 1$ holds for some $B \in \mathscr{B}'_{l_1}$, $F \in \mathscr{F}^*$. By the definition of \mathscr{F}^* it follows $(G - B) \cap F \neq \varnothing$ for every $G \in \mathscr{F}$, $B \subseteq G$; i.e., $\mathscr{G} = \{G - B \mid B \subseteq G, G \in \mathscr{F}\}$ is a family of $(k - l_1)$ -sets of the $(n - l_1)$ -element set X - B, each of them intersecting F, $|F| \leq k$. Hence $|\{F \in \mathscr{F} \mid B \subseteq F\}| = |\mathscr{G}| \leq k \binom{n-l_1-1}{k-l_1-1}$, a contradiction which proves the lemma.

By Lemma 1 $|\mathscr{B}_{l_i}| < \phi_{k-i+2}(l_j) \leqslant \phi_{k+1}(k)$.

By the definition of \mathscr{B} for every $F \in \mathscr{F}$ there exists $B \in \mathscr{B}$ such that $B \subseteq F$. So the following holds:

LEMMA 3. Let \mathscr{F} be a t-intersecting family consisting of k-subsets of X = [1, n]. Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the decomposition of the base of $\mathscr{F}/l_1 < \cdots < l_r$, and \mathscr{B}_{l_r} consists merely of l_i -element sets. Then

$$|\mathscr{F}| \leq |\mathscr{B}'_{l_1}| \binom{n-l_1}{k-l_1} + c_k \binom{n-l_2}{k-l_2}, \tag{5}$$

or in particular

$$|\mathscr{F}| \leqslant c_{k'} \binom{n-l_{1}}{k-l_{1}}, \tag{6}$$

where c_k , c_k' are constants depending only on k.

We need one more lemma.

LEMMA 4. Suppose that for some positive integer b the base \mathscr{B} of the t-intersecting family \mathscr{F} has a member B of cardinality b. Then for some $x \in B$ the degree of x in \mathscr{F} , i.e., the number of members of \mathscr{F} containing x is at least $(t/b) | \mathscr{F} |$.

Proof. For $y \in X$ let d(y) denote the degree of y in \mathscr{F} . As for $F \in \mathscr{F}$ $|F \cap B| \ge t$, we have

$$\sum_{x\in B} d(x) \geqslant |\mathscr{F}| t.$$

Hence for at least one $x \in B$ $d(x) \ge t | \mathcal{F} | / | \mathcal{B} | = (t/b) | \mathcal{F} |$ holds. Q.E.D.

3. The Proof of Theorems 1 and 2

We start with the proof of Theorem 1.

Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the base of \mathscr{F} . We assert $l_1 = t + 1$. If $l_1 = t$ holded then for $B \in \mathscr{B}_{l_1} B \subseteq F$ would follow for every $F \in \mathscr{F}$, yielding $|\bigcap_{F \in \mathscr{F}} F| \ge |B| = t$, a contradiction.

As both \mathscr{F}_1 and \mathscr{F}_2 satisfy the conditions, the maximality of $|\mathscr{F}|$ and (5) imply $l_1 \leq t + 1$. Hence $l_1 = t + 1$.

Now $\mathscr{B}'_{l_1} = \mathscr{B}'_{t+1}$ is a *t*-intersecting family. Again the maximality of $|\mathscr{F}|$ and (5) imply $|\mathscr{B}'_{t+1}| \ge t+2 \ge 3$.

Let B_1 , B_2 , B_3 be three different elements of \mathscr{B}'_{t+1} . We distinguish between two cases.

a. $B_1 \cap B_2 = B_2 \cap B_3$

Let us set $D_1 = B_1 \cap B_2$. Then by the definition of $\mathscr{B} | D_1 | \ge t$. As $B_1 \ne B_2$, $|B_1| = |B_2| = t + 1$, it follows $|D_1| = t$. Now we assert $D_1 \subset B$ for every $B \in \mathscr{B}'_{t+1}$. If it is not true then we can find an $x \in D_1$ and a $B \in \mathscr{B}'_{t+1}$ such that $x \notin B$. But $|B_i \cap B| \ge t$ implies $B_i \cap B = B_i - x$ for i = 1, 2, 3. Hence we obtain $B \supseteq ((B_1 \cup B_2 \cup B_3) - x)$ i.e., $|B| \ge t + 2$, a contradiction.

Now if $\mathscr{B}'_{t+1} = \{B_1, ..., B_s\}$, then we can find s different elements $x_1, ..., x_s$ of $X - D_1$ such that $B_i = D_1 \cup \{x_i\}$ for i = 1, ..., s. As $|\mathscr{F}| \ge |\mathscr{F}_1|$, Lemma 3 yields $s \ge k - t + 1$. On the other hand $s \ge k - t + 2$ would contradict Lemma 1, whence s = k - t + 1.

Let F be a k-element subset of A, not-containing D_1 but intersecting each of the B_i 's in at least t elements. Let x be an element of $D_1 - F$. Then $|B_i| = t + 1$ and $|B_i \cap F \ge t$ imply $F \cap B_i = B_i - x$ for i = 1, ..., s = t - k + 1. As |F| = k, it follows $F = (D_1 - x) \cup \{x_1, ..., x_{k-t+1}\}$.

Let us set $D_2 = \{x_1, ..., x_{k-t+1}\}$. Then the maximality of \mathscr{F} implies $\mathscr{F} = \mathscr{F}_1$.

b. $B_1 \cap B_2 \neq B_2 \cap B_3$

Let us set $D = B_1 \cup B_2$. $|B_1| = |B_2| = t + 1$ and $|B_1 \cap B_2| = t$ imply |D| = t + 2. Let us define $C = B_1 \cap B_2$, $y_1 = B_1 - C$, $y_2 = B_2 - C$. As $|B_2 \cap B_3| = t$, the condition $B_1 \cap B_2 \neq B_2 \cap B_3$ implies that $\mathscr{C} \not\subset B_3$, i.e., $|B_3 \cap C| \leq t - 1$. Using $|B_i \cap B_3| \geq t$ for i = 1, 2 we obtain $|B_3 \cap C| = t - 1$, $\{y_1, y_2\} \subseteq B_3$. Now setting $y_3 = C - B_3$ it follows $B_3 = D - y_3$. $\mathscr{B}'_{t+1} = \{B_1, ..., B_s\}$. $|\mathscr{F}| \geq |\mathscr{F}_2|$ implies by (5) $s \geq t + 2$. Let $4 \leq i \leq s$. As $|B_i \cap B_j| \geq t$ for $j = 1, 2, 3, B_1 \cap B_2 \neq B_2 \cap B_3$ implies $|B_i \cap D| \geq t + 1$ i.e., $B_i \subset D$. As $s \geq t + 2$ it follows $B'_{t+1} = \{B \subset D \mid |B| = t + 1$. Now the maximality of \mathscr{F} implies $\mathscr{F} = \mathscr{F}_2$.

For k = t + 1 $\mathscr{F}_1 = \mathscr{F}_2$. A simple counting shows that for k > 2t + 1 $|\mathscr{F}_1| > \mathscr{F}_2|$, while for $k \leq 2t + 1$ $|\mathscr{F}_1| \leq |\mathscr{F}_2|$ with equality holding if and only if k = 3, t = 1. Q.E.D.

Now we prove Theorem 2. We proceed as in the proof of Theorem 1. Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the base of \mathscr{F} . Then we can see as in the case of Theorem 1 that for an \mathscr{F} of maximal cardinality $l_1 = t + 1$, $|\mathscr{B}_{t+1}| \ge t + 2$. We choose again three different elements B_1 , B_2 , B_3 of \mathscr{B}_{t+1} and we distinguish between the same two cases a and b. In the case a, we have $B_1 \cap B_2 = B_2 \cap B_3 = D_1 \subset B$ for every $B \in \mathscr{B}'_{t+1}$. In view of Lemma 3 $|\{F \in \mathscr{F} \mid \exists B \in \mathscr{B}'_{t+1}, B \subseteq F\}| \leqslant c_k \binom{n-l_2}{k-l_2}$. Hence for $i \in D_1$ we have

$$d(i) \geq |\mathscr{F}| - c_k {n-t-2 \choose k-t-2} > (1-\epsilon) |\mathscr{F}|$$

for $n > n_0(k, \epsilon)$, a contradiction.

In the case b, i.e., $B_1 \cap B_2 \neq B_2 \cap B_3$, we prove, as in the case of Theorem 1, $B \subset (B_1 \cup B_2) = D$ for every $B \in \mathscr{B}'_{t+1}$. Then $|\mathscr{B}'_{t+1}| \ge t+2$ implies $\mathscr{B}'_{t+1} = \{B \subset D \mid |B| = t+1$. Now for any set G such that $|G \cap D| \le t$ we can find $B \in \mathscr{B}_{t+1}$ satisfying $|G \cap B| \le t-1$, yielding $|F \cap D| \ge t+1$ for any $F \in \mathscr{F}$. Hence $\mathscr{F} \subseteq \mathscr{F}_2$. Q.E.D.

4. The Proof of Theorem 3

Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the base of \mathscr{F} . By Lemma 3 the maximality of $|\mathscr{F}|$ implies $l_1 \leq 3$. On the other hand by Lemma 4 $l_1 \geq 3$, whence $l_1 = 3$. Let us set $B_3' = \{B_1, ..., B_s\}$. In view of (5) $s \geq 7$.

Let us define for i = 1, ..., s

$$c_i = \frac{|\{F \in \mathscr{F} \mid F \supseteq B_i\}|}{\binom{n-3}{k-3}}$$

Then the cardinality of \mathcal{F} can be expressed as follows

$$|\mathscr{F}| = \sum_{i=1}^{s} c_i \binom{n-3}{k-3} + O\binom{n-4}{k-4}.$$
 (7)

Now the maximality of $|\mathcal{F}|$ implies for $n > n_0(k)$ for example

$$\sum_{i=1}^{s} c_i > 6, 9.$$
 (8)

On the other hand the definition of c_i implies $c_i \leq 1$. Now we need a lemma.

LEMMA 5. Let $B_1, ..., B_s$ be a 1-intersecting family of 3-sets. Let us suppose that to each of the sets a real number c_i is associated in such a way that

$$0 < c_i \leqslant 1, \qquad \sum_{i=1}^s c_i > 6, 9. \tag{9}$$

Then we can find an element x of some of the sets in such a way that either

$$\sum_{i\mid x\in B_i} c_i \geqslant \frac{1}{2} \sum_{i=1}^s c_i , \qquad (10)$$

or s = 7, and the B_i 's are the lines of a 7-3 projective plane.

Proof. Let us suppose that c_1 is the maximal (one of the maximals) among the c_i 's. Let us consider two cases separately.

a. For $2 \leq i \leq s \mid B_1 \cap B_i \mid = 1$

We may suppose $B_1 = \{1, 2, 3\}$. Let $C_1, ..., C_u$; $D_1, ..., D_v$; $E_1, ..., E_w$ be the collection of the B_i 's i = 2, ..., s which intersect B_1 in 1, 2, 3, respectively. By symmetry reasons we may suppose $u \ge v \ge w$. By (9) $u + v + w = s - 1 \ge 6$. Let us first suppose u = v = w = 2. If $|C_1 \cap C_2| = |D_1 \cap D_2| = |E_1 \cap E_2| = 1$, then we may suppose $C_1 = \{1, 4, 5\}, C_2 = \{1, 6, 7\}$. As the B_i 's form a 1-intersecting family we may assume $D_1 = \{2, 4, 6\}, D_2 = \{2, 5, 7\}$. Then it follows $\{E_1, E_2\} = \{\{3, 4, 7\}, \{3, 5, 6\}\}$ i.e., the B_i 's form a 7-3 projective plane.

Now we may assume that for example $|C_1 \cap C_2| = 2$, or more precisely $C_1 = \{1, 4, 5\}, C_2 = \{1, 4, 6\}$. If D_1 does not contain 4, then by the intersection property we obtain $D_1 = \{2, 5, 6\}$, and consequently D_2 being different to D_1 has to contain 4. The same argument yields that at least one of the sets E_1 , E_2 contains 4. Hence $d(4) \ge 4$. Now using (8) and s = 7 we conclude

$$\sum_{4\in B_i} c_i > 3, 9 > \frac{1}{2} \sum_{i=1}^7 c_i.$$

152

Hence we may assume $u \ge 3$. If $v + w \le 3$, then we conclude

$$\sum_{1\in B_i}c_i \geqslant \sum_{i=1}^s c_i - 3 > \frac{1}{2}\sum_{i=1}^s c_i.$$

By way of contradiction we obtain $v + w \ge 4$. If $w \le 1$, then the maximality of c_1 implies

$$\sum_{1 \in B_i} c_i + \sum_{2 \in B_i} c_i = c_1 + \sum_{i=1}^s c_i - \sum_{\substack{B_i
eq \{1,2,3\} \ 3 \in B_i}} c_i \geqslant \sum_{i=1}^s c_i \, .$$

Consequently, either for x = 1 or for x = 2 (10) holds. Hence $w \ge 2$. We assert $|E_1 \cap E_2| = 2$. If it is not true then we may assume $E_1 = \{3, 4, 5\}$, $E_2 = \{3, 6, 7\}$. As C_1 , C_2 , C_3 each intersect both E_1 and E_2 , by symmetry reasons we may suppose $C_1 = \{1, 4, 6\}$, $C_2 = \{1, 5, 7\}$, $C_3 = \{1, 4, 7\}$. Now D_1 and D_2 both intersect E_1 , E_2 , C_1 , C_3 , but the only such 3-set is $\{2, 4, 7\}$, a contradiction. We may assume $E_1 = \{3, 4, 5\}$, $E_2 = \{3, 4, 6\}$. Then at most one of the sets C_i , namely $\{1, 5, 6\}$, and at most one of the sets D_i , namely $\{2, 5, 6\}$ does not contain 4 which yields that (10) holds for x = 4.

b. There exist $2 \leq j \leq s$, such that $|B_1 \cap B_j| = 2$

By symmetry reasons we may assume j = 2, $B_1 = \{1, 2, 3\}$, $B_2 = \{1, 2, 4\}$. If there is one more set, say B_3 , among the B_i 's which contains $\{1, 2\}$, then at most one of them, namely $\{3, 4\} \cup (B_3 - \{1, 2\})$ is disjoint to $\{1, 2\}$. Hence we obtain, using the maximality of c_1

$$\sum_{\mathbf{1}\in B_i} c_i + \sum_{\mathbf{2}\in B_i} c_i \geqslant c_1 + c_2 + c_3 + \sum_{i=1}^s c_i - \sum_{\{\mathbf{1},\mathbf{2}\}\cap B_j = \varnothing} c_j \geqslant \sum_{i=1}^s c_i \,,$$

showing that for either x = 1 or x = 2 (10) holds. The same argument yields that there are at least 2 sets among the B_i 's which are disjoint to $\{1, 2\}$. Moreover if $B_3, ..., B_u$ are these sets then

$$\sum_{j=3}^{u} c_j > c_1 + c_2 \,. \tag{11}$$

By symmetry reasons, we may suppose that for $3 \le j \le u B_j = \{3, 4, j + 2\}$ If $u \ge 5$ then the 1-intersecting property yield that the only B_i which can eventually be disjoint to $\{3, 4\}$ is $\{5, 6, 7\}$. Now the maximality of c_1 and (11) show that (10) holds for either x = 3 or x = 4. Now we may suppose u = 4. Let B_5 ,..., B_v be the sets among the B_i 's which are disjoint to $\{3, 4\}$. Then we have

$$\sum_{3\in B_i} c_i + \sum_{4\in B_i} c_i = c_3 + c_4 + \sum_{i=1}^s c_i - \sum_{j=5}^v c_j.$$
(12)

Supposing that (10) does not hold neither for x = 3 nor for x = 4 from (12) we obtain

$$\sum_{j=5}^{v} c_j > c_3 + c_4 = \sum_{j=3}^{u} c_j > c_1 + c_2.$$
 (13)

In particular by the maximality of $c_1 v \ge 6$. For B_5 and B_6 there are no other possibilities than $\{B_5, B_6\} = \{\{5, 6, 1\}, \{5, 6, 2\}\}$. Hence v = 6 and the only B_i 's disjoint to $\{5, 6\}$ are B_1 and B_2 . Using (13) we obtain

$$\sum_{5 \in B_i} c_i + \sum_{6 \in B_i} c_i = c_5 + c_6 + \sum_{j=1}^s c_j - c_1 - c_2 > \sum_{j=1}^s c_j.$$
(14)

Equation (14) shows that for either x = 5 or x = 6 (10) holds which finishes the proof of the lemma.

Now we apply the lemma to the proof of Theorem 3.

By the assumption $d(i) \leq (\frac{1}{2} - \epsilon) | \mathscr{F} |$ for $1 \leq i \leq n$ we obtain that the first alternative in Lemma 5 cannot hold. Hence s = 7 and $B_1 \dots, B_7$ form a projective plane. By the definition of the base each element F of \mathscr{F} intersects each of the sets B_i $i = 1, \dots, 7$. As the 7-3 projective plane is 3-chromatic for each $F \in \mathscr{F}$ there is a j, $1 \leq j \leq 7$, such that $B_j \subseteq F$. Now the maximality of \mathscr{F} yields

$$\mathscr{F} = \{F \subseteq X \mid |F| = k, \exists j, 1 \leq j \leq 7, B_j \subseteq F\}.$$
 Q.E.D.

5. The Proof of Theorem 4 and Some Remarks

Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the base of \mathscr{F} . As in the proof of Theorem 3 we can prove $l_1 = 3$. Let $\mathscr{B}_3' = \{B_1, ..., B_s\}$. Let us define again

$$c_i = \frac{|\{F \in \mathscr{F}, B_i \subseteq F\}|}{\binom{n-3}{k-3}}.$$

Then for $n > n_0(k)$ we have $\sum_{i=1}^{s} c_i > c/2$.

Let c_1 be the maximal one among the c_i 's. Let us suppose first that $s \leq 7$. We may suppose $B_1 = \{1, 2, 3\}$, and that

$$d'(1) = \sum_{1 \in B_i} c_i \geqslant \sum_{2 \in B_i} c_i \geqslant \sum_{3 \in B_i} c_i .$$
(15)

From (15) we obtain

$$d'(1) \ge c_1 + \frac{1}{3} \sum_{i=2}^{s} c_i = \frac{1}{3} \sum_{i=1}^{s} c_i + \frac{2}{3} c_1 \ge \left(\frac{1}{3} + \frac{2}{21}\right) \sum_{i=1}^{s} c_i = \frac{3}{7} \sum_{i=1}^{s} c_i.$$
 (16)

From (16) it follows

$$d(1) \geqslant rac{3}{7}\sum\limits_{i=1}^{s}c_{i} {n-3 \choose k-1} + O {n-4 \choose k-4} > {rac{3}{7}-\epsilon} \mid \mathscr{F} \mid,$$

whenever $n > n_0(k, \epsilon)$. Now let us suppose $s \ge 8$. Then by a result of Deza [1] we cannot have $|B_i \cap B_j| = 1$ for all the pairs $1 \le i < j \le s$. Hence there are two sets, say B_{i_1}, B_{i_2} , such that $|B_{i_1} \cap B_{i_2}| = 2$ and whenever for a pair $1 \le i < j \le s |B_i \cap B_j| = 2$, then $c_{i_1} + c_{i_2} \ge c_i + c_j$. We may assume $B_{i_1} = \{1, 2, 3\}, B_{i_2} = \{1, 2, 4\}$. Let $B_{i_3}, ..., B_{i_u}$ be the collection of the B_i 's which are disjoint to $\{1, 2\}$. By the 1-intersection property each of these sets contains 3 and 4. Hence we may assume $B_{i_v} = \{3, 4, v + 2\}$ for v = 3, ..., u. If $u \ge 5$, then there is no 3-element set which is disjoint to $\{3, 4\}$ and intersects each of the sets $B_{i_v} v = 1, ..., 5$. Indeed, it should contain 5, 6, and 7 and it should meet $\{1, 2\}$ as well. Hence in this case for $n > n_0(k, \epsilon)$ either 3 or 4 is contained in at least $\frac{1}{2} |F| - O((\frac{n-4}{k-4})) > (\frac{3}{7} - \epsilon) |F|$ members of \mathscr{F} , a contradiction. In the case u = 4 the special choice of i_1, i_2 implies

$$d(1) + d(2) \ge \left(c_{i_1} + c_{i_2} - c_{i_3} - c_{i_4} + \sum_{i=1}^{s} c_i\right) \binom{n-3}{k-3} + O\left(\binom{n-4}{k-4}\right)$$
$$\ge \sum_{i=1}^{s} c_i \binom{n-3}{k-3} + O\left(\binom{n-4}{k-4}\right) > 2 \cdot \binom{3}{7} - \epsilon \mid \mathscr{F} \mid$$
for $n > n_0(k, \epsilon)$,

a contradiction. Using the same argument we may assume u = 3, $c_{i_3} > c_{i_1} + c_{i_2}$. Hence by the definition of i_1 , i_2 for $1 \le j \le s$, $j \ne i_3 | B_{i_3} \cap B_j| = 1$.

If for every $1 \le j \le s B_j \cap \{1, 5\} \ne \emptyset$ holds then we deduce $d(1) + d(5) \ge \sum_{i=1}^{s} c_i \binom{n-3}{k-3} = |\mathscr{F}| + O(\binom{n-4}{k-4}) > 2(\frac{3}{7} - \epsilon) |\mathscr{F}|$, a contradiction. Hence there exists a set, say B_{i_4} (and using the same argument an other one B_{i_8}) which is disjoint to $\{1, 5\}$ ($\{2, 5\}$, respectively). Using the 1-intersection property of \mathscr{B}_3 we may assume $B_{i_4} = \{2, 3, 6\}$. Let us set $Y = B_1 \cup \cdots \cup B_s$. If $|Y| \le 7$ then we obtain $\sum_{y \in Y} d(y) \ge \sum_{i=1}^{s} |B_i| \subset_i \binom{n-4}{k-4} = 3 |\mathscr{F}| + O(\binom{n-3}{k-3})$, yielding that for $n > n_0(k, \epsilon)$ for at least one $y \in Y d(y) > (\frac{3}{7} - \epsilon) |\mathscr{F}|$ holds. So we may assume $|Y| \ge 8$.

For B_{i_5} there are 3 essentially different possibilities: $\{1, 3, 7\}$, $\{1, 4, 6\}$, $\{1, 3, 6\}$. However in the latter cases $|Y| \ge 8$ implies that there is a set, say B_{i_6} which is not contained in [1, 6]. So we may assume $7 \in B_{i_6}$. We know $|B_{i_6} \cap \{3, 4, 5\}| = 1$. If $5 \in B_{i_6}$ then B_{i_6} does not contain either 3 or 4, but it intersects $\{2, 3, 6\}$ and $\{1, 2, 3\}$ nontrivially. Hence $B_{i_6} = \{2, 5, 7\}$, but this set is disjoint to both $\{1, 4, 6\}$ and $\{1, 3, 6\}$, a contradiction. If $B_{i_5} = \{1, 3, 6\}$ then $4 \in B_{i_6}$ yields essentially the same contradiction. Hence in this case $3 \in B_{i_6}$, and by symmetry reasons we may assume $B_{i_6} = \{1, 3, 7\}$. If $B_{i_6} = \{1, 3, 7\}$.

{1, 4, 6}, then we have symmetry in 3 and 4. Hence we may assume $3 \in B_{i_6}$. Then $B_{i_6} \cap B_{i_5} \neq \emptyset$ and $B_{i_4} \cap \{1, 2, 4\} \neq \emptyset$ imply $B_{i_6} = \{1, 3, 7\}$. So we have proved that we may suppose $B_{i_5} = \{1, 3, 7\}$. As $|Y| \ge 8$, there is a member, say B_{i_6} of \mathscr{B}_3 which is not contained in [1, 7]. We may suppose $8 \in B_{i_6}$. From $|B_{i_6} \cap \{3, 4, 5\}| = 1$, $B_{i_6} \cap B_{i_j} \neq \emptyset$ for j = 4, 5 it follows $3 \in B_{i_6}$. As $\{1, 2, 4\} \cap B_{i_6} \neq \emptyset$ it follows that the third element of B_{i_6} is either 1 or 2. By symmetry reasons we may assume $B_{i_6} = \{1, 3, 8\}$. If a set $B \in \mathscr{B}_3$ is disjoint to $\{1, 3\}$ then it should be $\{2, 7, 8\}$ as it has to intersect $\{1, 3, 2\}, \{1, 3, 7\}, \text{ and } \{1, 3, 8\}$. But $\{2, 7, 8\} \cap \{3, 4, 5\} \neq \emptyset$, a contradiction. Hence for every $B \in \mathscr{B}_3$ either 1 or 3 is contained in B, yielding

$$d(1)+d(3)\geqslant\sum\limits_{i=1}^{s}c_{i}inom{n-3}{k-3}>2inom{3}{7}-\epsiloninom{1}$$
 | ${\mathscr F}$ |

for $n > n_0(k, \epsilon)$ i.e., either 1 or 3 has degree greater than $(\frac{3}{7} - \epsilon) |\mathcal{F}|$. Q.E.D.

Remark 1. The proof of Theorem 4 seems to foreshadow how complicated it will be to solve the same problem for the case $|\mathscr{F}| > c\binom{n-v}{k-v}$, $v \ge 4$ is given. The case v = 3 suggests that the bound given by the projective plane is optimal, i.e., there is always a point of degree $\ge ([v/(v^2 - v + 1)] - \epsilon) |\mathscr{F}|$ for any positive ϵ and $n > n_0(k, \epsilon)$.

In the case v = 2 an easy modification of the argument of the proof of Theorem 2 yields that the optimal bound is 2/3.

Remark 2. Erdös conjectured recently that if there exists a regular intersecting v-graph on m points then $m \le v^2 - v + 1$. If this conjecture is not true then there exists a family $\mathscr{D} = \{D_1, ..., D_s\}$ of 1-intersecting v-sets, which form a regular v-graph on $m \ge v^2 - v + 2$. Let us define for $k \ge v \mathscr{F}_{\mathscr{D}} = \{F \subset X \mid |F| = k, \exists D \in \mathscr{D}, D \subseteq F\}$. Then $|\mathscr{F}| \ge \binom{n-v}{k-v}$ but for any $i \in X d(i) \le ([v/(v^2 - v + 2)] + o(1) |\mathscr{F}|]$. Thus if the bound given using the projective plane is optimal then the conjecture of Erdös is true. So Theorem 4 establishes it for v = 3.

6. The Proof of Theorems 5 and 6

First we prove a lemma.

LEMMA 6. Let $\mathscr{B} = \{B_1, ..., B_s\}$ be a 1-intersecting family of 3-subsets of [1, n]. Suppose that for $1 \le i \le s$ there is a constant c_i , $0 \le c_i \le 1$ associated with the set B_i . Suppose further that for some $0 < \delta < 1$

$$\sum_{i=1}^{s} c_i > 10 + \delta.$$
 (17)

Then there exists a j, $1 \leq j \leq n$ such that

$$\sum_{j\in B_i} c_i \ge \frac{6+\delta}{10+\delta} \sum_{i=1}^s c_i .$$
(18)

Proof. It follows from (17) that $s \ge 11$.

If for $1 \le i_1 \le i_2 \le s | B_{i_1} \cap B_{i_2}| = 1$ then in view of a result of Deza [1] $s \le 7$. Hence there exist two sets, say $B, B' \in \mathcal{B}$ such that $|B \cap B'| = 2$. That is to say there exist 2-element subsets of X which are contained in more than one of the B_i 's. Let C be a 2-element set which is contained in a maximal number of the B_i 's. We may assume C = [1, 2], and that $\mathscr{C} = \{\{1, 2, 3\}, \{1, 2, 4\}, \dots, \{1, 2, u\}\}$ are the B_i 's containing C. If $B \in \mathcal{B}$ and $B \cap C = \emptyset$ then the intersection property of \mathcal{B} implies $[3, u] \subseteq B$. Let $\mathcal{D} = \{D_1, \dots, D_v\}$ be the collection of the B_i 's disjoint to C.

Let us suppose first $|\mathcal{D}| \leq 1$.

Let us divide the members of $\mathscr{B} - (\mathscr{C} \cup \mathscr{D})$ into two families $\mathscr{E}_1, \mathscr{E}_2$ according to whether they intersect C in $\{1\}$ or in $\{2\}$. By symmetry reasons we may assume $|\mathscr{E}_1| \ge |\mathscr{E}_2|$. Suppose $|\mathscr{E}_2| \ge 4$. Let us consider first the case when there are two sets, say $E, E' \in \mathscr{E}_2$ such that $|E \cap E'| = 1$. Let $E = \{2, e_1, e_2\}, E' = \{2, e_1', e_2'\}$ where e_1, e_2, e_1', e_2' are four different elements of [3, n]. The 1-intersection property and $|\mathscr{E}_1| \ge |\mathscr{E}_2| \ge 4$ imply $\mathscr{E}_1 = \{\{1, e_1, e_1'\}, \{1, e_1, e_2'\}, \{1, e_2, e_1'\}, \{1, e_2, e_2'\}\}$. But now we cannot find any 3-element set different from E, E', containing 2, and nontrivially intersecting each member of \mathscr{E}_1 . However this contradicts $|\mathscr{E}_2| \ge 4$. Now we may assume $|E \cap E'| \ge 2$ for $E, E' \in \mathscr{E}_2$. Then the sets $E - 2, E \in \mathscr{E}_2$ form a 1-intersecting family of 2-element sets. Hence $|\mathscr{E}_2| \ge 4$ implies that there exists an element r which is common to each of the sets E - 2, $E \in \mathscr{E}_2$. Now $|\mathscr{E}_1| \ge 4$ and the 1-intersection property entail that r belongs to every member of \mathscr{E}_1 as well. Hence we have proved that every member of $\mathscr{B} - \mathscr{D}$ intersects $\{1, 2, r\}$ in at least two points. If $D \in \mathcal{D}$ then the 1-intersection property implies $r \in D$ as otherwise D should contain all the different elements $E - \{2, r\}, E \in \mathscr{E}_2$, but $|\mathscr{E}_2| > |D|$. So we obtain

$$\sum_{\mathbf{i}\in B_i} c_i + \sum_{\mathbf{2}\in B_i} c_i + \sum_{\mathbf{r}\in B_i} c_i \ge 2\sum_{i=1}^s c_i - 1.$$

Consequently for either j = 1 or j = 2 or j = r

$$\sum_{i \in B_i} c_i \geqslant \frac{2\sum_{i=1}^s c_i - 1}{3} \geqslant \frac{(2 - 1/(10 + \delta))\sum_{i=1}^s c_i}{3} \geqslant \frac{6 + \delta}{10 + \delta} \sum_{i=1}^s c_i \, .$$

Suppose now $|\mathscr{E}_2| \leq 3$. Then every member of $\mathscr{B} - (\mathscr{E}_2 \cup \mathscr{D})$ contains 1.

As $|\mathscr{E}_2 \cup \mathscr{D}| \leq 4$, we obtain

$$\sum_{\mathbf{1}\in \mathcal{B}_i}c_i \geqslant \sum_{i=1}^s c_i - 4 \geqslant \left(1 - \frac{4}{10+\delta}\right)\sum_{i=1}^s c_i = \frac{6+\delta}{10+\delta}\sum_{i=1}^s c_i,$$

i.e., (18) holds for j = 1.

Now we must consider the case $|\mathcal{D}| \ge 2$. As we proved $[3, u] \subseteq D$ for every $D \in \mathcal{D}$, this case is possible only for u = 4. Then the special choice of Cimplies $|\mathcal{D}| = 2$. We may assume $\mathcal{D} = \{\{3, 4, 5\}, \{3, 4, 6\}\}$. Let $\mathscr{E} = \{E_1, ..., E_w\}$ be the collection of B_i 's disjoint to [3, 4]. As each of the E_i 's contains 5 and 6 it follows from the maximal choice of C that $w \le 2$. If $w \le 1$ then replacing [1, 2] by [3, 4] we come back to the preceding case $|\mathcal{D}| \le 1$. If w = 2 then the 1-intersection property yields $\{E_1, E_2\} = \{\{5, 6, 1\}, \{5, 6, 2\}\}$. Now each of the remaining members of \mathcal{B} has to intersect $\{1, 2\}, \{3, 4\}, \text{ and } \{5, 6\}$.

Thus being a 3-element set it is contained in [1, 6]. But then the Erdös-Ko-Rado theorem yields $|\mathscr{B}| \leq {\binom{6-1}{3-1}} = 10 < 11$, a contradiction. Q.E.D.

Now we apply the lemma to the proof of the theorem. Let $\mathscr{B}' = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_q}$ be the base of \mathscr{F} . Then as in the preceeding sections, $|\mathscr{F}| \ge (10 + \epsilon)\binom{n-3}{k-3}$ implies for $n > n_0(k, \epsilon)$ $l_1 = 3$. We apply the lemma for $\mathscr{B} = \mathscr{B}_3$ and

$$c_i = \frac{|F \in \mathscr{F} | B_i \subseteq F|}{\binom{n-3}{k-3}} \quad \text{for} \quad B_i \in \mathscr{B}_3'.$$

Setting $\delta = \epsilon/2$ the validity of (17) follows for $n > n_0(k, \epsilon)$. Now Lemma 6 yields that there exists a $j \in [1, n]$ such that

$$d(j) > \frac{6+\delta}{10+\delta} \sum_{i=1}^{s} c_i \binom{n-3}{k-3} + O\left(\binom{n-4}{k-4}\right) > \binom{3}{5} + 0.01\epsilon \mid \mathscr{F} \mid$$

Q.E.D.

for $n > n_0(k, \epsilon)$.

Now we turn to the proof of Theorem 6.

Let us recall the proof of Lemma 6. Let us suppose that instead of $\delta > 0$ we assume only $\delta > -1$. It still ensures us of $s \ge 10$ but not of $s \ge 11$. However the fact $s \ge 11$ was used only at the very end of the proof. If we assume only $s \ge 10$ then we have to deal yet with the case \mathscr{B} consists of 10 subsets of [1, 6]. If there is an $i \in [1, 6]$ which is contained in at least 6, i.e., not contained in at most 4 members of \mathscr{B} then for this *i* we have

$$\sum_{i\in B_i} c_j \geqslant \sum_{j=1}^s c_j - 4 \geqslant \frac{6+\delta}{10+\delta} \sum_{j=1}^s c_j.$$

Otherwise every element of [1, 6] has degree 5, i.e., \mathscr{B} is a regular 1-intersecting family. Hence the proof of Lemma 6 yields:

LEMMA 7. Let $\mathscr{B} = \{B_1, ..., B_s\}$ be a 1-intersecting family of 3-subsets of [1, n]. Suppose that for $1 \leq i \leq s$ there is a constant associated with the set B_i Suppose further that for some δ , $-1 < \delta < +1$,

$$\sum_{i=1}^{s} c_i > 10 + \delta.$$
 (19)

Then either there exists a $j \in [1, n]$ for which (18) holds or the B_i 's form a regular, 1-intersecting family of cardinality 10 on some 6-element subset Y of X.

Now we use Lemma 7 to prove Theorem 6.

From the maximality of $|\mathscr{F}|$ it follows again that if $\mathscr{B}' = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ is the usual decomposition of the base of \mathscr{F} then $l_1 = 3$. Moreover if we define

$$c_i = \frac{|\{F \in \mathscr{F} \mid B_i \subseteq F\}|}{\binom{n-3}{k-3}} \quad \text{for} \quad B_i \in \mathscr{B}_3',$$

then it follows $\sum_{i=1}^{s} c_i > 10 - \epsilon$. Setting $\delta = -\epsilon$ it follows from Lemma 7 that either we have for some $j \in X$

$$d(j) \geq \frac{6-\epsilon}{10-\epsilon} |\mathscr{F}| + O\left(\binom{n-4}{k-4}\right) > \binom{3}{5}-\epsilon |\mathscr{F}| \quad \text{for} \quad n > n_0(k,\epsilon),$$

a contradiction or $|\mathscr{B}_3| = 10$ and for some 6-subset Y of X the members of \mathscr{B}_3 form a 1-intersecting, regular 3-graph on it.

Now we prove that every subset of X intersecting nontrivially each member of \mathscr{B}_{3}' contains a member of \mathscr{B}_{3}' . Obviously it suffices to prove that every 4-element subset, G of Y contains a member of \mathscr{B}_{3}' . As $\binom{6}{3} = 2 \cdot 10$. \mathscr{B}_{3}' contains exactly one of each 3-subset of Y and its complement. So if G does not contain any member of \mathscr{B}_{3}' , then each one of the four 3-subsets of Y containing Y-G belongs to \mathscr{B}_{3}' . From the 1-intersection property it follows that the remaining members of \mathscr{B}_{3}' intersect Y-G nontrivially. Hence at least one of the two elements of Y-G is contained in at least 7 members of \mathscr{B}_{3}' contradicting the regularity of it. Setting $\mathscr{C} = \mathscr{B}_{3}'$ it follows now $\mathscr{F} \subseteq \mathscr{F}_{y,\mathscr{C}}$. O.E.D.

PETER FRANKL

7. The Proof of Theorem 7

Let $\mathscr{B} = \mathscr{B}_{l_1} \cup \cdots \cup \mathscr{B}_{l_r}$ be the usual decomposition of the base on \mathscr{F} . From the maximality of $|\mathscr{F}|$ it follows $l_1 \leq t + s$. On the other hand Lemma 4 yields $l_1 \geq t + s$, i.e., $l_1 = t + s$. Let $\mathscr{B}'_{t+s} = \{B_1, ..., B_q\}$. The maximality of $|\mathscr{F}|$ implies $q \geq \binom{t+2s}{t+s}$. Let us define

$$c_i = \frac{|{}^{i}F \in \mathscr{F} | B_i \subseteq F \}|}{\binom{n-t-s}{k-t-s}} \quad \text{for} \quad i = 1, ..., s.$$

We need a lemma.

LEMMA 8. Let $B_1, ..., B_q$ be a t-intersecting family of (t + s)-element subsets of X = [1, n]. Suppose $q \ge \binom{t+2s}{t+s}$. Then either there exists a (t + i)element subset Y of X for some $0 \le i < s$, satisfying $|B_j \cap Y| \ge t + i - s + 1$ for j = 1, ..., q, or there exists a (t + 2s)-set Z such that $\{B_1, ..., B_q\} = \{B \subset Z \mid B = t + s\}$.

Proof. Let us consider the intersections $B_1 \cap B_j$ j = 1,..., q. From the binomal identity

$$\binom{t+2s}{t+s} = \sum_{i=0}^{s} \binom{t+s}{t+i} \binom{s}{s-i}$$

it follows that either for some (t + i)-subset Y of B_1 , $0 \le i < s$

$$|\mathscr{D}_{Y} = \{B_{j} \mid 1 \leq j \leq q, B_{j} \cap B_{1} = Y\}| > {s \choose s-i},$$
(20)

or $q = \binom{t+2s}{t+s}$ and for every $i, 0 \le i < s$, and every (t+i)-subset of B_1 we have equality in (20). Let us consider the first possibility. We assert $|B_j \cap Y| \ge t+i-s+1$ for $1 \le j \le q$. Suppose that it is not true, i.e., for some $1 \le j \le q |B_j \cap Y| \le t+i-s$. The *t*-intersection property implies $B_j \cap Y = t+i-s$, and $B_j \supseteq (B_r - Y)$ for r = 1 and for the values of *r* satisfying $B_r \cap B_1 = Y$. Now (20) implies that for these values of *r* $|\bigcup_r (B_r - Y)| > s$ yielding $|B_j| > t+i-s+(s-i)+s = t+s$, a contradiction.

From this argument follows that if the second possibility holds then not only we have equality in (20) for every $0 \le i < s$ and every (t + i)-subset Y of B_1 but there exists an s-element subset Z_Y of $X - B_1$ such that $\mathscr{D}_Y = \{B \subset X \mid B \cap B_1 = Y, (B - Y) \subset Z_Y, |B| = t + s\}$. The statement of the lemma would follow if we proved Z_Y does not depend on Y, i.e., for Y, $Y' \subseteq B_1$, |Y| = t + i, $|Y'| = t + i' Z_Y = Z_{Y'}$. If it is not true then we may assume that it does not hold for a pair Y, Y' satisfying the additional requirements $Y \cup Y' = B_1$, s > i + i'. Now let us choose $B \in \mathscr{D}_Y$ and $B' \in \mathscr{D}_{Y'}$ in such a way that $|(B - Y) \cap (B' - Y')| < s - i - i' - it$ is possible as $Z_Y \neq Z_{Y'}$ and s > i + i'. But then we have $|B \cap B'| < (t + i + i' - s) + (s - i - i') = t$, a contradiction proving the lemma.

Now we apply the lemma to the proof of the theorem. If the first possibility holds then it follows that for some element $y \in Y$

$$d(y) \ge \frac{t+i-s+1}{t+i} |\mathscr{F}| + O\left(\binom{n-t-s-1}{k-t-s-1}\right)$$
$$\ge \frac{t-s+1}{t} |\mathscr{F}| + O\left(|\mathscr{F}|\right) > \left(\frac{t+s}{t+2s} + \epsilon(t,s)\right) |\mathscr{F}|$$

as t > 2s(s - 1), and $n > n_0(k, s, t)$, a contradiction proving the theorem for this case.

In the second case we have for some (t + 2s)-element subset Z of X $\mathscr{B}_{t+s} = \{B \subset Z \mid |B| = t + s\}$, and consequently $|F \cap Z| \ge t + s$ for every $F \in \mathscr{F}$ follows from the t-intersection property.

Now the maximality of $|\mathscr{F}|$ yields $\mathscr{F} = \{F \subset X \mid |F| = k, |F \cap Z| \ge t + s\}$. Q.E.D.

REFERENCES

- 1. M. DEZA, Solution of a problem of Erdös-Lovász, J. Comb. Theory, Ser. B 16, 166-167.
- P. ERDÖS, CHAO KO, AND R. RADO, Intersection theorems for systems of finite sets Quart. J. Math. Oxford, Ser. 12 (1961), 313-320.
- 3. A. J. W. HILTON AND E. C. MILNER Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 18 (1967), 369-384.