On Intersecting Families of Finite Sets

Peter Frankl
Department of Mathematics, Eötvös L. University of Rudapest, Rudapest, Hungary
Communicated by the Managing Editors

Received October 20, 1976

Let $X=[1, n]$ be a finite set of cardinality n and let \mathscr{F} be a family of k-subsets of X. Suppose that any two members of \mathscr{F} intersect in at least t elements and for some given positive constant c, every element of X is contained in less than $c|\mathscr{F}|$ members of \mathscr{F}. How large $|\mathscr{F}|$ can be and which are the extremal families were problems posed by Erdos, Rothschild, and Szemerédi. In this paper we answer some of these questions for $n>n_{0}(k, c)$. One of the results is the following: let $t=1,3 / 7<c<1 / 2$. Then whenever \mathscr{F} is an extremal family we can find a $7-3$ Steiner system $\mathscr{\mathscr { B }}$ such that \mathscr{F} consists exactly of those k-subsets of X which contain some member of \mathscr{P}.

1. Introduction

Let n, t be positive integers. Let $X=[1, n]$ be the set of the first n positive integers. A family of subsets of X is called t-intersecting if any two members of it intersect in at least t elements. Erdös, Ko, and Rado [2] proved that if \mathscr{F} is a t-intersecting family of k-subsets of X and $n>n_{0}(k, t)$ then $|\mathscr{F}| \leqslant\binom{ n-t}{k-t}$ with equality holding if and only if for some t-element subset Y of X we have $\mathscr{F}=\{F \subseteq X| | F \mid=k, Y \subseteq F\}$. Hilton and Milner [3] proved that if we exclude this family, i.e., if we make the additional assumption $\left|\bigcap_{F \in \mathscr{F}} F\right|<t$, then we have for $t=1$

$$
\begin{equation*}
|\mathscr{F}| \leqslant\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1 . \tag{1}
\end{equation*}
$$

Equality holds in (1) if and only if for some $x \in X, D \subset X,|D|=k$, $x \notin D$, and $\mathscr{F}=\{F \subset X| | F \mid=k, x \in F, F \cap D \neq \varnothing\} \cup\{D\}$.

Let c be a real number, $0<c<1$. Erdös, Rothschild, and Szemerédi (unpublished) have posed the following question. How large a 1 -intersecting family of k-subsets of X can be if no element of X is contained in more than $c|\mathscr{F}|$ members of \mathscr{F}. For the case $c=2 / 3, n>n_{0}(k)$ they proved

$$
\begin{equation*}
|\mathscr{F}| \leqslant\left|\mathscr{F}_{3,2}=\{F \subset X| | F|=k,|F \cap[1,3]| \geqslant 2\} \mid .\right. \tag{2}
\end{equation*}
$$

They conjectured that for $c=3 / 5, n>n_{0}(k)$

$$
\begin{equation*}
|\mathscr{F}| \leqslant\left|\mathscr{F}_{5,3}=\{F \subset X| | F|=k,|F \cap[1,5]| \geqslant 3\} \mid,\right. \tag{3}
\end{equation*}
$$

and if \mathscr{P} denotes the set of lines of a projective plane on [1, 7], then for $c=3 / 7$ they suggested ($n>n_{0}(k)$)

$$
\begin{equation*}
|\mathscr{F}| \leqslant\left|\mathscr{F}_{\mathscr{P}}=\{F \subset X| | F \mid=k, \exists P \in \mathscr{P}, P \subset F\}\right| . \tag{4}
\end{equation*}
$$

In this paper we prove (2) and (4) in a stronger form, and obtain some analogous results for the case $t \geqslant 2$. The exact statement of the results is as follows.

Theorem 1. Let \mathscr{F} be a t-intersecting family of k-element subsets of $X=[1, n]$. Suppose that $\left|\bigcap_{F \in \mathscr{F}} F\right|<t$, and that $|\mathscr{F}|$ is maximal subject to these constraints. Then for $n>n_{0}(k)$:
(a) $k>2 t+1$ or $k=3, t=1$. There exist $D_{1}, D_{2} \subset X, D_{1} \cap D_{2}=\varnothing$, $\left|D_{1}\right|=t,\left|D_{2}\right|=k \quad t \mid 1$ such that

$$
\begin{aligned}
\mathscr{F}=\mathscr{F}_{1} & =\left\{F \subset X| | F \mid=k, F \cap D_{2} \neq \varnothing, D_{1} \subset F\right\} \\
& \cup\left\{F \subset X\left||F|-k, F \supseteq D_{2},\left|F \cap D_{1}\right| \geqslant t-1\right\} .\right.
\end{aligned}
$$

(b) $k \leqslant 2 t+1$. There exists a $(t+2)$-element subset D of X such that

$$
\mathscr{F}=\mathscr{F}_{2}=\{F \subset X| | F|=k,|F \cap D| \geqslant t+1\} .
$$

Theorem 2. Let \mathscr{F} be a t-intersecting family consisting of k-subsets of $X=[1, n]$. Suppose that for some $\epsilon, 0<\epsilon<1 /(t+2)$ and for every j, $1 \leqslant j \leqslant n$ we have $d(j) \leqslant(1-\epsilon)|\mathscr{F}|$. Then for $n>n_{0}(k, 2)$

$$
|\mathscr{F}| \leqslant(t+2)\binom{n-t-2}{k-t-1}+\binom{n-t-2}{k-t-2},
$$

with equality holding if and only if for some $D \subseteq X,|D|=t+2$

$$
\mathscr{F}=\{F \subset X| | F|=k,|F \cap D| \geqslant t+1\} .
$$

Theorem 3. Let \mathscr{F} be a 1 -intersecting family consisting of k-element subsets of $X=[1, n]$. Suppose that for some, $0<\epsilon<1 / 14$, and for every $j, 1 \leqslant j \leqslant n d(j) \leqslant\left(\frac{1}{2}-\epsilon\right)|\mathscr{F}|$ holds. Suppose further that $n>n_{0}(k, \epsilon)$ and that the cardinality of \mathscr{F} is maximal with respect to these conditions. Then there exists a 7 -element subset C of X, and 7 3-element subsets of it $\left|B_{1}, B_{2}, \ldots, B_{7}\right|$ which form a projective plane such that

$$
\mathscr{F}=\left\{F \subset X| | F \mid=k, \exists i, \quad 1 \leqslant i \leqslant 7, F \supseteq B_{i}\right\} .
$$

Theorem 4. Let \mathscr{F} be a family of 1 -intersecting k-subsets of $X=[1, n]$. Suppose that c, ϵ are positive real constants, $c>\epsilon$. Suppose further that $|\mathscr{F}|>c\binom{n-3}{k-3}, n>n_{0}(k, \epsilon)$. Then there exists an $x \in X$ such that

$$
d(x) \geqslant\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}| .
$$

Theorem 5. Let \mathscr{F} be a family of 1 -intersecting k-subsets of $X=[1, n]$. Suppose that $|\mathscr{F}|>(10+\epsilon)\binom{n-3}{k-3}$ where $\epsilon<1$ is a positive constant. Then for $n>n_{0}(k, \epsilon)$ there exists an $x \in X$ such that

$$
d(x)>\left(\frac{3}{5}+0.01 \epsilon\right)|\mathscr{F}| .
$$

Theorem 6. Let \mathscr{F} be a family of 1 -intersecting k-subsets of $X=[1, n]$. Suppose that for every $j \in X$ and for some constant $\epsilon, 0<\epsilon<0.1 d(j)<$ $\left(\frac{3}{5}-\epsilon\right)|\mathscr{F}|$ holds. Let the cardinality of \mathscr{F} be maximal and suppose that $n>n_{0}(k, \epsilon)$. Then there exists a 6 -element subset Y of X and a collection $\mathscr{C}=\left\{C_{1}, \ldots, C_{10}\right\}$ of 3 -subsets of Y such that the C_{i} 's form a regular, 1-intersecting family and $\mathscr{F}=\mathscr{F}_{Y, \mathscr{C}}=\{F \subset X| | F \mid=k, \exists C \in \mathscr{C}, C \subset F\}$,

Theorem 7. Let \mathscr{F} be a family of t-intersecting k-subsets of $X=[1, n]$. Let s be a natural integer and ϵ a positive constant such that $t>2 s(s-1)$ and $\epsilon<\epsilon(t, s)<1 / t(t+2 s)$. Suppose that for every $1 \leqslant j \leqslant n d(j)<$ $([(t+s) /(t+2 s)]+\epsilon)|\mathscr{F}|$ holds. Suppose further that the cardinality of \mathscr{F} is maximal and $n>n_{0}(k, s, t)$. Then for some $(t+2 s)$-element subset Z of X we have

$$
\mathscr{F}=\{F \subset X| | F|=k,|F \cap Z| \geqslant t+s\} .
$$

2. Some Defintions and Lemmas

A family of sets $\mathscr{B}=\left\{B_{1}, \ldots, B_{d}\right\}$ is called a Δ-system of cardinality d if for $D=B_{1} \cap B_{2} \cap \cdots \cap B_{d}$ the sets $B_{1}-D, \ldots, B_{d}-D$ are pairwise disjoint. Erdös and Rado [2] proved the existence of a function $\Phi(k, d)$ such that any family consisting of $\Phi(k, d)$ or more k-element sets contains d members forming a Δ-system of cardinality d.
Let \mathscr{F} be a t-intersecting family of k-subsets of $X=[1, n]$. Let us set: $\mathscr{F}^{(t)}=\left\{G \subseteq X\left|\exists F \in \mathscr{F}, G \subseteq F, \forall F^{\prime} \in \mathscr{F},\left|G \cap F^{\prime}\right| \geqslant t\right\}\right.$. Obviously we have $\mathscr{F} \subseteq \mathscr{F}^{(t)}$.

Let us define the base \mathscr{B} of \mathscr{F} in the following way.

$$
\mathscr{B}=\left\{B \in \mathscr{F}^{(t)} \mid \nexists F \in \mathscr{F}^{(t)}, F \subset B\right\} .
$$

Let us decompose \mathscr{B} according to the cardinality of its members, i.e., let us set $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \mathscr{B}_{l_{2}} \cup \cdots \cup \mathscr{B}_{l_{r}}, l_{1}<l_{2}<\cdots<l_{r}$ where for $1 \leqslant j \leqslant r$ $\phi \neq \mathscr{B}_{l_{j}}$ consits of l_{j}-element sets. It follows from the definitions $t \leqslant l_{1}$, $l_{r} \leqslant k$.

Lemma 1. For $1 \leqslant j \leqslant r \mathscr{B}_{l_{j}}$ does not contain $k-t+2$ different members B_{1}, \ldots, B_{k-t+2} forming a 4 -system of cardinality $k-t+2$.
Proof. Suppose that the assertion is not true; i.e., we can find different sets $B_{i} \in \mathscr{B}_{l_{j}}, i=1, \ldots, k-t+2$ such that setting $B_{1} \cap B_{2}=D$ we have $B_{i_{1}} \cap B_{i_{2}}=D$ for $1 \leqslant i_{1}<i_{2} \leqslant k-t+2$. As $D \subset B_{1} \in \mathscr{B}$, it follows $D \notin \mathscr{F}(t)$. We obtain the desired contradiction if we show $|F \cap D| \geqslant t$ for every $F \in \mathscr{F}$. Hence we may suppose that for some $F \in \mathscr{F}|F \cap D|<t$ holds. Let us set $|F \cap D|=t^{\prime}$. As for $1 \leqslant i \leqslant k-t+2\left|F \cap B_{i}\right| \geqslant t$, $\left|F \cap\left(B_{i}-D\right)\right| \geqslant t-t^{\prime}$. But the sets $B_{i}-D$ are pairwise disjoint, so we obtain $|F| \geqslant t^{\prime}+(k-t+2)\left(t-t^{\prime}\right)>k$ for $t^{\prime}<t$, a contradiction which proves the lemma.

Let us define

$$
\mathscr{B}_{l_{1}}^{\prime}=\left\{B \in \mathscr{B}_{l_{1}} \left\lvert\,\left\{\{F \in \mathscr{F} \mid B \in F\} \left\lvert\,>k\binom{n-l_{1}-1}{k-l_{1}-1}\right.\right\} .\right.\right.
$$

Lemma 2. If $B \in \mathscr{B}_{l_{1}}^{\prime}$ and $F \in \mathscr{F} *$ then $|B \cap F| \geqslant t$.
Proof. Let us suppose that on the contrary $|B \cap F| \leqslant t-1$ holds for some $B \in \mathscr{B}_{l_{1}^{\prime}}^{\prime}, F \in \mathscr{F} *$. By the definition of $\mathscr{F} *$ it follows $(G-B) \cap F \neq \varnothing$ for every $G \in \mathscr{F}, B \subseteq G$; i.e., $\mathscr{G}=\{G-B \mid B \subseteq G, G \in \mathscr{F}\}$ is a family of $\left(k-l_{1}\right)$-sets of the $\left(n-l_{1}\right)$-element set $X-B$, each of them intersecting F, $|F| \leqslant k$. Hence $|\{F \in \mathscr{F} \mid B \subseteq F\}|=|\mathscr{G}| \leqslant k\left(\begin{array}{c}\binom{n-l_{1}-1}{1} \text {, a contradiction which }\end{array}\right.$ proves the lemma.

By Lemma $1\left|\mathscr{B}_{l_{j}}\right|<\phi_{k-t+2}\left(l_{j}\right) \leqslant \phi_{k+1}(k)$.
By the definition of \mathscr{B} for every $F \in \mathscr{F}$ there exists $B \in \mathscr{B}$ such that $B \subseteq F$. So the following holds:

Lemma 3. Let \mathscr{F} be a t-intersecting family consisting of k-subsets of $X=[1, n]$. Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the decomposition of the base of $\mathscr{F} / l_{1}<\cdots<l_{r}$, and $\mathscr{B}_{l_{i}}$ consists merely of l_{i}-element sets. Then

$$
\begin{equation*}
|\mathscr{F}| \leqslant\left|\mathscr{B}_{l_{1}}^{\prime}\right|\binom{n-l_{1}}{k-l_{1}}+c_{k}\binom{n-l_{2}}{k-l_{2}} \tag{5}
\end{equation*}
$$

or in particular

$$
\begin{equation*}
|\mathscr{F}| \leqslant c_{k}^{\prime}\binom{n-l_{1}}{k-l_{1}} \tag{6}
\end{equation*}
$$

where c_{k}, c_{k}^{\prime} are constants depending only on k.

We need one more lemma.
Lemma 4. Suppose that for some positive integer b the base so the t-intersecting family \mathscr{F} has a member B of cardinality b. Then for some $x \in B$ the degree of x in \mathscr{F}, i.e., the number of members of \mathscr{F} containing x is at least $(t / b)|\mathscr{F}|$.

Proof. For $y \in X$ let $d(y)$ denote the degree of y in \mathscr{F}. As for $F \in \mathscr{F}$ $|F \cap B| \geqslant t$, we have

$$
\sum_{x \in B} d(x) \geqslant|\mathscr{F}| t .
$$

Hence for at least one $x \in B d(x) \geqslant t|\mathscr{F}| /|\mathscr{B}|=(t / b)|\mathscr{F}|$ holds.
Q.E.D.

3. The Proof of Theorems 1 and 2

We start with the proof of Theorem 1.
Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the base of \mathscr{F}. We assert $l_{1}=t+1$. If $l_{1}=t$ holded then for $B \in \mathscr{B}_{l_{1}} B \subseteq F$ would follow for every $F \in \mathscr{F}$, yielding $\left|\bigcap_{F \in \mathscr{F}} F\right| \geqslant|B|=t$, a contradiction.

As both \mathscr{F}_{1} and \mathscr{F}_{2} satisfy the conditions, the maximality of $|\mathscr{F}|$ and (5) imply $l_{1} \leqslant t+1$. Hence $l_{1}=t+1$.

Now $\mathscr{B}_{l_{1}}^{\prime}=\mathscr{B}_{t+1}^{\prime}$ is a t-intersecting family. Again the maximality of $|\mathscr{F}|$ and (5) imply $\left|\mathscr{B}_{t+1}^{\prime}\right| \geqslant t+2 \geqslant 3$.

Let B_{1}, B_{2}, B_{3} be three different elements of $\mathscr{B}_{t+1}^{\prime}$. We distinguish between two cases.
a. $\quad B_{1} \cap B_{2}=B_{2} \cap B_{3}$

Let us set $D_{1}=B_{1} \cap B_{2}$. Then by the definition of $\mathscr{B}\left|D_{1}\right| \geqslant t$. As $B_{1} \neq B_{2},\left|B_{1}\right|=\left|B_{2}\right|=t+1$, it follows $\left|D_{1}\right|=t$. Now we assert $D_{1} \subset B$ for every $B \in \mathscr{B}_{t+1}^{\prime}$. If it is not true then we can find an $x \in D_{1}$ and a $B \in \mathscr{B}_{i+1}^{\prime}$ such that $x \notin B$. But $\left|B_{i} \cap B\right| \geqslant t$ implies $B_{i} \cap B=B_{i}-x$ for $i=1,2,3$. Hence we obtain $B \supseteq\left(\left(B_{1} \cup B_{2} \cup B_{3}\right)-x\right)$ i.e., $|B| \geqslant t+2$, a contradiction.

Now if $\mathscr{B}_{t+1}^{\prime}=\left\{B_{1}, \ldots, B_{s}\right\}$, then we can find s different elements x_{1}, \ldots, x_{s} of $X-D_{1}$ such that $B_{i}=D_{1} \cup\left\{x_{i}\right\}$ for $i=1, \ldots, s$. As $|\mathscr{F}| \geqslant\left|\mathscr{F}_{1}\right|$, Lemma 3 yields $s \geqslant k-t+1$. On the other hand $s \geqslant k-t+2$ would contradict Lemma 1, whence $s=k-t+1$.

Let F be a k-element subset of A, not-containing D_{1} but intersecting each of the B_{i} 's in at least t elements. Let x be an element of $D_{1}-F$. Then $\left|B_{i}\right|=$ $t+1$ and $\mid B_{i} \cap F \geqslant t$ imply $F \cap B_{i}-B_{i}-x$ for $i-1, \ldots, s-t-k+1$. As $|F|=k$, it follows $F=\left(D_{1}-x\right) \cup\left\{x_{1}, \ldots, x_{k-t+1}\right\}$.

Let us set $D_{2}=\left\{x_{1}, \ldots, x_{k-t+1}\right\}$. Then the maximality of \mathscr{F} implies $\mathscr{F}=\mathscr{F}_{1}$.
b. $\quad B_{1} \cap B_{2} \neq B_{2} \cap B_{3}$

Let us set $D=B_{1} \cup B_{2} .\left|B_{1}\right|=\left|B_{2}\right|=t+1$ and $\left|B_{1} \cap B_{2}\right|=t$ imply $|D|=t+2$. Let us define $C=B_{1} \cap B_{2}, y_{1}=B_{1}-C$, $y_{2}=$ $B_{2}-C$. As $\left|B_{2} \cap B_{3}\right|=t$, the condition $B_{1} \cap B_{2} \neq B_{2} \cap B_{3}$ implies that $\mathscr{C} \not \subset$ B_{3}, i.e., $\left|B_{3} \cap C\right| \leqslant t-1$. Using $\left|B_{i} \cap B_{3}\right| \geqslant t$ for $i=1,2$ we obtain $\left|B_{3} \cap C\right|=$ $t-1,\left\{y_{1}, y_{2}\right\} \subseteq B_{3}$. Now setting $y_{3}=C-B_{3}$ it follows $B_{3}=D-y_{3}$. $\mathscr{B}_{t+1}^{\prime}=\left\{B_{1}, \ldots, B_{s}\right\} .|\mathscr{F}| \geqslant\left|\mathscr{F}_{2}\right|$ implies by (5) $s \geqslant t+2$. Let $4 \leqslant i \leqslant s$. As $\left|B_{i} \cap B_{j}\right| \geqslant t$ for $j=1,2,3, B_{1} \cap B_{2} \neq B_{2} \cap B_{3}$ implies $\left|B_{i} \cap D\right| \geqslant$ $t+1$ i.e., $B_{i} \subset D$. As $s \geqslant t+2$ it follows $B_{t+1}^{\prime}=\{B \subset D| | B \mid=t+1$. Now the maximality of \mathscr{F} implies $\mathscr{F}=\mathscr{F}_{2}$.

For $k=t+1 \mathscr{F}_{1}=\mathscr{F}_{2}$. A simple counting shows that for $k>2 t+1$ $\left|\mathscr{F}_{1}\right|>\mathscr{F}_{2} \mid$, while for $k \leqslant 2 t+1\left|\mathscr{F}_{1}\right| \leqslant\left|\mathscr{F}_{2}\right|$ with equality holding if and only if $k=3, t=1$.
Q.E.D.

Now we prove Theorem 2. We proceed as in the proof of Theorem 1. Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the base of \mathscr{F}. Then we can see as in the case of Theorem 1 that for an \mathscr{F} of maximal cardinality $l_{1}=t+1,\left|\mathscr{B}_{t+1}\right| \geqslant t+2$. We choose again three djfferent elements B_{1}, B_{2}, B_{3} of \mathscr{B}_{t+1} and we distinguish between the same two cases a and b. In the case a, we have $B_{1} \cap B_{2}=$ $B_{2} \cap B_{3}=D_{1} \subset B$ for every $B \in \mathscr{B}_{t+1}^{\prime}$. In view of Lemma $3 \mid\{F \in \mathscr{F} \mid$ $\left.\nexists B \in \mathscr{B}_{t+1}^{\prime}, B \subseteq F\right\} \left\lvert\, \leqslant c_{k}\left(\begin{array}{c}\left.n-l_{k}\right)\end{array}\right)\right.$. Hence for $i \in D_{1}$ we have

$$
d(i) \geqslant|\mathscr{F}|-c_{k}\binom{n-t-2}{k-t-2}>(1-\epsilon)|\mathscr{F}|
$$

for $n>n_{0}(k, \epsilon)$, a contradiction.
In the case b, i.e., $B_{1} \cap B_{2} \neq B_{2} \cap B_{3}$, we prove, as in the case of Theorem $1, B \subset\left(B_{1} \cup B_{2}\right)=D$ for every $B \in \mathscr{B}_{t+1}^{\prime}$. Then $\left|\mathscr{B}_{t+1}^{\prime}\right| \geqslant t+2$ implies $\mathscr{B}_{t+1}^{\prime}=\{B \subset D| | B \mid=t+1$. Now for any set G such that $|G \cap D| \leqslant t$ we can find $B \in \mathscr{B}_{t+1}$ satisfying $|G \cap B| \leqslant t-1$, yielding $|F \cap D| \geqslant t+1$ for any $F \in \mathscr{F}$. Hence $\mathscr{F} \subseteq \mathscr{F}_{2}$.

4. The Proof of Theorem 3

Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the base of \mathscr{F}. By Lemma 3 the maximality of $|\mathscr{F}|$ implies $l_{1} \leqslant 3$. On the other hand by Lemma $4 l_{1} \geqslant 3$, whence $l_{1}=3$. Let us set $B_{3}{ }^{\prime}=\left\{B_{1}, \ldots, B_{s}\right\}$. In view of (5) $s \geqslant 7$.
Let us define for $i=1, \ldots, s$

$$
c_{i}=\frac{\left|\left\{F \in \mathscr{F} \mid F \supseteq B_{i}\right\}\right|}{\binom{n-3}{k-3}}
$$

Then the cardinality of \mathscr{F} can be expressed as follows

$$
\begin{equation*}
|\mathscr{F}|=\sum_{i=1}^{s} c_{i}\binom{n-3}{k-3}+O\binom{n-4}{k-4} . \tag{7}
\end{equation*}
$$

Now the maximality of $|\mathscr{F}|$ implies for $n>n_{0}(k)$ for example

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i}>6,9 \tag{8}
\end{equation*}
$$

On the other hand the definition of c_{i} implies $c_{i} \leqslant 1$. Now we need a lemma.
Lemma 5. Let B_{1}, \ldots, B_{s} be a 1-intersecting family of 3-sets. Let us suppose that to each of the sets a real number c_{i} is associated in such a way that

$$
\begin{equation*}
0<c_{i} \leqslant 1, \quad \sum_{i=1}^{s} c_{i}>6,9 \tag{9}
\end{equation*}
$$

Then we can find an element x of some of the sets in such a way that either

$$
\begin{equation*}
\sum_{i \mid x \in B_{i}} c_{i} \geqslant \frac{1}{2} \sum_{i=1}^{s} c_{i} \tag{10}
\end{equation*}
$$

or $s=7$, and the B_{i} 's are the lines of a 7-3 projective plane.
Proof: Let us suppose that c_{1} is the maximal (one of the maximals) among the c_{i} 's. Let us consider two cases separately.
a. For $2 \leqslant i \leqslant s\left|B_{1} \cap B_{i}\right|=1$

We may suppose $B_{1}=\{1,2,3\}$. Let $C_{1}, \ldots, C_{u} ; D_{1}, \ldots, D_{v} ; E_{1}, \ldots, E_{w}$ be the collection of the B_{i} 's $i=2, \ldots, s$ which intersect B_{1} in $1,2,3$, respectively. By symmetry reasons we may suppose $u \geqslant v \geqslant w$. By (9) $u+v+w=s-$ $1 \geqslant 6$. Let us first suppose $u=v=w=2$. If $\left|C_{1} \cap C_{2}\right|=\left|D_{1} \cap D_{2}\right|=$ $\left|E_{1} \cap E_{2}\right|=1$, then we may suppose $C_{1}=\{1,4,5\}, C_{2}=\{1,6,7\}$. As the B_{i} 's form a 1 -intersecting family we may assume $D_{1}=\{2,4,6\}, D_{2}=$ $\{2,5,7\}$. Then it follows $\left\{E_{1}, E_{2}\right\}=\{\{3,4,7\},\{3,5,6\}\}$ i.e., the B_{i} 's form a $7-3$ projective plane.

Now we may assume that for example $\left|C_{1} \cap C_{2}\right|=2$, or more precisely $C_{1}=\{1,4,5\}, C_{2}=\{1,4,6\}$. If D_{1} does not contain 4 , then by the intersection property we obtain $D_{1}=\{2,5,6\}$, and consequently D_{2} being different to D_{1} has to contain 4. The same argument yields that at least one of the sets E_{1}, E_{2} contains 4. Hence $d(4) \geqslant 4$. Now using (8) and $s=7$ we conclude

$$
\sum_{4 \in B_{i}} c_{i}>3,9>\frac{1}{2} \sum_{i=1}^{7} c_{i}
$$

Hence we may assume $u \geqslant 3$. If $v+w \leqslant 3$, then we conclude

$$
\sum_{1 \in B_{i}} c_{i} \geqslant \sum_{i=1}^{s} c_{i}-3>\frac{1}{2} \sum_{i=1}^{s} c_{i} .
$$

By way of contradiction we obtain $v+w \geqslant 4$. If $w \leqslant 1$, then the maximality of c_{1} implies

$$
\sum_{1 \in B_{i}} c_{i}+\sum_{2 \in \mathcal{B}_{i}} c_{i}=c_{1}+\sum_{i=1}^{s} c_{i}-\sum_{\substack{B_{i} * 1(1,2,3\} \\ 3 \in B_{i}}} c_{i} \geqslant \sum_{i=1}^{s} c_{i}
$$

Consequently, either for $x=1$ or for $x=2$ (10) holds. Hence $w \geqslant 2$. We assert $\left|E_{1} \cap E_{2}\right|=2$. If it is not true then we may assume $E_{1}=\{3,4,5\}$, $E_{2}=\{3,6,7\}$. As C_{1}, C_{2}, C_{3} each intersect both E_{1} and E_{2}, by symmetry reasons we may suppose $C_{1}=\{1,4,6\}, C_{2}=\{1,5,7\}, C_{3}=\{1,4,7\}$. Now D_{1} and D_{2} both intersect $E_{1}, E_{2}, C_{1}, C_{3}$, but the only such 3 -set is $\{2,4,7\}$, a contradiction. We may assume $E_{1}=\{3,4,5\}, E_{2}=\{3,4,6\}$. Then at most one of the sets C_{i}, namely $\{1,5,6\}$, and at most one of the sets D_{i}, namely $\{2,5,6\}$ does not contain 4 which yields that (10) holds for $x=4$.
b. There exist $2 \leqslant j \leqslant s$, such that $\left|B_{1} \cap B_{j}\right|=2$

By symmetry reasons we may assume $j=2, B_{1}=\{1,2,3\}, B_{2}=\{1,2,4\}$. If there is one more set, say B_{3}, among the B_{i} 's which contains $\{1,2\}$, then at most one of them, namely $\{3,4\} \cup\left(B_{3}-\{1,2\}\right)$ is disjoint to $\{1,2\}$. Hence we obtain, using the maximality of c_{1}

$$
\sum_{1 \in B_{i}} c_{i}+\sum_{2 \in B_{i}} c_{i} \geqslant c_{1}+c_{2}+c_{3}+\sum_{i=1}^{s} c_{i}-\sum_{\{1,2\} \cap B_{j}=\varnothing} c_{j} \geqslant \sum_{i=1}^{s} c_{i}
$$

showing that for either $x=1$ or $x=2(10)$ holds. The same argument yields that there are at least 2 sets among the B_{i} 's which are disjoint to $\{1,2\}$. Moreover if B_{3}, \ldots, B_{u} are these sets then

$$
\begin{equation*}
\sum_{j=3}^{u} c_{j}>c_{1}+c_{2} \tag{11}
\end{equation*}
$$

By symmetry reasons, we may suppose that for $3 \leqslant j \leqslant u B_{j}=\{3,4, j+2\}$ If $u \geqslant 5$ then the 1 -intersecting property yield that the only B_{i} which can eventually be disjoint to $\{3,4\}$ is $\{5,6,7\}$. Now the maximality of c_{1} and (11) show that (10) holds for either $x=3$ or $x=4$. Now we may suppose $u=4$. Let B_{5}, \ldots, B_{v} be the sets among the B_{i} 's which are disjoint to $\{3,4\}$. Then we have

$$
\begin{equation*}
\sum_{3 \in B_{i}} c_{i}+\sum_{4 \in B_{i}} c_{i}=c_{3}+c_{4}+\sum_{i=1}^{s} c_{i}-\sum_{j=5}^{v} c_{j} . \tag{12}
\end{equation*}
$$

Supposing that (10) does not hold neither for $x=3$ nor for $x=4$ from (12) we obtain

$$
\begin{equation*}
\sum_{j=5}^{v} c_{j}>c_{3}+c_{4}=\sum_{j=3}^{u} c_{j}>c_{1}+c_{2} \tag{13}
\end{equation*}
$$

In particular by the maximality of $c_{1} v \geqslant 6$. For B_{5} and B_{6} there are no other possibilities than $\left\{B_{5}, B_{6}\right\}=\{\{5,6,1\},\{5,6,2\}\}$. Hence $v=6$ and the only B_{i} 's disjoint to $\{5,6\}$ are B_{1} and B_{2}. Using (13) we obtain

$$
\begin{equation*}
\sum_{5 \in B_{i}} c_{i}+\sum_{6 \in B_{i}} c_{i}=c_{5}+c_{6}+\sum_{j=1}^{s} c_{j}-c_{1}-c_{2}>\sum_{j=1}^{s} c_{j} . \tag{14}
\end{equation*}
$$

Equation (14) shows that for either $x=5$ or $x=6$ (10) holds which finishes the proof of the lemma.

Now we apply the lemma to the proof of Theorem 3.
By the assumption $d(i) \leqslant\left(\frac{1}{2}-\epsilon\right)|\mathscr{F}|$ for $1 \leqslant i \leqslant n$ we obtain that the first alternative in Lemma 5 cannot hold. Hence $s=7$ and B_{1}, \ldots, B_{7} form a projective plane. By the definition of the base each element F of \mathscr{F} intersects each of the sets $B_{i} i=1, \ldots, 7$. As the 7-3 projective plane is 3 -chromatic for each $F \in \mathscr{F}$ there is a $j, 1 \leqslant j \leqslant 7$, such that $B_{j} \subseteq F$. Now the maximality of \mathscr{F} yields

$$
\mathscr{F}=\left\{F \subset X| | F \mid=k, \exists j, 1 \leqslant j \leqslant 7, B_{j} \subseteq F\right\} . \quad \text { Q.E.D. }
$$

5. The Proof of Theorem 4 and Some Remarks

Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the base of \mathscr{F}. As in the proof of Theorem 3 we can prove $l_{1}=3$. Let $\mathscr{B}_{3}{ }^{\prime}=\left\{B_{1}, \ldots, B_{s}\right\}$. Let us define again

$$
c_{i}=\frac{\left|\left\{F \in \mathscr{F}, B_{i} \subseteq F\right\}\right|}{\binom{n-3}{k-3}}
$$

Then for $n>n_{0}(k)$ we have $\sum_{i=1}^{s} c_{i}>c / 2$.
Let c_{1} be the maximal one among the c_{i} 's. Let us suppose first that $s \leqslant 7$. We may suppose $B_{1}=\{1,2,3\}$, and that

$$
\begin{equation*}
d^{\prime}(1)=\sum_{1 \in B_{i}} c_{i} \geqslant \sum_{2 \in B_{i}} c_{i} \geqslant \sum_{3 \in B_{i}} c_{i} \tag{15}
\end{equation*}
$$

From (15) we obtain

$$
\begin{equation*}
d^{\prime}(1) \geqslant c_{1}+\frac{1}{3} \sum_{i=2}^{s} c_{i}=\frac{1}{3} \sum_{i=1}^{s} c_{i}+\frac{2}{3} c_{1} \geqslant\left(\frac{1}{3}+\frac{2}{21}\right) \sum_{i=1}^{s} c_{i}=\frac{3}{7} \sum_{i=1}^{s} c_{i} \tag{16}
\end{equation*}
$$

From (16) it follows

$$
d(1) \geqslant \frac{3}{7} \sum_{i=1}^{s} c_{i}\binom{n-3}{k-1}+O\binom{n-4}{k-4}>\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}|
$$

whenever $n>n_{0}(k, \epsilon)$. Now let us suppose $s \geqslant 8$. Then by a result of Deza [1] we cannot have $\left|B_{i} \cap B_{j}\right|=1$ for all the pairs $1 \leqslant i<j \leqslant s$. Hence there are two sets, say $B_{i_{1}}, B_{i_{2}}$, such that $\left|B_{i_{1}} \cap B_{i_{2}}\right|=2$ and whenever for a pair $1 \leqslant i<j \leqslant s\left|B_{i} \cap B_{j}\right|=2$, then $c_{i_{1}}+c_{i_{2}} \geqslant c_{i}+c_{j}$. We may assume $B_{i_{1}}=\{1,2,3\}, B_{i_{2}}=\{1,2,4\}$. Let $B_{i_{3}}, \ldots, B_{i_{u}}$ be the collection of the B_{i} 's which are disjoint to $\{1,2\}$. By the 1 -intersection property each of these sets contains 3 and 4. Hence we may assume $B_{i_{v}}=\{3,4, v+2\}$ for $v=3, \ldots, u$. If $u \geqslant 5$, then there is no 3-element set which is disjoint to $\{3,4\}$ and intersects each of the sets $B_{i_{v}} v=1, \ldots, 5$. Indeed, it should contain 5,6 , and 7 and it should meet $\{1,2\}$ as well. Hence in this case for $n>n_{v}(k, \epsilon)$ either 3 or 4 is contained in at least $\frac{1}{2}|F|-O\left(\binom{n-4}{k-4}\right)>\left(\frac{3}{7}-\epsilon\right)|F|$ members of \mathscr{F}, a contradiction. In the case $u=4$ the special choice of i_{1}, i_{2} implies

$$
\begin{aligned}
& d(1)+d(2) \geqslant\left(c_{i_{1}}+c_{i_{2}}-c_{i_{3}}-c_{i_{4}}+\sum_{i=1}^{s} c_{i}\right)\binom{n-3}{k-3}+O\left(\binom{n-4}{k-4}\right) \\
& \geqslant \sum_{i=1}^{s} c_{i}\binom{n-3}{k-3}+O\left(\binom{n-4}{k-4}\right)>2 \cdot\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}| \\
& \quad \text { for } n>n_{0}(k, \epsilon),
\end{aligned}
$$

a contradiction. Using the same argument we may assume $u=3$, $c_{i_{3}}>c_{i_{1}}+c_{i_{2}}$. Hence by the definition of i_{1}, i_{2} for $1 \leqslant j \leqslant s, j \neq i_{3}$ $\left|B_{i_{3}} \cap B_{j}\right|=1$.

If for every $1 \leqslant j \leqslant s B_{j} \cap\{1,5\} \neq \varnothing$ holds then we deduce $d(1)+d(5) \geqslant$ $\sum_{i=1}^{s} c_{i}\binom{n-3}{k-3}=|\mathscr{F}|+O\left(\begin{array}{l}\left.\binom{n-4}{k-4}\right)>2\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}| \text {, a contradiction. Hence }\end{array}\right.$ there exists a set, say $B_{i_{4}}$ (and using the same argument an other one $B_{i_{5}}$) which is disjoint to $\{1,5\}(\{2,5\}$, respectively). Using the 1 -intersection property of \mathscr{B}_{3} we may assume $B_{i_{4}}=\{2,3,6\}$. Let us set $Y=B_{1} \cup \cdots \cup B_{s}$. If $|Y| \leqslant 7$ then we obtain $\sum_{y \in Y} d(y) \geqslant \sum_{i=1}^{s}\left|B_{i}\right| C_{i}\binom{n-4}{k-4}=3|\mathscr{F}|+$ $O\binom{n-3}{k-3}$, yielding that for $n>n_{0}(k, \epsilon)$ for at least one $y \in Y d(y)>\left(\frac{3}{7}-\epsilon\right)$ $|\mathscr{F}|$ holds. So we may assume $|Y| \geqslant 8$.
For $B_{i_{5}}$ there are 3 essentially different possibilities: $\{1,3,7\},\{1,4,6\}$, $\{1,3,6\}$. However in the latter cases $|Y| \geqslant 8$ implies that there is a set, say $B_{i_{8}}$ which is not contained in [1, 6]. So we may assume $7 \in B_{i_{6}}$. We know $\left|B_{i_{6}} \cap\{3,4,5\}\right|=1$. If $5 \in B_{i_{\mathrm{g}}}$ then $B_{i_{\mathrm{e}}}$ does not contain either 3 or 4 , but it intersects $\{2,3,6\}$ and $\{1,2,3\}$ nontrivially. Hence $B_{i_{6}}=\{2,5,7\}$, but this set is disjoint to both $\{1,4,6\}$ and $\{1,3,6\}$, a contradiction. If $B_{i_{5}}=\{1,3,6\}$ then $4 \in B_{i_{6}}$ yields essentially the same contradiction. Hence in this case $3 \in B_{i_{6}}$, and by symmetry reasons we may assume $B_{i_{6}}=\{1,3,7\}$. If $B_{i_{6}}=$
$\{1,4,6\}$, then we have symmetry in 3 and 4 . Hence we may assume $3 \in B_{i_{6}}$. Then $B_{i_{6}} \cap B_{i_{5}} \neq \varnothing$ and $B_{i_{4}} \cap\{1,2,4\} \neq \varnothing$ imply $B_{i_{6}}=\{1,3,7\}$. So we have proved that we may suppose $B_{i_{5}}=\{1,3,7\}$. As $|Y| \geqslant 8$, there is a member, say $B_{i_{6}}$ of \mathscr{B}_{3} which is not contained in [1,7]. We may suppose $8 \in B_{i_{6}}$. From $\left|B_{i_{6}} \cap\{3,4,5\}\right|=1, B_{i_{6}} \cap B_{i_{j}} \neq \varnothing$ for $j=4,5$ it follows $3 \in B_{i_{6}}$. As $\{1,2,4\} \cap B_{i_{6}} \neq \varnothing$ it follows that the third element of $B_{i_{6}}$ is either 1 or 2. By symmetry reasons we may assume $B_{i_{6}}=\{1,3,8\}$. If a set $B \in \mathscr{B}_{3}$ is disjoint to $\{1,3\}$ then it should be $\{2,7,8\}$ as it has to intersect $\{1,3,2\},\{1,3,7\}$, and $\{1,3,8\}$. But $\{2,7,8) \cap\{3,4,5\} \neq \varnothing$, a contradiction. Hence for every $B \in \mathscr{B}_{3}$ either 1 or 3 is contained in B, yielding

$$
d(1)+d(3) \geqslant \sum_{i=1}^{s} c_{i}\binom{n-3}{k-3}>2\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}|
$$

for $n>n_{0}(k, \epsilon)$ i.e., either 1 or 3 has degree greater than $\left(\frac{3}{7}-\epsilon\right)|\mathscr{F}|$.

> Q.E.D.

Remark 1. The proof of Theorem 4 seems to foreshadow how complicated it will be to solve the same problem for the case $|\mathscr{F}|>c\binom{n-v}{k-v}, v \geqslant 4$ is given. The case $v=3$ suggests that the bound given by the projective plane is optimal, i.e., there is always a point of degree $\geqslant\left(\left[v /\left(v^{2}-v+1\right)\right]-\epsilon\right)|\mathscr{F}|$ for any positive ϵ and $n>n_{0}(k, \epsilon)$.
In the case $v=2$ an easy modification of the argument of the proof of Theorem 2 yields that the optimal bound is $2 / 3$.
Remark 2. Erdös conjectured recently that if there exists a regular intersecting v-graph on m points then $m \leqslant v^{2}-v+1$. If this conjecture is not true then there exists a family $\mathscr{O}=\left\{D_{1}, \ldots, D_{s}\right\}$ of 1 -intersecting v-sets, which form a regular v-graph on $m \geqslant v^{2}-v+2$. Let us define for $k \geqslant v \mathscr{F}_{\mathscr{Q}}=\{F \subset X| | F \mid=k, \exists D \in \mathscr{D}, D \subseteq F\}$. Then $|\mathscr{F}| \geqslant\binom{ n-v}{k-v}$ but for any $i \in X d(i) \leqslant\left(\left[v /\left(v^{2}-v+2\right)\right]+o(1)|\mathscr{F}|\right.$. Thus if the bound given using the projective plane is optimal then the conjecture of Erdös is true. So Theorem 4 establishes it for $v=3$.

6. The Proof of Theorems 5 and 6

First we prove a lemma.
Lemma 6. Let $\mathscr{\mathscr { B }}-\left\{B_{1}, \ldots, B_{3}\right\}$ be a 1 -intersecting family of 3 -subsets of $[1, n]$. Suppose that for $1 \leqslant i \leqslant s$ there is a constant $c_{i}, 0 \leqslant c_{i} \leqslant 1$ associated with the set B_{i}. Suppose further that for some $0<\delta<1$

$$
\begin{equation*}
\sum_{i=1}^{8} c_{i}>10+\delta \tag{17}
\end{equation*}
$$

Then there exists $a j, 1 \leqslant j \leqslant n$ such that

$$
\begin{equation*}
\sum_{j \in B_{i}} c_{i} \geqslant \frac{6+\delta}{10+\delta} \sum_{i=1}^{s} c_{i} \tag{18}
\end{equation*}
$$

Proof. It follows from (17) that $s \geqslant 11$.
If for $1 \leqslant i_{1} \leqslant i_{2} \leqslant s\left|B_{i_{1}} \cap B_{i_{2}}\right|=1$ then in view of a result of Deza [1] $s \leqslant 7$. Hence there exist two sets, say $B, B^{\prime} \in \mathscr{B}$ such that $\left|B \cap B^{\prime}\right|=2$. That is to say there exist 2-element subsets of X which are contained in more than one of the B_{i} 's. Let C be a 2 -element set which is contained in a maximal number of the B_{i} 's. We may assume $C=[1,2]$, and that $\mathscr{C}=\{\{1,2,3\}$, $\{1,2,4\}, \ldots,\{1,2, u\}\}$ are the B_{i} 's containing C. If $B \in \mathscr{B}$ and $B \cap C=\varnothing$ then the intersection property of \mathscr{B} implies $[3, u] \subseteq B$. Let $\mathscr{D}=\left\{D_{1}, \ldots, D_{v}\right\}$ be the collection of the B_{i} 's disjoint to C.

Let us suppose first $|\mathscr{D}| \leqslant 1$.
Let us divide the members of $\mathscr{B}-(\mathscr{C} \cup \mathscr{D})$ into two families $\mathscr{E}_{1}, \mathscr{E}_{2}$ according to whether they intersect C in $\{1\}$ or in $\{2\}$. By symmetry reasons we may assume $\left|\mathscr{E}_{1}\right| \geqslant\left|\mathscr{E}_{2}\right|$. Suppose $\left|\mathscr{E}_{2}\right| \geqslant 4$. Let us consider first the case when there are two sets, say $E, E^{\prime} \in \mathscr{E}_{2}$ such that $\left|E \cap E^{\prime}\right|=1$. Let $E=\left\{2, e_{1}, e_{2}\right\}, E^{\prime}=\left\{2, e_{1}^{\prime}, e_{2}^{\prime}\right\}$ where $e_{1}, e_{2}, e_{1}^{\prime} e_{2}^{\prime}$ are four different elements of $[3, n]$. The 1 -intersection property and $\left|\mathscr{E}_{1}\right| \geqslant\left|\mathscr{E}_{2}\right| \geqslant 4$ imply $\mathscr{E}_{1}=\left\{\left\{1, e_{1}, e_{1}^{\prime}\right\},\left\{1, e_{1}, e_{2}^{\prime}\right\},\left\{1, e_{2}, e_{1}^{\prime}\right\},\left\{1, e_{2}, e_{2}^{\prime}\right\}\right\}$. But now we cannot find any 3 -clement set different from E, E^{\prime}, containing 2 , and nontrivially intersecting each member of \mathscr{E}_{1}. However this contradicts $\left|\mathscr{E}_{2}\right| \geqslant 4$. Now we may assume $\left|E \cap E^{\prime}\right| \geqslant 2$ for $E, E^{\prime} \in \mathscr{E}_{2}$. Then the sets $E-2, E \in \mathscr{E}_{2}$ form a 1 -intersecting family of 2-element sets. Hence $\left|\mathscr{E}_{2}\right| \geqslant 4$ implies that there exists an element r which is common to each of the sets $E-2, E \in \mathscr{E}_{2}$. Now $\left|\mathscr{E}_{1}\right| \geqslant 4$ and the 1 -intersection property entail that r belongs to every member of \mathscr{E}_{1} as well. Hence we have proved that every member of $\mathscr{B}-\mathscr{D}$ intersects $\{1,2, r\}$ in at least two points. If $D \in \mathscr{D}$ then the 1 -intersection property implies $r \in D$ as otherwise D should contain all the different elements $E-\{2, r\}, E \in \mathscr{E}_{2}$, but $\left|\mathscr{E}_{2}\right|>|D|$. So we obtain

$$
\sum_{1 \in B_{i}} c_{i}+\sum_{2 \in B_{i}} c_{i}+\sum_{r \in B_{i}} c_{i} \geqslant 2 \sum_{i=1}^{s} c_{i}-1
$$

Consequently for either $j=1$ or $j=2$ or $j=r$

$$
\sum_{j \in B_{i}} c_{i} \geqslant \frac{2 \sum_{i=1}^{s} c_{i}-1}{3} \geqslant \frac{(2-1 /(10+\delta)) \sum_{i=1}^{s} c_{i}}{3} \geqslant \frac{6+\delta}{10+\delta} \sum_{i=1}^{s} c_{i}
$$

Suppose now $\left|\mathscr{E}_{2}\right| \leqslant 3$. Then every member of $\mathscr{B}-\left(\mathscr{E}_{2} \cup \mathscr{D}\right)$ contains 1 .

As $\left|\mathscr{E}_{2} \cup \mathscr{D}\right| \leqslant 4$, we obtain

$$
\sum_{1 \in B_{i}} c_{i} \geqslant \sum_{i=1}^{s} c_{i}-4 \geqslant\left(1-\frac{4}{10+\delta}\right) \sum_{i=1}^{s} c_{i}=\frac{6+\delta}{10+\delta} \sum_{i=1}^{s} c_{i}
$$

i.e., (18) holds for $j=1$.

Now we must consider the case $|\mathscr{D}| \geqslant 2$. As we proved $[3, u] \subseteq D$ for every $D \in \mathscr{D}$, this case is possible only for $u=4$. Then the special choice of C implies $|\mathscr{D}|=2$. We may assume $\mathscr{D}=\{\{3,4,5\},\{3,4,6\}\}$. Let $\mathscr{E}=$ $\left\{E_{1}, \ldots, E_{w}\right\}$ be the collection of B_{i} 's disjoint to [3, 4]. As each of the E_{j} 's contains 5 and 6 it follows from the maximal choice of C that $w \leqslant 2$. If $w \leqslant 1$ then replacing $[1,2]$ by $[3,4]$ we come back to the preceeding case $|\mathscr{D}| \leqslant 1$. If $w=2$ then the 1 -intersection property yields $\left\{E_{1}, E_{2}\right\}=\{\{5,6,1\}$, $\{5,6,2\}\}$. Now each of the remaining members of \mathscr{B} has to intersect $\{1,2\}$, $\{3,4\}$, and $\{5,6\}$.

Thus being a 3-element set it is contained in [1,6]. But then the Erdös-Ko-Rado theorem yields $|\mathscr{B}| \leqslant\binom{ 6-1}{3-1}=10<11$, a contradiction. Q.E.D.

Now we apply the lemma to the proof of the theorem. Let $\mathscr{B}^{\prime}=$ $\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{g}}$ be the base of \mathscr{F}. Then as in the preceeding sections, $|\mathscr{F}| \geqslant$ $(10+\epsilon)\binom{n-3}{k-3}$ implies for $n>n_{0}(k, \epsilon) l_{1}=3$. We apply the lemma for $\mathscr{B}=\mathscr{B}_{3}$ and

$$
c_{i}=\frac{|F \in \mathscr{F}| B_{i} \subseteq F \mid}{\binom{n-3}{k-3}} \quad \text { for } \quad B_{i} \in \mathscr{B}_{3}^{\prime}
$$

Setting $\delta=\epsilon / 2$ the validity of (17) follows for $n>n_{0}(k, \epsilon)$. Now Lemma 6 yields that there exists a $j \in[1, n]$ such that

$$
d(j)>\frac{6+\delta}{10+\delta} \sum_{i=1}^{s} c_{i}\binom{n-3}{k-3}+O\left(\binom{n-4}{k-4}\right)>\left(\frac{3}{5}+0.01 \epsilon\right)|\mathscr{F}|
$$

for $n>n_{0}(k, \epsilon)$.
Q.E.D.

Now we turn to the proof of Theorem 6.
Let us recall the proof of Lemma 6. Let us suppose that instead of $\delta>0$ we assume only $\delta>-1$. It still ensures us of $s \geqslant 10$ but not of $s \geqslant 11$. However the fact $s \geqslant 11$ was used only at the very end of the proof. If we assume only $s \geqslant 10$ then we have to deal yet with the case \mathscr{B} consists of 10 subsets of $[1,6]$. If there is an $i \in[1,6]$ which is contained in at least 6 , i.e., not contained in at most 4 members of \mathscr{B} then for this i we have

$$
\sum_{i \in B_{i}} c_{j} \geqslant \sum_{j=1}^{s} c_{j}-4 \geqslant \frac{6+\delta}{10+\delta} \sum_{j=1}^{s} c_{j}
$$

Otherwise every element of $[1,6]$ has degree 5 , i.e., \mathscr{B} is a regular 1-intersecting family. Hence the proof of Lemma 6 yields:

Lemma 7. Let $\mathscr{B}=\left\{B_{1}, \ldots, B_{s}\right\}$ be a 1 -intersecting family of 3-subsets of $[1, n]$. Suppose that for $1 \leqslant i \leqslant s$ there is a constant associated with the set B_{i} Suppose further that for some $\delta,-1<\delta<+1$,

$$
\begin{equation*}
\sum_{i=1}^{s} c_{i}>10+\delta \tag{19}
\end{equation*}
$$

Then either there exists a $j \in[1, n]$ for which (18) holds or the B_{i} 's form a regular, 1-intersecting family of cardinality 10 on some 6 -element subset Y of X.

Now we use Lemma 7 to prove Theorem 6.
From the maximality of $|\mathscr{F}|$ it follows again that if $\mathscr{B}^{\prime}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ is the usual decomposition of the base of \mathscr{F} then $l_{1}=3$. Moreover if we define

$$
c_{i}=\frac{\left|\left\{F \in \mathscr{F} \mid B_{i} \subseteq F\right\}\right|}{\binom{n-3}{k-3}} \quad \text { for } \quad B_{i} \in \mathscr{B}_{3}^{\prime}
$$

then it follows $\sum_{i=1}^{s} c_{i}>10-\epsilon$. Setting $\delta=-\epsilon$ it follows from Lemma 7 that either we have for some $j \in X$
$d(j) \geqslant \frac{6-\epsilon}{10-\epsilon}|\mathscr{F}|+O\left(\binom{n-4}{k-4}\right)>\left(\frac{3}{5}-\epsilon\right)|\mathscr{F}| \quad$ for $n>n_{0}(k, \epsilon)$,
a contradiction or $\left|\mathscr{B}_{3}\right|=10$ and for some 6 -subset Y of X the members of \mathscr{B}_{3} form a 1 -intersecting, regular 3 -graph on it.

Now we prove that every subset of X intersecting nontrivially each member of $\mathscr{B}_{3}{ }^{\prime}$ contains a member of $\mathscr{B}_{3}{ }^{\prime}$. Obviously it suffices to prove that every 4-element subset, G of Y contains a member of $\mathscr{\mathscr { B }}_{3}{ }^{\prime}$. As $\binom{6}{3}=2 \cdot 10 . \mathscr{B}_{3}{ }^{\prime}$ contains exactly one of each 3 -subset of Y and its complement. So if G does not contain any member of $\mathscr{B}_{3}{ }^{\prime}$, then each one of the four 3-subsets of Y containing $Y-G$ belongs to $\mathscr{B}_{3}{ }^{\prime}$. From the 1 -intersection property it follows that the remaining members of $\mathscr{B}_{3}{ }^{\prime}$ intersect $Y-G$ nontrivially. Hence at least one of the two elements of $Y-G$ is contained in at least 7 members of $\mathscr{B}_{3}{ }^{\prime}$ contradicting the regularity of it. Sctting $\mathscr{C}=\mathscr{B}_{3}{ }^{\prime}$ it follows now $\mathscr{F} \subseteq \mathscr{F}_{y, \mathscr{C}}$.
Q.E.D.

7. The Proof of Theorem 7

Let $\mathscr{B}=\mathscr{B}_{l_{1}} \cup \cdots \cup \mathscr{B}_{l_{r}}$ be the usual decomposition of the base on \mathscr{F}. From the maximality of $|\mathscr{F}|$ it follows $l_{1} \leqslant t+s$. On the other hand Lemma 4 yields $l_{1} \geqslant t+s$, i.e., $l_{1}=t+s$. Let $\mathscr{B}_{t+s}^{\prime}=\left\{B_{1}, \ldots, B_{q}\right\}$. The maximality of $|\mathscr{F}|$ implies $q \geqslant\left(\begin{array}{l}(+2 s) \\ (+s) \text {. Let us detine }\end{array}\right.$

$$
c_{i}=\frac{\left|\left\{F \in \mathscr{F} \mid B_{i} \subseteq F\right\}\right|}{\binom{n-t-s}{k-t-s}} \quad \text { for } \quad i=1, \ldots, s
$$

We need a lemma.
Lemma 8. Let B_{1}, \ldots, B_{q} be a t-intersecting family of $(t+s)$-element subsets of $X=[1, n]$. Suppose $q \geqslant\binom{ t+2_{s}}{t+s}$. Then either there exists $a(t+i)$ element subset Y of X for some $0 \leqslant i<s$, satisfying $\left|B_{i} \cap Y\right| \geqslant t+i-$ $s+1$ for $j=1, \ldots, q$, or there exists $a(t+2 s)$-set Z such that $\left\{B_{1}, \ldots, B_{q}\right\}=$ $\{B \subset Z \mid B=t+s\}$.

Proof. Let us consider the intersections $B_{1} \cap B_{j} j=1, \ldots, q$. From the binomal identity

$$
\binom{t+2 s}{t+s}=\sum_{i=0}^{s}\binom{t+s}{t+i}\binom{s}{s-i}
$$

it follows that either for some $(t+i)$-subset Y of $B_{1}, 0 \leqslant i<s$

$$
\begin{equation*}
\left|\mathscr{D}_{Y}=\left\{B_{j} \mid 1 \leqslant j \leqslant q, B_{j} \cap B_{1}=Y\right\}\right|>\binom{s}{s-i}, \tag{20}
\end{equation*}
$$

or $q=\binom{(+2 s)}{t+s}$ and for every $i, 0 \leqslant i<s$, and every $(t+i)$-subset of B_{1} we have equality in (20). Let us consider the first possibility. We assert $\left|B_{j} \cap Y\right| \geqslant t+i-s+1$ for $1 \leqslant j \leqslant q$. Suppose that it is not true, i.e., for some $1 \leqslant j \leqslant q\left|B_{j} \cap Y\right| \leqslant t+i-s$. The t-intersection property implies $B_{j} \cap Y=t+i-s$, and $B_{j} \supseteq\left(B_{r}-Y\right)$ for $r=1$ and for the values of r satisfying $B_{r} \cap B_{1}=Y$. Now (20) implies that for these values of r $\left|\bigcup_{r}\left(B_{r}-Y\right)\right|>s$ yielding $\left|B_{j}\right|>t+i-s+(s-i)+s=t+s, \quad$ a contradiction.
From this argument follows that if the second possibility holds then not only we have equality in (20) for every $0 \leqslant i<s$ and every $(t+i)$-subset Y of B_{1} but there exists an s-element subset Z_{Y} of $X-B_{1}$ such that $\mathscr{\mathscr { O }}_{Y}=$ $\left\{B \subset X\left|B \cap B_{1}=Y,(B-Y) \subset Z_{Y},|B|=t+s\right\}\right.$. The statement of the lemma would follow if we proved Z_{Y} does not depend on Y, i.e., for Y, $Y^{\prime} \subseteq B_{1},|Y|=t+i,\left|Y^{\prime}\right|=t+i^{\prime} Z_{Y}=Z_{Y^{\prime}}$. If it is not true then we may assume that it does not hold for a pair Y, Y^{\prime} satisfying the additional
requirements $Y \cup Y^{\prime}=B_{1}, s>i+i^{\prime}$. Now let us choose $B \in \mathscr{D}_{Y}$ and $B^{\prime} \in \mathscr{D}_{Y^{\prime}}$ in such a way that $\left|(B-Y) \cap\left(B^{\prime}-Y^{\prime}\right)\right|<s-i-i^{\prime}-$ it is possible as $Z_{Y} \neq Z_{Y^{\prime}}$ and $s>i+i^{\prime}$. But then we have $\left|B \cap B^{\prime}\right|<$ $\left(t+i+i^{\prime}-s\right)+\left(s-i-i^{\prime}\right)=t$, a contradiction proving the lemma.

Now we apply the lemma to the proof of the theorem. If the first possibility holds then it follows that for some element $y \in Y$

$$
\begin{aligned}
d(y) & \geqslant \frac{t+i-s+1}{t \dashv i}|\mathscr{F}|+O\left(\binom{n-t-s-1}{k-t-s-1}\right) \\
& \geqslant \frac{t-s+1}{t}|\mathscr{F}|+O(|\mathscr{F}|)>\left(\frac{t+s}{t+2 s}+\epsilon(t, s)\right)|\mathscr{F}|
\end{aligned}
$$

as $t>2 s(s-1)$, and $n>n_{0}(k, s, t)$, a contradiction proving the theorem for this case.

In the second case we have for some $(t+2 s)$-element subset Z of X $\mathscr{B}_{t+s}=\{B \subset Z| | B \mid=t+s\}$, and consequently $|F \cap Z| \geqslant t+s$ for every $F \in \mathscr{F}$ follows from the t-intersection property.

Now the maximality of $|\mathscr{F}|$ yields $\mathscr{F}=\{F \subset X| | F|=k,|F \cap Z| \geqslant$ $t+s\}$.
Q.E.D.

References

1. M. Deza, Solution of a problem of Erdös-Lovász, J. Comb. Theory, Ser. B16, 166-167.
2. P. Erdös, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets Quart. J. Math. Oxford, Ser. 12 (1961), 313-320.
3. A. J. W. Hilton and E. C. Milner Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 18 (1967), 369-384.
