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Let d and S? be two intersecting families of k-subsets of an n-element set. It is 
proven that l~.JuS?l <(;:i)+(;::) holds for n>f(3+,/?)k, and equality holds 
only if there exist two points a, b such that {a, b} n F# 0 for all FE d u g, For 
n=2k+o(Jj;) an example showing that in this case max 1 d u B 1 = (1 - o( 1 ))( ;) is 
given. This disproves an old conjecture of Erdiis [7]. In the second part we deal 
with several generalizations of Kneser’s conjecture. 0 1986 Academic Press, Inc. 

1. INTRODUCTION AND EXAMPLE 

Let X be an n-element set. For notational simplicity we suppose 
X= ( 1, 2,..., n}. The family of k-element subsets of X is denoted by (c). A 
family of sets 9 is called intersecting if A n B # a holds for all A, BE 9. 

For n 3 2k the vertex-set of the Kneser graph K(n, k) is (f) and two ver- 
tices A, BE (t) are connected by an edge if A n B = 0. Let 9$ = 
{AE(f):min A=i} for i= 1,2,..., n-2k+ 1 and gO= (AE(~): AC 
{n - 2k + 2,..., n} >. Each K is intersecting so this partition of (c) shows that 
the chromatic number of the Kneser graph satisfies X(K(n, k)) < n - 2k + 2. 
Kneser [22] conjectured and Lovasz [23] proved that here equality holds. 
Barany [ 1 J gave a simple proof. Erdijs [7] suggested the investigation of 
the cardinality of colour classes of Kneser graphs, i.e., the cardinality of 
intersecting families of k-sets, especially the case of two intersecting 
families. 

Let ft(n, k) denote max ( 1 U l~i~r ~1: EC (t), 6 is intersecting). 
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Lovasz’s theorem says that f,(n, k) < (z) for t < n - 2k + 1. Erdos conjec- 
tured that 

(1) 

for all n 2 2k + t - 1. Equation (1) holds for t = 1, for all n > 2k, as was 
proved by Erdos, Ko, and Rado [S]. For t > 2 this conjecture turned out 
to be wrong for n = 2k + t - 1 as pointed out by Hilton [19] for k = 3 and 
the second author [ 141 for all k. However, Erdos [6] proved that (1) 
holds for n large enough. Example 1 shows that (1) can hold only for 
n>2k+t+JSf. 

Knowing Hilton’s example Erdos [7] made a weaker conjecture 
f2(n, k) < (;I :) + (;I:) + (i-i). Again Example 1 shows that for 
n=2k+o($) we have f2(n, k) > x1 G i,c t (;I:) for any fixed t, if k is large 
enough. 

EXAMPLES. Let n=2k+2v, v<k and X=X,uX,, IX11=lX2(= 
k+v. Define %= (FcX: IFI =k, IFnXiI > (k+v)/2) (i= 1,2). 

Obviously, e is intersecting. Then 

IF$u2q= ; - 1 0 (k-u)/2<i<(k+u)/2 
(“j2)(:!fj) 

~(a)-(v+l)(~)(~)=(~)(l-(v+l)x 

(;2)(,;y-&y(;2))4;) (1 -(v+ 1)Jnl(n-w~/2)3 

Here we used the Stirling formula (see, e.g., [25 J ) which yields 
(,;,) -2”/,/m. Here we have 

1% uF4 > 0 ; (1 - 3v/&). (2) 

Now using the equality (see [25]) ( CX:y),2)~ (*y2) exp( - t2/x) we obtain 
that 

(3) 
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if t < log(k/u2). (Some hints can be found in the end of Section 4.) For 
t = 2, more careful calculation shows that for every fixed c > 0 and for 
n=2k+c& we have 

pQJ9y >(l+h(c)) ((;-:)+(z))~ (4) 

where h(c) > 0 if k > k,(c). Thus (1) cannot hold for n - t - 2k = O(A). 

2. RESULTS FOR Two INTERSECTING FAMILIES 

We prove that the Erdos conjecture is essentially true for n = 
2k + O(A). (Here ai = SZ(bi) means that bi/ai + 0 whenever i --) CO.) 

THEOREM 1. Ifn=2k+c& where c > 0, and Fl, g2 are intersecting 
families of k-subsets of an n-element set then 1 FI v F2 ( < ( 1+ c - 4, 
UK :) + (;I:))* 

The proof of this theorem and the proof of all the 
and 3 are postponed to the last sections of the paper. 

THEOREM 2. If n > $(3 + 3) k-2.62k then 

Equality holds iff there exists 
contain at least one of them. 

two elements so that all members of FI and 2F 2 

results in Sections 2 

This theorem is an improvement of an earlier result of the second author 
who proved the statement for n > 6k [ 141. 

Similar theorems can be proved for two hypergraphs possessing 
shifting-stable properties. (cf. Sect. 4) We give 3 examples. 

The family 5 c (f) is r-z’ntersecting if 1 Fn F 1 2 r holds for all F, F E 9. 
Erdos et al. [S] proved that for n > n,(k, r) 19 I < (I:‘,) holds. Here, if 
191 = (;I’,) then there exists an r-subset R of X such that 
9 = (FE (f): R c F). The first author [ 111 determined the value of 
n,(k, r) = (r + 1 )(k - r + 1) for r > 15 and recently Wilson [27] proved that 
this holds for all r. 

THEOREM 3. Let FI c (i), F2 c (f) be r,-intersecting and r,-intersecting 
families, respectively. If n 2 n,(k, rl) + n,(k, r2) then I & u 92 1 f 
(It:::) + (;I:;) - ($::;I:;). 
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Here for n > nO(k, rl) + no(k, r2) equality holds only if there exist two 
subsets RI, R2 c X, 1 Ri I= ri, RI A R2 = 0 such that 6~ {FE ( :)I Ri c F}. 

We say 9 c (t) is Z-wise intersecting if FI n . * * n Fl # 0 holds for all 
F 1,..., F[E~. The first author [lo] proved that ) 9) < (1-i) holds for 
n 2 [kZ/(Z - 1 )] = n 1 (k, I). Moreover, for n > n 1 equality implies n 9 # 0. 

THEOREM 4. Let &, S$ c (t) be II-wise (I,-wise) intersecting families, 
respectively. (II, Z2 2 2). If nan,(k, Zl)+nl(k,Z,) then 191u921 G 
(;z:) + (;I;) holds. H ere f or n > n,(k, II) + n, (k, Z2) equality holds only if 
there exist two elemen Is Xl, x2 so that Fl uF2 = {FE (f): Fn 
{x1,x21#01* 

We say that the matching-number of 9 c (c) is t if 9 does not contain 
t + 1 pairwise disjoint (but contains t such) members. The above-mentioned 
Erdijs theorem [6] says that 19 I < C1 di6, (;I:) whenever n 2 n,(k, t). 
Moreover equality holds iff there exists a t-subset T such that 
9 = (FE ( f): F n T # a}. Bollobas, Daykin, and Erdos [ 2) proved 
n,(k, t) < 2k3t. 

THEOREM 5. Let Fl, F2 c (c) be such that S$ does not contain more than 
ti pairwise disjoint members (i= 1, 2). Then for n >n,(k, tl) +n,(k, t2) we 
have I%u%I GC1<iQtl+Q ([z I>. Here equality hoIds only if there exists a 
(tl + t,)-subset T such that & uY2 = (FE (f): Fn T# 0}. 

3. GENERALIZATIONS OF KNESER'S CONJECTURE 

Theorem 5 is a small step forward verifying the following conjecture of 
Erdiis [ 301 (also see Gyarfas [ 171): 

CONJECTURE 1. Let S$ u *a* u TX = (c) such that 6 does not contain 
more than t pairwise disjoint k-subsets (1~ i < x). Then n < (x - 1) t + 
(tk + k - 1). 

This conjecture, if it is true, generalizes Lovasz’ theorem which is 
the special case t = 1. Let X(K,(n, k)) be the minimum value of x for which 
such a partition exists. (Here K,(n, k) means a (t + 1 )-uniform hyper- 
graph S with vertex-set (f), and a collection (F, ,..., F,, 1 ) E X iff 
IF11 = -.+ = lF,+,\=kand FinFi=@forall l<i<jdt+l.) 

Gyarfas [ 171 observed x < 1 + (n - tk - k + 1 )/t: Let S$ = {FE (i): 
Fn [it-t+ 1, it] #0} for l<i,<x--1 and F0=9--uS$. Then 
I u So I < tk + k - 1, hence each S$ contains at most t pairwise disjoint 
members. 
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THEOREM 6. (GyArf&s [ 171). Conjecture 1 holds for the following cases: 

(1) k=2, 

(2) k=3,n<5t-2. 

Case (1) follows from a theorem of Cockayne and Lorimer [ 51. 

THEOREM 7. x( K,(n, k)) 2 (n/t) - ck, where ck depends only on k. 
(c, < k4). 

Theorems 6 and 7 indicate that Erdiis’ conjecture is very probably true. 
Examples analogous to Example 1, show that to give a purely com- 
binatorial proof is unlikely. 

Let n 2 k 2 r be positive integers. Let us denote by T(n, k, r) the 
minimum size of a family 9 c (r) such that every k-subset of X has an 
r-subset that belongs to F. 

Define a graph K(n, k, r) with vertex-set (f). Two vertices A, BE (f) are 
connected by an edge iff ( A n B 1 < r. (For r = 1 we get the usual Kneser 
graph. ) 

CONJECTURE 2. [13]. For r 2 2 X(K(n, k, r)) = T(n, k, r) holds for 
n > n,(k, r). 

This conjecture was proved in [ 131 for r = 2. Here we prove Conjec- 
ture 2 in a weaker form, as it was mentioned in [ 131: 

THEOREM 8. Let k and r be fixed. Then 

x(K(n, k r)) = (1 + o( 1)) T(n, k, r). 

An interesting extension of Kneser’s conjecture was raised by Stahl [25]. 
Define for each graph 99 and for each natural number 1 the l-chromatic 
number ~~(9) as the minimal number of colours needed to give each vertex 
of Y 1 colours such that no colour occurs at two adjacent vertices. 
Otherwise stated, xl(%) is the minimal number of independent subsets of 
the vertex-set of 9 such that each vertex occurs in at least 1 of them. 

CONJECTURE 3. [25]. X[(K(n, k)) = rl/kl(n - 2k) + 21. 

Stahl [26] proved his conjecture using Lovasz’s theorem for 1 < 1 f k 
and also that the right-hand side is always an upper bound for XI(K(n, k)). 
The conjecture was proved for k = 3, I= 4 by Garey and Johnson [ 151. 
Further results were proved by Chvatal, Garey, and Johnson [4] and 
Geller and Stahl [ 161 (see, e.g., Brouwer and Schrijver [ 31). 
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4. LEMMAS FOR THEOREMS 1 ANDY 

Following Erdiis, Ko, and Rado [S] we define a shifting operation S, 
for all 1 < i < j < n. However, here we apply it to two intersecting families 
simultaneously. For 9 E 3$ u F2 let 

ifj~F~~I,i#F,F-(j}u(i}~~~, 

ifiEFE&,j$F, F- (i}u (j>$Y*, 

otherwise. 

Let S,(9Q= {S,(F): FE~I), a= 1,2. 

LEMMA 1. 1 S,(9$)l = 1% 1, S,(&) is intersecting if 9I is intersecting, 
S,( 91) A S,( 92) = 0 if Fl n 92 = 0. 

Proof The first two statements were proved in several places, e.g., in 
[S] and the third one, which is also easy, in [14]. 1 

We call the intersecting family left (right) stable if FE 9, jE F, i $ F 
implies F- (j} u (i} E 9 for all 1 < i < j < n (for all 1 <j < i < n). 

LEMMA 2. Let 9 c (i) be a left stable intersecting family, I XJ = n > 2k. 
Denote by F0 = {FEN: 14 I;). Then 9$ is 2Gntersecting, i.e., I Fn FI 2 2 
holds for every F, F E 9$. 

Proof Suppose for contradiction that there exist F and F such that 
l$FuF’ and FnF’=(x}. Then F”=F’-{x}u{l)EF, F”nF=@ 
contradicting the intersecting property of F. f 

LEMMA 3. Let 5 c (z) be a left stable, intersecting family, ) XI = n > 2k, 
h >, 0. Denote by d r* those members F of 9 for which ) F n ( I,..., 2i) I > i 
holds for some i > h. Then for all F, F’ E (Y - 9*) we have 
FnF’n[1,2h]#@. 

Proof Actually, we prove the following stronger statement: 

PROPOSITION 1. Let 9 c ( f) be a left stable, intersecting family on 
X= Cl, n], A, BEG. Then there exists an i such that (A n Cl, i] I + 
(Bn[l,i]l>i. 

Proof Suppose the contrary and let A and B be a counterexample 
minimizing C= E A a + Cb E B b. Set i=min AnB. Since IAn [l, ill + 
IBn[l,i](<i, there exists a jE[l,i-l] such that j$AuB. Let A’= 
A - {i> u {j). Now the pair {A’, B) is a counterexample again but 
c a E A, a + Cbs B b is smaller. This contradiction shows that such a pair does 
not exist. 1 
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Finally, let F, F’ E 9 - 9 *. By Proposition 1 we have an i such that 
(Fn [l, ill + IF n [l, ill > i. Then FnF’n [l, i] # (25, hence we are done 
with Lemma 3 if i < 2h. But i > 2h implies, e.g., for F, that 1 Fn [ 1, i] 1 > i/2, 
i e FEY*, a contradiction. 1 * ‘, 

LEMMA 4. Let \XI=2k+2v=n,v<(k/4).Letd=(FcX:IFI=kand 
)Fn[1,2i]jbiforsome i>(k+v)/2}. Then 

Proof. Let i(F)=min{i: jFn[l,2iJ) ai). Then JFn[l, 2i(F)]) =i(F). 
We use the well-known fact that the number of O-l sequences consisting of 
i O’s and i l’s in which every initial segment contains more O’s then l’s 
is equal to (7)/(2i- 1) = Aj (see, e.g., [24]). Hence 1 {FE (c): i(F) = i>j = 
Ai(tTy). It is easy to see that 

Hence we have 

Moreover the ratio of the (i + 1)th and the ith member equals to 
qi=2(2i-l)(k-i)(n-k-i)/(i+ l)(n-2i)(n-2i+ 1). NOW qi< l- 
(n - 2k)2/(n - 2i)2 < 1 - v2/k2 if i >/ k/4. This yields 

Summing up these inequalities for (k + v)/2 < i d k we get 

’ 2k -v2/4k 
< k Te 0 * I 
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Remark. A very similar calculation shows that for u 
1 d [ > &(;)(k/v*) e-v2’k. 

= O(d) we have 
This can be used to verify (4). 

5. THE PROOF OF THEOREM 1 

By Lemma 1 we can suppose that T1 is a left-stable and F2 is a right- 
stable intersecting family. Let X= X, u X2, where X1 = ( 1, 2,..., k + u}, 

X*=X-&, /x+(x*/(<1 (u=c A/2). Let & be the family given by 
Lemma 4. Set 9; = F1 - &. By Lemma 3 

FnFnX,#@ holds for all F, F’ E 9 ;. (6) 

Define d= (FnX,: FEN;, J’Fn X, I = i>. By the Erdiis-Ko-Rado 
theorem and (6) we have 

I4IG 
IXA-1 

( 1 
i.l * (7) 

To each A E 4 there are at most (i?\) FE 9-i satisfying A c F, Fn X, = A. 
Hence we get 

Similarly, set F;=92-a, where B= (FE(~): (Bn [n-2i+ 1, n]l ai 
holds for some i>(k+v)/2). By symmetry jgj = I&‘/. Let 
LBi=(FnX2:FEP;, IFnX,l=i). We have 

I&l-l 
Igil< i.l 

( > 
(9) 

In the estimations (8) and (10) we count twice the sets G = A u B, A E di, 
BE~k-i. SO We have 

I~;u~;I GE IdI i I (Ei)+ IBk-il(‘x,/)_ldl IBk-iis 
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The coefficient of 14 ( is nonnegative by (9) so we can replace 14 ) by 
(I Xl_li ‘) without spoiling the inequality: 

Finally, ISiuFz( < IF;uS;I + [&‘I + IB). However, I&( <(;I:) 8cW2 
e -cc2/16 by Lemma 4. This finishes the proof of Theorem 1. 1 

6. THE PROOF OF THEOREM 2 

Again by Lemma 1 we can suppose that Yr is a left-stable and F2 
is a right-stable intersecting family. Let X = {FE (f): 1 E F, n E F), 
&=Fr--X, B=F2-X. Moreover dl=(A~&‘: le:A (and n#A)), 
~O={A~&‘: l$Aandn$A}and~&=(A~~-~Z:n~A(andl$A)). 

For a family If define A,% as its shadow of order 1, i.e., 
A,% = (L: (L( = I and THE 2, HzL). Katona [21] proved the following 

If X is a family of r-sets and I Fn F I 3 t holds for all 
F, FEX then I A,%‘( 2 IXj(2r7r)/(2r;r) holds for r- t<Z<r. (1) 

The set-system J& is 2-intersecting, by Lemma 2, hence ~~26 = 
([2,n-11-A: AEsz&} is an (n - k - 2)-uniform (n - 2k)-intersecting 
system. Using (11) we have 

IfAE&~andl<x#Athen(A-(n}u(x))E&O. 
This yields 

Idol 2; I{(x, A): 1 <xEAEJ&)I = “-i-l Isag. (13) 



KNESER GRAPHS 279 

Finally, we have 1~~2~1 <(:I;)- Idk--ldGl hence using (12) and (13) 

-I&l 
n-k-l 

k-1 +1&l 

+l4l 
k 

n-k-l’ 

Here the coefficient of I do I is less than 0 if n > +(3 + 3) k. Similarly, we 
get I al < (3, or n E ( n 99), yielding Theorem 2. 1 

Remark. We proved that if AI is left-stable then I d - X I < ($1 f) 
holds for n > n,(k). This statement does not hold for n < i(3 + &) k as 
an easy calculation and the following example show: AQ’ = {A E (f): 
(An [L 3]lxq. 

7. THE PROOF OF THEOREMS 3, 4, AND 5 

We prove only Theorem 3. The other proofs are similar and are left to 
the reader. We use the following Lemma which was proved in several 
places (e.g., [S, lo]): 

LEMMA 5. Let 9 c (c) be a family of sets having property P. Then 
S,(9) has property P, too. 

Here property P can be, e.g., 

IFnFI >r for all F, F’ E 9 (14) 
I F,n ..a nw0 for all F,, ,..., Fj E 9’ (15) 

IF+ .a. uF,+,(<(t+l)k-1 for all F, ,..., F, + 1 E Y. (16) 

The following lemma is analogous to Lemma 3, but is in a weaker form. 

LEMMA 6. Let 9= c ( f) be a left-stable family having one of the proper- 
ties P defined in (14)-(16), and let n,(k) be the threshold function for this 
property (i.e., n,(k) is one of n,(k, r), n,(k, 1) and n,(k, t)). Then the family 
FO = (Fn Cl, n,(k)]: FEY} has property P, as well. 

The proof is easy. We have to use only that n,(k, r) 2 2k - r, 
n,(k, 1) > lk/(l- l), n,(k, t) > tk. We present only the proof of (14). Sup- 
pose for contradiction ( Fn F’ n [ 1,2k - r] ( < r and F, F E 9 are such that 
( F n F( is minimal. Now we may choose an element i (1~ i < 2k - r), 
i&FuF’, andj>2k-r,jEFnF’. Then F-{j)u{i)=F”~Y. However 
)FnF”n[1,2k-r]l cr and )FnF”) <IFnF’j, a contradiction. 
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Proof of Theorem 3. It goes similarly to the proof of Theorem 1. Let F1 
and Fz be an rl- and r,-intersecting family, respectively. By Lemmas 5 and 
1 we can suppose that Fi is left-stable and Fz is right-stable. Split X into 
two parts X=X,uX, such that X1=[l,no(k,r,)], X*=X-Xi, By 
hypothesis 1 X2 I> n,(k, r2). Now define 4 = (Fn X1 : FE Sl, ) Fn X1 1 = i], 
aj= (Fn X,: FE Pz, 1 Fn X2 I =j}. By Lemma 6, and the monotonicity of 
nO(k, r i ) we can use the Erdos-Ko-Rado theorem, saying 

(17) 

To each A E 4 there are at most (1;“_2:) FE P1 satisfying Fn X, = A. Hence 
we get 

In the estimations (19) and (20) we count twice the sets G = A u B, A E 4, 
BEL~~-~. So we have 

From now on the proof coincides with the proof of Theorem 1, i.e., 
because the coefkient of 141 is nonnegative by (18), we can replace 14 I 
by (I Xl_l,rl) without spoiling the inequality: 

Using (18) we have 
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8. THE FR~~F OF THEOREM 7 

We use the following lemma of Hajnal and Rothschild [18]. (It was 
proved for t = 1 by Hilton and Milner [20] in a more exact form.) Here we 
state it in a slightly stronger form, which was proved by Bollobas, Daykin 
and Erdiis [2]. 

LEMMA 7 [2]. Let P c (:) and suppose that 9 contains at most t 
pairwise disjoint members. Then either 

(a) there exists an element x E X such that 9( lx) = def{F~ 9: x q! F) 
contains at most (t - 1) pairwise disjoint members (i.e., 9(-1x) = @ for 
t = 1, in this case). Or 

(b) 191 <r2t2(::i). 

Call the element x E X extremal for 9 if the maximum number of dis- 
joint edges in F( lx) is less than in 9, i.e., t(F) > t(F( lx)). 

Now we are ready to prove Theorem 6. Suppose F1 u F2 u * * * u FX = 
(t) and t(z) < t. Let 9: =&A?=X, e=@forl<i<X.Ifwedefinethe 
systems {SS>, ( Y;>, A’” (1 ,< i < x) and there exists an FJy having an 
extremal point x then set Fg + ’ = 9;( 1 x) for all 1 < i < x, 

y;+L YYU {x} for i=j 
Y; otherwise, 

and Xa+l = Xa - {x}. Then we have Ci t(Fi”) > Ci t(FS’ ‘) in view of 
t(FF+l)< t(Fy) and t(PT+l ) < t(Fy). Continue this procedure till there 
exists no extremal point. Suppose that our procedure stops after the sth 
step. We have t(9f) + 1 Y; 1 < t. Let 9S,, 9Tz,..., 9iU be those families which 
satisfy t(Ff) > 0, let tj = t(Ft) (1 6 j< u), I X” ( = m. By Lemma 7 each 
family 9; contains less than k2tj(T:z) members. Hence we get 

Comparing the two extreme sides yields 

(21) 

Moreover, we know that I u Y; I = xi I Yf I < Xt - x1 ~j~ u tj. This yields 

n=IXI=m+C)Y~Idm+Xt- C tjs 

l<j<u 



282 FRANKLANDF~~EDI 

Using (21) we get 

(22) 

Now, it is easy to see that k2(CI <j<u ty)1’2 - C tj < ik4t independently 
of u. (As tj < t we have C tj 2 (C tT)/t. Set T= m, we have 
k2(C t;)li2 -C tj 6 k2T- T2/t < k4t/4.) Hence (22) gives 

k4t 
n--<Xt 

4 

as desired. 1 

Remark. We can prove in Lemma 7(b) that 1 F 1 < 2rt2( :I;). Using 
similar calculations we can show that x 2 (n/t) - k3. 

9. THE PROOF OF THEOREM 8 

Let X be an r-graph on ZI elements (i.e., 1 u X 1 = u). As usual, denote by 
ex(n, X)=max(\F): Fc(~), JX( = n, F does not contain &? as a sub- 
system >, By this notation we have T(n, k, r) = (y) - ex(n, XF). (XF denotes 
the hypergraph consisting of all r-subsets of a k-set.) It is well known (see, 
e.g., ErdGs, Simonovits [9 3). 

LEMMA8 [9]. IfYc(f), 1x1 =n, 19) >ex(n, X)+&(y) then F con- 
tains at least &I(:) copies of Z’, where E’ depends only on v and E. 

We will use the following generalization of a theorem of Hilton and 
Milner [20]. It was proved by the first author in a more exact form. 

LEMMA 9 [ 121. If p c (z), ) Xl = n, 9 is r-intersecting (i.e., 
IFnF’I br holdsfor all F, F’EF) and) n YI <r then IFI <nk-‘-’ holds 
for n > n,(k). 

Proof of Theorem 8. Let (i) = PI u *. . u Fm, where 8 is an r-inter- 
secting family (1 d i 6 m). Suppose that I n @I >/ r holds for 1 d i < s, but 
In@j<r for s<i<m. Let Ricne, (Ril=r, $%?=(Ri:l<i<s}. By 
Lemma 9 we have I 5 1 < nk - r - ’ holds for j > s, hence 

1 (~I~(m-s)nk-‘-‘~mnk~‘-‘. (25) 
j>s 
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Suppose for contradiction that m < (1 - 1) T(n, k, r). This implies 

= ex(n, 3fF) + E > ex(n, XF) + co 
n 

0 r * 

Lemma 8 yields that 1 (F: ( FI = k, (F) n B = 0 )I > E’(Z) holds. NOW (25) 
gives 

mn k--r-‘> 1 ($I>I(F:IFI=k, t]RicP)I>E’ 
j z s 

This implies m > &‘n’+ l/k! > (:).a T(n, k, r) if n is sufficiently large. 1 

Note added in proof During the last two years, the following progress was made. Hujter 

[31] proved Proposition 1 even for t-intersecting families. Conjecture 1 was proved by Alon, 
Frank1 and Lovasz [28]. They used a generalization of Borsuk’s theorem given in [29]. They 

also generalized Theorem 7. 
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