Extremal Problems Concerning Kneser Graphs

P. FRANKL

C. N. R. S., Paris, France

AND

Z. Füredi

Mathematical Institute of the Hungarian Academy of Science, 1364 Budapest P. O. B. 127, Hungary

Communicated by the Editors

Received April 5, 1984

Let \mathscr{A} and \mathscr{B} be two intersecting families of k-subsets of an *n*-element set. It is proven that $|\mathscr{A} \cup \mathscr{B}| \leq {\binom{n-1}{k-1}} + {\binom{n-2}{k-2}}$ holds for $n > \frac{1}{2}(3 + \sqrt{5})k$, and equality holds only if there exist two points a, b such that $\{a, b\} \cap F \neq \emptyset$ for all $F \in \mathscr{A} \cup \mathscr{B}$. For $n = 2k + o(\sqrt{k})$ an example showing that in this case max $|\mathscr{A} \cup \mathscr{B}| = (1 - o(1))\binom{n}{k}$ is given. This disproves an old conjecture of Erdös [7]. In the second part we deal with several generalizations of Kneser's conjecture. \mathbb{C} 1986 Academic Press, Inc.

1. INTRODUCTION AND EXAMPLE

Let X be an *n*-element set. For notational simplicity we suppose $X = \{1, 2, ..., n\}$. The family of k-element subsets of X is denoted by $\binom{X}{k}$. A family of sets \mathcal{F} is called *intersecting* if $A \cap B \neq \emptyset$ holds for all $A, B \in \mathcal{F}$.

For $n \ge 2k$ the vertex-set of the Kneser graph K(n, k) is $\binom{x}{k}$ and two vertices $A, B \in \binom{x}{k}$ are connected by an edge if $A \cap B = \emptyset$. Let $\mathscr{F}_i = \{A \in \binom{x}{k}: \min A = i\}$ for i = 1, 2, ..., n - 2k + 1 and $\mathscr{F}_o = \{A \in \binom{x}{k}: A \subset \{n - 2k + 2, ..., n\}\}$. Each \mathscr{F}_i is intersecting so this partition of $\binom{x}{k}$ shows that the chromatic number of the Kneser graph satisfies $\chi(K(n, k)) \le n - 2k + 2$. Kneser [22] conjectured and Lovász [23] proved that here equality holds. Bárány [1] gave a simple proof. Erdős [7] suggested the investigation of the cardinality of colour classes of Kneser graphs, i.e., the cardinality of intersecting families of k-sets, especially the case of two intersecting families.

Let $f_i(n, k)$ denote $\max\{|\bigcup_{1 \le i \le i} \mathscr{F}_i| : \mathscr{F}_i \subset \binom{x}{k}, \mathscr{F}_i \text{ is intersecting}\}.$

0095-8956/86 \$3.00 Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. Lovász's theorem says that $f_t(n, k) < \binom{n}{k}$ for $t \le n - 2k + 1$. Erdös conjectured that

$$f_t(n,k) = \sum_{1 \le i \le t} \binom{n-i}{k-1} \tag{1}$$

for all $n \ge 2k + t - 1$. Equation (1) holds for t = 1, for all $n \ge 2k$, as was proved by Erdös, Ko, and Rado [8]. For $t \ge 2$ this conjecture turned out to be wrong for n = 2k + t - 1 as pointed out by Hilton [19] for k = 3 and the second author [14] for all k. However, Erdös [6] proved that (1) holds for n large enough. Example 1 shows that (1) can hold only for $n > 2k + t + \sqrt{k}$.

Knowing Hilton's example Erdös [7] made a weaker conjecture $f_2(n, k) < \binom{n-1}{k-1} + \binom{n-2}{k-1} + \binom{n-3}{k-1}$. Again Example 1 shows that for $n = 2k + o(\sqrt{k})$ we have $f_2(n, k) > \sum_{1 \le i \le t} \binom{n-i}{k-1}$ for any fixed t, if k is large enough.

EXAMPLE 1. Let n = 2k + 2v, $v \le k$ and $X = X_1 \cup X_2$, $|X_1| = |X_2| = k + v$. Define $\mathscr{F}_i = \{F \subset X : |F| = k, |F \cap X_i| > (k + v)/2\}$ (i = 1, 2).

Obviously, \mathcal{F}_i is intersecting. Then

$$\begin{aligned} |\mathscr{F}_{1} \cup \mathscr{F}_{2}| &= \binom{n}{k} - \sum_{(k-v)/2 \leqslant i \leqslant (k+v)/2} \binom{n/2}{i} \binom{n/2}{k-i} \\ &\ge \binom{n}{k} - (v+1) \binom{n/2}{k/2} \binom{n/2}{k/2} = \binom{n}{k} (1-(v+1) \times \binom{n}{k/2} \binom{n-k}{(n-k)/2} \left| \binom{n}{n/2} \right| \\ &> \binom{n}{k} (1-(v+1)\sqrt{n/(n-k)k(\pi/2)})_{i} \end{aligned}$$

Here we used the Stirling formula (see, e.g., [25]) which yields $\binom{x}{x/2} \sim 2^{x}/\sqrt{x(\pi/2)}$. Here we have

$$|\mathscr{F}_1 \cup \mathscr{F}_2| > \binom{n}{k} (1 - 3v/\sqrt{k}).$$
⁽²⁾

Now using the equality (see [25]) $\binom{x}{(x-t)/2} \sim \binom{x}{x/2} \exp(-t^2/x)$ we obtain that

$$|\mathscr{F}_1 \cup \mathscr{F}_2| > \sum_{1 \le i \le t} \binom{n-i}{k-1}$$
(3)

if $t < \log(k/v^2)$. (Some hints can be found in the end of Section 4.) For t=2, more careful calculation shows that for every fixed c>0 and for $n=2k+c\sqrt{k}$ we have

$$|\mathscr{F}_1 \cup \mathscr{F}_2| > (1+h(c))\left(\binom{n-1}{k-1} + \binom{n-2}{k-1}\right),\tag{4}$$

where h(c) > 0 if $k > k_0(c)$. Thus (1) cannot hold for $n - t - 2k = 0(\sqrt{k})$.

2. Results for Two Intersecting Families

We prove that the Erdös conjecture is essentially true for $n = 2k + \Omega(\sqrt{k})$. (Here $a_i = \Omega(b_i)$ means that $b_i/a_i \to 0$ whenever $i \to \infty$.)

THEOREM 1. If $n = 2k + c\sqrt{k}$, where c > 0, and \mathscr{F}_1 , \mathscr{F}_2 are intersecting families of k-subsets of an n-element set then $|\mathscr{F}_1 \cup \mathscr{F}_2| \leq (1 + c^{-4})$ $\binom{n-1}{k-1} + \binom{n-2}{k-1}$.

The proof of this theorem and the proof of all the results in Sections 2 and 3 are postponed to the last sections of the paper.

THEOREM 2. If $n > \frac{1}{2}(3 + \sqrt{5}) k \sim 2.62k$ then

$$|\mathscr{F}_1 \cup \mathscr{F}_2| \leq \binom{n-1}{k-1} + \binom{n-2}{k-1}.$$
(5)

Equality holds iff there exists two elements so that all members of \mathcal{F}_1 and \mathcal{F}_2 contain at least one of them.

This theorem is an improvement of an earlier result of the second author who proved the statement for n > 6k [14].

Similar theorems can be proved for two hypergraphs possessing shifting-stable properties. (cf. Sect. 4) We give 3 examples.

The family $\mathscr{F} \subset {\binom{X}{k}}$ is *r*-intersecting if $|F \cap F'| \ge r$ holds for all $F, F' \in \mathscr{F}$. Erdös et al. [8] proved that for $n \ge n_0(k, r) |\mathscr{F}| \le {\binom{n-r}{k-r}}$ holds. Here, if $|\mathscr{F}| = {\binom{n-r}{k-r}}$ then there exists an *r*-subset R of X such that $\mathscr{F} = \{F \in {\binom{X}{k}}: R \subset F\}$. The first author [11] determined the value of $n_0(k, r) = (r+1)(k-r+1)$ for $r \ge 15$ and recently Wilson [27] proved that this holds for all r.

THEOREM 3. Let $\mathscr{F}_1 \subset \binom{x}{k}$, $\mathscr{F}_2 \subset \binom{x}{k}$ be r_1 -intersecting and r_2 -intersecting families, respectively. If $n \ge n_0(k, r_1) + n_0(k, r_2)$ then $|\mathscr{F}_1 \cup \mathscr{F}_2| \le \binom{n-r_1}{k-r_1} + \binom{n-r_2}{k-r_1-r_2} - \binom{n-r_1-r_2}{k-r_1-r_2}$.

Here for $n > n_0(k, r_1) + n_0(k, r_2)$ equality holds only if there exist two subsets $R_1, R_2 \subset X, |R_i| = r_i, R_1 \cap R_2 = \emptyset$ such that $\mathscr{F}_i \subset \{F \in \binom{X}{k} : R_i \subset F\}$.

We say $\mathscr{F} \subset \binom{x}{k}$ is *l*-wise intersecting if $F_1 \cap \cdots \cap F_l \neq \emptyset$ holds for all $F_1, ..., F_l \in \mathscr{F}$. The first author [10] proved that $|\mathscr{F}| \leq \binom{n-1}{k-1}$ holds for $n \geq \lfloor kl/(l-1) \rfloor = n_1(k, l)$. Moreover, for $n > n_1$ equality implies $\cap \mathscr{F} \neq \emptyset$.

THEOREM 4. Let $\mathscr{F}_1, \mathscr{F}_2 \subset {\binom{x}{k}}$ be l_1 -wise $(l_2$ -wise) intersecting families, respectively. $(l_1, l_2 \ge 2)$. If $n \ge n_1(k, l_1) + n_1(k, l_2)$ then $|\mathscr{F}_1 \cup \mathscr{F}_2| \le {\binom{n-1}{k-1}} + {\binom{n-2}{k-1}}$ holds. Here for $n > n_1(k, l_1) + n_1(k, l_2)$ equality holds only if there exist two elements x_1, x_2 so that $\mathscr{F}_1 \cup \mathscr{F}_2 = \{F \in {\binom{x}{k}}: F \cap {x_1, x_2} \ne \emptyset\}$.

We say that the matching-number of $\mathscr{F} \subset {\binom{x}{k}}$ is t if \mathscr{F} does not contain t+1 pairwise disjoint (but contains t such) members. The above-mentioned Erdös theorem [6] says that $|\mathscr{F}| \leq \sum_{1 \leq t \leq t} {\binom{n-i}{k-1}}$ whenever $n \geq n_2(k, t)$. Moreover equality holds iff there exists a t-subset T such that $\mathscr{F} = \{F \in {\binom{x}{k}}: F \cap T \neq \emptyset\}$. Bollobás, Daykin, and Erdös [2] proved $n_2(k, t) < 2k^3 t$.

THEOREM 5. Let $\mathscr{F}_1, \mathscr{F}_2 \subset \binom{x}{k}$ be such that \mathscr{F}_i does not contain more than t_i pairwise disjoint members (i = 1, 2). Then for $n \ge n_2(k, t_1) + n_2(k, t_2)$ we have $|\mathscr{F}_1 \cup \mathscr{F}_2| \le \sum_{1 \le i \le t_1 + t_2} \binom{n-i}{k-1}$. Here equality holds only if there exists a $(t_1 + t_2)$ -subset T such that $\mathscr{F}_1 \cup \mathscr{F}_2 = \{F \in \binom{x}{k}: F \cap T \ne \emptyset\}$.

3. GENERALIZATIONS OF KNESER'S CONJECTURE

Theorem 5 is a small step forward verifying the following conjecture of Erdös [30] (also see Gyárfás [17]):

CONJECTURE 1. Let $\mathscr{F}_1 \cup \cdots \cup \mathscr{F}_{\chi} = \binom{\chi}{k}$ such that \mathscr{F}_i does not contain more than t pairwise disjoint k-subsets $(1 \le i \le \chi)$. Then $n \le (\chi - 1) t + (tk + k - 1)$.

This conjecture, if it is true, generalizes Lovász' theorem which is the special case t = 1. Let $\chi(K_i(n, k))$ be the minimum value of χ for which such a partition exists. (Here $K_i(n, k)$ means a (t+1)-uniform hypergraph \mathscr{H} with vertex-set $\binom{\chi}{k}$, and a collection $\{F_1, ..., F_{t+1}\} \in \mathscr{H}$ iff $|F_1| = \cdots = |F_{t+1}| = k$ and $F_i \cap F_j = \emptyset$ for all $1 \le i < j \le t+1$.)

Gyárfás [17] observed $\chi \leq 1 + (n - tk - k + 1)/t$: Let $\mathscr{F}_i = \{F \in \binom{\chi}{k}: F \cap [it - t + 1, it] \neq \emptyset\}$ for $1 \leq i \leq \chi - 1$ and $\mathscr{F}_0 = \mathscr{F} - \bigcup \mathscr{F}_i$. Then $|\bigcup \mathscr{F}_0| \leq tk + k - 1$, hence each \mathscr{F}_i contains at most t pairwise disjoint members.

THEOREM 6. (Gyárfás [17]). Conjecture 1 holds for the following cases:

- (1) k = 2,
- (2) $k = 3, n \le 5t 2.$

Case (1) follows from a theorem of Cockayne and Lorimer [5].

THEOREM 7. $\chi(K_t(n, k)) \ge (n/t) - c_k$, where c_k depends only on k. $(c_k < k^4)$.

Theorems 6 and 7 indicate that Erdös' conjecture is very probably true. Examples analogous to Example 1, show that to give a purely combinatorial proof is unlikely.

Let $n \ge k \ge r$ be positive integers. Let us denote by T(n, k, r) the minimum size of a family $\mathscr{F} \subset \binom{X}{r}$ such that every k-subset of X has an r-subset that belongs to \mathscr{F} .

Define a graph K(n, k, r) with vertex-set $\binom{X}{k}$. Two vertices $A, B \in \binom{X}{k}$ are connected by an edge iff $|A \cap B| < r$. (For r = 1 we get the usual Kneser graph.)

CONJECTURE 2. [13]. For $r \ge 2$ $\chi(K(n, k, r)) = T(n, k, r)$ holds for $n > n_3(k, r)$.

This conjecture was proved in [13] for r = 2. Here we prove Conjecture 2 in a weaker form, as it was mentioned in [13]:

THEOREM 8. Let k and r be fixed. Then

$$\chi(K(n, k, r)) = (1 + o(1)) T(n, k, r).$$

An interesting extension of Kneser's conjecture was raised by Stahl [25]. Define for each graph \mathscr{G} and for each natural number l the *l*-chromatic number $\chi_l(\mathscr{G})$ as the minimal number of colours needed to give each vertex of $\mathscr{G} l$ colours such that no colour occurs at two adjacent vertices. Otherwise stated, $\chi_l(\mathscr{G})$ is the minimal number of independent subsets of the vertex-set of \mathscr{G} such that each vertex occurs in at least l of them.

CONJECTURE 3. [25]. $\chi_l(K(n, k)) = \lceil l/k \rceil (n-2k) + 2l$.

Stahl [26] proved his conjecture using Lovász's theorem for $1 \le l \le k$ and also that the right-hand side is always an upper bound for $\chi_l(K(n, k))$. The conjecture was proved for k = 3, l = 4 by Garey and Johnson [15]. Further results were proved by Chvátal, Garey, and Johnson [4] and Geller and Stahl [16] (see, e.g., Brouwer and Schrijver [3]).

274

4. Lemmas for Theorems 1 and 2

Following Erdös, Ko, and Rado [8] we define a shifting operation S_{ij} for all $1 \le i < j \le n$. However, here we apply it to two intersecting families simultaneously. For $\mathscr{F} \in \mathscr{F}_1 \cup \mathscr{F}_2$ let

$$S_{ij}(F) = \begin{cases} F - \{j\} \cup \{i\} & \text{if } j \in F \in \mathscr{F}_1, i \notin F, F - \{j\} \cup \{i\} \notin \mathscr{F}_1, \\ F - \{i\} \cup \{j\} & \text{if } i \in F \in \mathscr{F}_2, j \notin F, F - \{i\} \cup \{j\} \notin \mathscr{F}_2, \\ F & \text{otherwise.} \end{cases}$$

Let $S_{ij}(\mathscr{F}_{\alpha}) = \{S_{ij}(F): F \in \mathscr{F}_{\alpha}\}, \alpha = 1, 2.$

LEMMA 1. $|S_{ij}(\mathscr{F}_{\alpha})| = |\mathscr{F}_{\alpha}|, S_{ij}(\mathscr{F}_{\alpha})$ is intersecting if \mathscr{F}_{α} is intersecting, $S_{ij}(\mathscr{F}_1) \cap S_{ij}(\mathscr{F}_2) = \emptyset$ if $\mathscr{F}_1 \cap \mathscr{F}_2 = \emptyset$.

Proof. The first two statements were proved in several places, e.g., in [8] and the third one, which is also easy, in [14].

We call the intersecting family left (right) stable if $F \in \mathscr{F}$, $j \in F$, $i \notin F$ implies $F - \{j\} \cup \{i\} \in \mathscr{F}$ for all $1 \leq i < j \leq n$ (for all $1 \leq j < i \leq n$).

LEMMA 2. Let $\mathscr{F} \subset \binom{x}{k}$ be a left stable intersecting family, |X| = n > 2k. Denote by $\mathscr{F}_0 = \{F \in \mathscr{F} : 1 \notin F\}$. Then \mathscr{F}_0 is 2-intersecting, i.e., $|F \cap F'| \ge 2$ holds for every $F, F' \in \mathscr{F}_0$.

Proof. Suppose for contradiction that there exist F and F' such that $1 \notin F \cup F'$ and $F \cap F' = \{x\}$. Then $F'' = F' - \{x\} \cup \{1\} \in \mathscr{F}, F'' \cap F = \emptyset$ contradicting the intersecting property of \mathscr{F} .

LEMMA 3. Let $\mathscr{F} \subset \binom{X}{k}$ be a left stable, intersecting family, |X| = n > 2k, $h \ge 0$. Denote by \mathscr{F}^* those members F of \mathscr{F} for which $|F \cap \{1, ..., 2i\}| \ge i$ holds for some i > h. Then for all $F, F' \in (\mathscr{F} - \mathscr{F}^*)$ we have $F \cap F' \cap [1, 2h] \neq \emptyset$.

Proof. Actually, we prove the following stronger statement:

PROPOSITION 1. Let $\mathscr{F} \subset \binom{x}{k}$ be a left stable, intersecting family on $X = [1, n], A, B \in \mathscr{F}$. Then there exists an *i* such that $|A \cap [1, i]| + |B \cap [1, i]| > i$.

Proof. Suppose the contrary and let A and B be a counterexample minimizing $\sum_{a \in A} a + \sum_{b \in B} b$. Set $i = \min A \cap B$. Since $|A \cap [1, i]| + |B \cap [1, i]| \leq i$, there exists a $j \in [1, i-1]$ such that $j \notin A \cup B$. Let $A' = A - \{i\} \cup \{j\}$. Now the pair $\{A', B\}$ is a counterexample again but $\sum_{a \in A'} a + \sum_{b \in B} b$ is smaller. This contradiction shows that such a pair does not exist.

Finally, let $F, F' \in \mathscr{F} - \mathscr{F}^*$. By Proposition 1 we have an *i* such that $|F \cap [1, i]| + |F' \cap [1, i]| > i$. Then $F \cap F' \cap [1, i] \neq \emptyset$, hence we are done with Lemma 3 if $i \leq 2h$. But i > 2h implies, e.g., for *F*, that $|F \cap [1, i]| > i/2$, i.e., $F \in \mathscr{F}^*$, a contradiction.

LEMMA 4. Let |X| = 2k + 2v = n, v < (k/4). Let $\mathcal{A} = \{F \subset X : |F| = k \text{ and } |F \cap [1, 2i]| \ge i \text{ for some } i \ge (k + v)/2\}$. Then

$$|\mathscr{A}| < \binom{n}{k} e^{-v^2/4k} \frac{2k}{v^2}.$$

Proof. Let $i(F) = \min\{i: |F \cap [1, 2i]| \ge i$. Then $|F \cap [1, 2i(F)]| = i(F)$. We use the well-known fact that the number of 0-1 sequences consisting of *i* 0's and *i* 1's in which every initial segment contains more 0's then 1's is equal to $\binom{2i}{i}/(2i-1) = A_i$ (see, e.g., [24]). Hence $|\{F \in \binom{X}{k}: i(F) = i\}| = A_i \binom{k-2i}{k-2}$. It is easy to see that

$$\binom{n}{k} \ge A_1 \binom{n-2}{k-1} \ge A_2 \binom{n-4}{k-2} \ge \cdots \ge A_i \binom{n-2i}{k-i} \ge A_{i+1} \binom{n-2i-2}{k-i-1} \ge \cdots.$$

Hence we have

$$A_{k/4}\binom{n-k/2-2}{(3/4)\,k-1} \leq \frac{2}{k}\binom{n}{k}.$$

Moreover the ratio of the (i+1)th and the *i*th member equals to $q_i = 2(2i-1)(k-i)(n-k-i)/(i+1)(n-2i)(n-2i+1)$. Now $q_i < 1 - (n-2k)^2/(n-2i)^2 \le 1 - v^2/k^2$ if $i \ge k/4$. This yields

$$\frac{1}{2j-1} \binom{2j}{j} \binom{n-2j}{k-j} = \binom{n}{k} \prod_{0 \le i < j} q_i < \frac{2}{k} \binom{n}{k} \prod_{k/4 < i < j} q_i$$
$$< \frac{2}{k} \binom{n}{k} \left(1 - \frac{v^2}{k^2}\right)^{j-(k/4)}.$$

Summing up these inequalities for $(k + v)/2 \le i \le k$ we get

$$\begin{split} |\mathscr{A}| \leq & \frac{2}{k} \binom{n}{k} \sum_{j \ge (k+v)/2} \left(1 - \frac{v^2}{k^2} \right)^{j - (k/4)} < \frac{2}{k} \binom{n}{k} \frac{k^2}{v^2} \left(1 - \frac{v^2}{k^2} \right)^{k/4} \\ < & \binom{n}{k} \frac{2k}{v^2} e^{-v^2/4k}. \quad \blacksquare \end{split}$$

Remark. A very similar calculation shows that for $v = O(\sqrt{k})$ we have $|\mathscr{A}| > \frac{1}{10} {n \choose k} (k/v^2) e^{-v^2/k}$. This can be used to verify (4).

5. The Proof of Theorem 1

By Lemma 1 we can suppose that \mathscr{F}_1 is a left-stable and \mathscr{F}_2 is a rightstable intersecting family. Let $X = X_1 \cup X_2$, where $X_1 = \{1, 2, ..., k + v\}$, $X_2 = X - X_1$, $||X_1| - |X_2|| \le 1$ ($v = c\sqrt{k/2}$). Let \mathscr{A} be the family given by Lemma 4. Set $\mathscr{F}'_1 = \mathscr{F}_1 - \mathscr{A}$. By Lemma 3

$$F \cap F' \cap X_1 \neq \emptyset$$
 holds for all $F, F' \in \mathscr{F}'_1$. (6)

Define $\mathscr{A}_i = \{F \cap X_1 : F \in \mathscr{F}'_1, |F \cap X_1| = i\}$. By the Erdös-Ko-Rado theorem and (6) we have

$$|\mathscr{A}_{i}| \leq \binom{|X_{1}| - 1}{i - 1}.$$
(7)

To each $A \in \mathscr{A}_i$ there are at most $\binom{|X_2|}{k-i}$ $F \in \mathscr{F}'_1$ satisfying $A \subset F$, $F \cap X_1 = A$. Hence we get

$$|\mathscr{F}_{1}'| \leq \sum_{i} |\mathscr{A}_{i}| \binom{|X_{2}|}{k-i}.$$
(8)

Similarly, set $\mathscr{F}'_2 = \mathscr{F}_2 - \mathscr{B}$, where $\mathscr{B} = \{F \in \binom{x}{k}: |B \cap [n-2i+1, n]| \ge i$ holds for some $i \ge (k+v)/2\}$. By symmetry $|\mathscr{B}| = |\mathscr{A}|$. Let $\mathscr{B}_i = \{F \cap X_2: F \in \mathscr{F}'_2, |F \cap X_2| = i\}$. We have

$$|\mathscr{B}_i| \leq \binom{|X_2| - 1}{i - 1} \tag{9}$$

and

$$|\mathscr{F}_{2}'| \leq \sum_{i} |\mathscr{B}_{i}| {\binom{|X_{1}|}{k-i}}.$$

$$(10)$$

In the estimations (8) and (10) we count twice the sets $G = A \cup B$, $A \in \mathcal{A}_i$, $B \in \mathcal{B}_{k-i}$. So we have

$$|\mathscr{F}_{1}' \cup \mathscr{F}_{2}'| \leq \sum_{i} |\mathscr{A}_{i}| {|X_{2}| \choose k-i} + |B_{k-i}| {|X_{1}| \choose i} - |\mathscr{A}_{i}| |\mathscr{B}_{k-i}|.$$

The coefficient of $|\mathcal{A}_i|$ is nonnegative by (9) so we can replace $|\mathcal{A}_i|$ by $\binom{|X_i|-1}{i-1}$ without spoiling the inequality:

$$\begin{split} |\mathscr{F}_{1}' \cup \mathscr{F}_{2}'| &\leq \sum_{i} \binom{|X_{1}| - 1}{i - 1} \binom{|X_{2}|}{k - i} - |\mathscr{B}_{k - i}| + |\mathscr{B}_{k - i}| \binom{|X_{1}|}{i} \\ &= \sum_{i} \binom{|X_{1}| - 1}{i - 1} \binom{|X_{2}|}{k - i} + \sum_{i} |\mathscr{B}_{k - i}| \binom{|X_{1}| - 1}{i} \\ &\leq \sum_{i} \binom{|X_{1}| - 1}{i - 1} \binom{|X_{2}|}{k - i} + \sum_{i} \binom{|X_{2}| - 1}{k - i - 1} \binom{|X_{1}| - 1}{i} \\ &= \binom{n - 1}{k - 1} + \binom{n - 2}{k - 1}. \end{split}$$

Finally, $|\mathscr{F}_1 \cup \mathscr{F}_2| \leq |\mathscr{F}'_1 \cup \mathscr{F}'_2| + |\mathscr{A}| + |\mathscr{B}|$. However, $|\mathscr{A}| < \binom{n-1}{k-1} 8c^{-2} e^{-c^2/16}$ by Lemma 4. This finishes the proof of Theorem 1.

6. The Proof of Theorem 2

Again by Lemma 1 we can suppose that \mathscr{F}_1 is a left-stable and \mathscr{F}_2 is a right-stable intersecting family. Let $\mathscr{H} = \{F \in \binom{X}{k}: 1 \in F, n \in F\},$ $\mathscr{A} = \mathscr{F}_1 - \mathscr{H}, \ \mathscr{B} = \mathscr{F}_2 - \mathscr{H}.$ Moreover $\mathscr{A}_1 = \{A \in \mathscr{A}: 1 \in A \text{ (and } n \notin A)\},$ $\mathscr{A}_0 = \{A \in \mathscr{A}: 1 \notin A \text{ and } n \notin A\}$ and $\mathscr{A}_n = \{A \in \mathscr{A}: n \in A \text{ (and } 1 \notin A)\}.$

For a family \mathscr{H} define $\Delta_{l}\mathscr{H}$ as its *shadow* of order *l*, i.e., $\Delta_{l}\mathscr{H} = \{L: |L| = l \text{ and } \exists H \in \mathscr{H}, H \supset L\}$. Katona [21] proved the following

If \mathscr{H} is a family of *r*-sets and $|F \cap F'| \ge t$ holds for all $F, F' \in \mathscr{H}$ then $|\Delta_l \mathscr{H}| \ge |\mathscr{H}| \binom{2r-t}{r} / \binom{2r-t}{r}$ holds for $r-t \le l \le r$. (1)

The set-system \mathcal{A}_0 is 2-intersecting, by Lemma 2, hence $\mathcal{A}_0^c = \{[2, n-1] - A : A \in \mathcal{A}_0\}$ is an (n-k-2)-uniform (n-2k)-intersecting system. Using (11) we have

$$\left|\mathcal{A}_{k-1}\mathcal{A}_{0}^{c}\right| \ge \left|\mathcal{A}_{0}^{c}\right| \binom{n-4}{k-1} \middle| \binom{n-4}{n-k-2} = \left|\mathcal{A}_{0}\right| \frac{n-k-1}{k-1}.$$
 (12)

If $A \in \mathscr{A}_n$ and $1 < x \notin A$ then $(A - \{n\} \cup \{x\}) \in \mathscr{A}_0$.

This yields

$$|\mathscr{A}_0| \ge \frac{1}{k} |\{(x, A): 1 < x \in A \in \mathscr{A}_n\}| = \frac{n-k-1}{k} |\mathscr{A}_n|.$$

$$(13)$$

Finally, we have $|\mathscr{A}_1| \leq \binom{n-2}{k-1} - |\mathscr{A}_{k-1} \mathscr{A}_0^c|$ hence using (12) and (13)

$$\begin{split} |\mathscr{A}| &= |\mathscr{A}_1| + |\mathscr{A}_0| + |\mathscr{A}_n| \leq \binom{n-2}{k-1} - |\mathscr{A}_0| \frac{n-k-1}{k-1} + |\mathscr{A}_0| \\ &+ |\mathscr{A}_0| \frac{k}{n-k-1}. \end{split}$$

Here the coefficient of $|\mathscr{A}_0|$ is less than 0 if $n > \frac{1}{2}(3 + \sqrt{5})k$. Similarly, we get $|\mathscr{B}| < \binom{n-2}{k-1}$, or $n \in (\bigcirc \mathscr{B})$, yielding Theorem 2.

Remark. We proved that if \mathscr{A} is left-stable then $|\mathscr{A} - \mathscr{K}| \leq {\binom{n-2}{k-1}}$ holds for $n > n_0(k)$. This statement does not hold for $n < \frac{1}{2}(3 + \sqrt{5})k$ as an easy calculation and the following example show: $\mathscr{A} = \{A \in {\binom{X}{k}}: |A \cap [1, 3]| \geq 2\}$.

7. The Proof of Theorems 3, 4, and 5

We prove only Theorem 3. The other proofs are similar and are left to the reader. We use the following Lemma which was proved in several places (e.g., [8, 10]):

LEMMA 5. Let $\mathscr{F} \subset \binom{x}{k}$ be a family of sets having property P. Then $S_{ii}(\mathscr{F})$ has property P, too.

Here property P can be, e.g.,

$$|F \cap F'| \ge r$$
 for all $F, F' \in \mathscr{F}$ (14)

$$F_1 \cap \dots \cap F_l \neq \emptyset$$
 for all $F_1, \dots, F_l \in \mathscr{F}$ (15)

$$|F_1 \cup \dots \cup F_{t+1}| \leq (t+1)k - 1$$
 for all $F_1, \dots, F_{t+1} \in \mathscr{F}$. (16)

The following lemma is analogous to Lemma 3, but is in a weaker form.

LEMMA 6. Let $\mathscr{F} \subset \binom{x}{k}$ be a left-stable family having one of the properties P defined in (14)–(16), and let $n_p(k)$ be the threshold function for this property (i.e., $n_p(k)$ is one of $n_0(k, r)$, $n_1(k, l)$ and $n_2(k, t)$). Then the family $\mathscr{F}_0 = \{F \cap [1, n_p(k)]: F \in \mathscr{F}\}$ has property P, as well.

The proof is easy. We have to use only that $n_0(k, r) \ge 2k - r$, $n_1(k, l) \ge lk/(l-1)$, $n_2(k, t) > tk$. We present only the proof of (14). Suppose for contradiction $|F \cap F' \cap [1, 2k - r]| < r$ and $F, F' \in \mathcal{F}$ are such that $|F \cap F'|$ is minimal. Now we may choose an element i $(1 \le i \le 2k - r)$, $i \notin F \cup F'$, and j > 2k - r, $j \in F \cap F'$. Then $F' - \{j\} \cup \{i\} = F'' \in \mathcal{F}$. However $|F \cap F'' \cap [1, 2k - r]| < r$ and $|F \cap F''| < |F \cap F'|$, a contradiction. **Proof of Theorem 3.** It goes similarly to the proof of Theorem 1. Let \mathscr{F}_1 and \mathscr{F}_2 be an r_1 - and r_2 -intersecting family, respectively. By Lemmas 5 and 1 we can suppose that \mathscr{F}_1 is left-stable and \mathscr{F}_2 is right-stable. Split X into two parts $X = X_1 \cup X_2$ such that $X_1 = [1, n_0(k, r_1)], X_2 = X - X_1$. By hypothesis $|X_2| \ge n_0(k, r_2)$. Now define $\mathscr{A}_i = \{F \cap X_1 : F \in \mathscr{F}_1, |F \cap X_1| = i\},$ $\mathscr{B}_j = \{F \cap X_2 : F \in \mathscr{F}_2, |F \cap X_2| = j\}$. By Lemma 6, and the monotonicity of $n_0(k, r_1)$ we can use the Erdös-Ko-Rado theorem, saying

$$|\mathscr{A}_i| \leq \binom{|X_1| - r_1}{i - r_1},\tag{17}$$

$$|\mathscr{B}_{j}| \leq \binom{|X_{2}| - r_{2}}{j - r_{2}}.$$
(18)

To each $A \in \mathscr{A}_i$ there are at most $\binom{|X_2|}{k-i}$ $F \in \mathscr{F}_1$ satisfying $F \cap X_1 = A$. Hence we get

$$|\mathscr{F}_{1}| \leq \sum_{i} |\mathscr{A}_{i}| \binom{|X_{2}|}{k-i},$$
(19)

$$|\mathscr{F}_{2}| \leq \sum_{j} |\mathscr{B}_{j}| \binom{|X_{1}|}{k-j}.$$
(20)

In the estimations (19) and (20) we count twice the sets $G = A \cup B$, $A \in \mathscr{A}_i$, $B \in \mathscr{B}_{k-i}$. So we have

$$|\mathscr{F}_1 \cup \mathscr{F}_2| \leq \sum_i |\mathscr{A}_i| \binom{|X_2|}{k-i} + |\mathscr{B}_{k-i}| \binom{|X_1|}{i} - |\mathscr{A}_i| |\mathscr{B}_{k-i}|.$$

From now on the proof coincides with the proof of Theorem 1, i.e., because the coefficient of $|\mathscr{A}_i|$ is nonnegative by (18), we can replace $|\mathscr{A}_i|$ by $\binom{|\chi_1|-r_1}{i-r_1}$ without spoiling the inequality:

$$\begin{aligned} |\mathscr{F}_{1} \cup \mathscr{F}_{2}| &\leq \sum_{i} \binom{|X_{1}| - r_{1}}{i - r_{1}} \binom{|X_{2}|}{k - i} - |\mathscr{B}_{k-i}| + |\mathscr{B}_{k-i}| \binom{|X_{1}|}{i} \\ &= \sum_{i} \binom{|X_{1}| - r_{1}}{i - r_{1}} \binom{|X_{2}|}{k - i} + |\mathscr{B}_{k-i}| \binom{|X_{1}|}{i} - \binom{|X_{1}| - r_{1}}{i - r_{1}} \end{aligned}$$

Using (18) we have

$$\begin{split} |\mathscr{F}_{1} \cup \mathscr{F}_{2}| \leqslant & \sum_{i} \binom{|X_{1}| - r_{1}}{i - r_{1}} \binom{|X_{2}|}{k - i} + \binom{|X_{2}| - r_{2}}{k - i - r_{2}} \binom{|X_{1}|}{i} - \binom{|X_{1}| - r_{1}}{i - r_{2}} \end{pmatrix} \\ &= \binom{n - r_{1}}{k - r_{1}} + \binom{n - r_{2}}{k - r_{2}} - \binom{n - r_{1} - r_{2}}{k - r_{1} - r_{2}}. \quad \blacksquare$$

8. The Proof of Theorem 7

We use the following lemma of Hajnal and Rothschild [18]. (It was proved for t = 1 by Hilton and Milner [20] in a more exact form.) Here we state it in a slightly stronger form, which was proved by Bollobás, Daykin and Erdös [2].

LEMMA 7 [2]. Let $\mathscr{F} \subset \binom{x}{r}$ and suppose that \mathscr{F} contains at most t pairwise disjoint members. Then either

(a) there exists an element $x \in X$ such that $\mathscr{F}(\neg x) = {}^{def} \{F \in \mathscr{F} : x \notin F\}$ contains at most (t-1) pairwise disjoint members (i.e., $\mathscr{F}(\neg x) = \emptyset$ for t = 1, in this case). Or

(b) $|\mathscr{F}| < r^2 t^2 \binom{n-2}{r-2}$.

Call the element $x \in X$ extremal for \mathscr{F} if the maximum number of disjoint edges in $\mathscr{F}(\neg x)$ is less than in \mathscr{F} , i.e., $t(\mathscr{F}) > t(\mathscr{F}(\neg x))$.

Now we are ready to prove Theorem 6. Suppose $\mathscr{F}_1 \cup \mathscr{F}_2 \cup \cdots \cup \mathscr{F}_{\chi} = \binom{\chi}{k}$ and $t(\mathscr{F}_i) \leq t$. Let $\mathscr{F}_i^0 = \mathscr{F}_i, X^0 = X, Y_i^0 = \emptyset$ for $1 \leq i \leq \chi$. If we define the systems $\{\mathscr{F}_i^{\alpha}\}, \{Y_i^{\alpha}\}, X^{\alpha} \ (1 \leq i \leq \chi)$ and there exists an \mathscr{F}_j^{α} having an extremal point x then set $\mathscr{F}_i^{\alpha+1} = \mathscr{F}_i^{\alpha}(\neg x)$ for all $1 \leq i \leq \chi$,

$$Y_i^{\alpha+1} = \begin{cases} Y_i^{\alpha} \cup \{x\} & \text{for } i = j \\ Y_i^{\alpha} & \text{otherwise,} \end{cases}$$

and $X^{\alpha+1} = X^{\alpha} - \{x\}$. Then we have $\sum_{i} t(\mathscr{F}_{i}^{\alpha}) > \sum_{i} t(\mathscr{F}_{i}^{\alpha+1})$ in view of $t(\mathscr{F}_{i}^{\alpha+1}) \leq t(\mathscr{F}_{i}^{\alpha})$ and $t(\mathscr{F}_{j}^{\alpha+1}) < t(\mathscr{F}_{j}^{\alpha})$. Continue this procedure till there exists no extremal point. Suppose that our procedure stops after the *s*th step. We have $t(\mathscr{F}_{i}^{s}) + |Y_{i}^{s}| \leq t$. Let $\mathscr{F}_{i_{1}}^{s}, \mathscr{F}_{i_{2}}^{s}, ..., \mathscr{F}_{i_{u}}^{s}$ be those families which satisfy $t(\mathscr{F}_{i}^{s}) > 0$, let $t_{j} = t(\mathscr{F}_{i_{j}}^{s})$ $(1 \leq j \leq u)$, $|X^{s}| = m$. By Lemma 7 each family $\mathscr{F}_{i_{j}}^{s}$ contains less than $k^{2}t_{j}^{2}(m-2)$ members. Hence we get

$$\sum_{1 \leq j \leq u} k^2 t_j^2 \binom{m-2}{k-2} \ge \sum_{1 \leq j \leq u} |\mathscr{F}_{i_j}^s| = \left| \binom{|X_s|}{k} \right| = \binom{m}{k}$$

Comparing the two extreme sides yields

$$\left(\sum_{1 \leq j \leq u} t_j^2\right) k^4 > m^2.$$
(21)

Moreover, we know that $|\bigcup Y_i^s| = \sum_i |Y_i^s| \leq \chi t - \sum_{1 \leq j \leq u} t_j$. This yields

$$n = |X| = m + \sum |Y_i^s| \leq m + \chi t - \sum_{1 \leq j \leq u} t_j.$$

Using (21) we get

$$n - k^2 \sqrt{\sum t_j^2} + \sum t_j \leq \chi t.$$
(22)

Now, it is easy to see that $k^2 (\sum_{1 \le j \le u} t_j^2)^{1/2} - \sum t_j \le \frac{1}{4}k^4 t$ independently of u. (As $t_j \le t$ we have $\sum t_j \ge (\sum t_j^2)/t$. Set $T = \sqrt{\sum t_j^2}$, we have $k^2 (\sum t_j^2)^{1/2} - \sum t_j \le k^2 T - T^2/t \le k^4 t/4$.) Hence (22) gives

$$n-\frac{k^4t}{4} \leq \chi t$$

as desired.

Remark. We can prove in Lemma 7(b) that $|\mathscr{F}| < 2rt^2 \binom{n-2}{r-2}$. Using similar calculations we can show that $\chi \ge (n/t) - k^3$.

9. The Proof of Theorem 8

Let \mathscr{H} be an *r*-graph on *v* elements (i.e., $| \cup \mathscr{H} | = v$). As usual, denote by $ex(n, \mathscr{H}) = max\{|\mathscr{F}|: \mathscr{F} \subset \binom{x}{r}, |X| = n, \mathscr{F}$ does not contain \mathscr{H} as a subsystem}. By this notation we have $T(n, k, r) = \binom{n}{r} - ex(n, \mathscr{K}_r^k)$. (\mathscr{K}_r^k) denotes the hypergraph consisting of all *r*-subsets of a *k*-set.) It is well known (see, e.g., Erdös, Simonovits [9]).

LEMMA 8 [9]. If $\mathscr{F} \subset {\binom{x}{r}}, |X| = n, |\mathscr{F}| > \operatorname{ex}(n, \mathscr{H}) + \varepsilon{\binom{n}{r}}$ then \mathscr{F} contains at least $\varepsilon'{\binom{n}{r}}$ copies of \mathscr{H} , where ε' depends only on v and ε .

We will use the following generalization of a theorem of Hilton and Milner [20]. It was proved by the first author in a more exact form.

LEMMA 9 [12]. If $\mathscr{F} \subset \binom{x}{k}$, |X| = n, \mathscr{F} is r-intersecting (i.e., $|F \cap F'| \ge r$ holds for all $F, F' \in \mathscr{F}$) and $|\bigcap \mathscr{F}| < r$ then $|\mathscr{F}| < n^{k-r-1}$ holds for $n > n_0(k)$.

Proof of Theorem 8. Let $\binom{x}{k} = \mathscr{F}_1 \cup \cdots \cup \mathscr{F}_m$, where \mathscr{F}_i is an r-intersecting family $(1 \le i \le m)$. Suppose that $|\bigcap \mathscr{F}_i| \ge r$ holds for $1 \le i \le s$, but $|\bigcap \mathscr{F}_i| < r$ for $s < i \le m$. Let $R_i \subset \bigcap \mathscr{F}_i$, $|R_i| = r$, $\mathscr{R} = \{R_i : 1 \le i \le s\}$. By Lemma 9 we have $|\mathscr{F}_j| < n^{k-r-1}$ holds for j > s, hence

$$\sum_{j>s} |\mathscr{F}_j| \leq (m-s) n^{k-r-1} \leq m n^{k-r-1}.$$
⁽²⁵⁾

282

Suppose for contradiction that $m < (1 - \varepsilon) T(n, k, r)$. This implies

$$\begin{vmatrix} \binom{X}{r} - \mathscr{R} \end{vmatrix} = \binom{n}{r} - s \ge \binom{n}{r} - m \ge \binom{n}{r} - T(n, k, r) + \varepsilon T(n, k, r) = \exp(n, \mathscr{K}_r^k) + \varepsilon \binom{n}{r} / \binom{k}{r} > \exp(n, \mathscr{K}_r^k) + \varepsilon_0 \binom{n}{r}.$$

Lemma 8 yields that $|\{F: |F| = k, \binom{F}{r} \cap \mathscr{R} = \emptyset\}| > \varepsilon'\binom{n}{k}$ holds. Now (25) gives

$$m n^{k-r-1} \ge \sum_{j>s} |\mathscr{F}_j| \ge |\{F: |F| = k, \ \exists R_i \subset F\}| > \varepsilon' \binom{n}{k}$$

This implies $m > \varepsilon' n^{r+1} / k! > {n \choose r} \ge T(n, k, r)$ if n is sufficiently large.

Note added in proof. During the last two years, the following progress was made. Hujter [31] proved Proposition 1 even for *t*-intersecting families. Conjecture 1 was proved by Alon, Frankl and Lovász [28]. They used a generalization of Borsuk's theorem given in [29]. They also generalized Theorem 7.

REFERENCES

- I. BÁRÁNY, A short proof of Kneser's conjecture, J. Combin. Theory Ser. A 25 (1978), 325-326.
- 2. B. BOLLOBÁS, D. E. DAYKIN, AND P. ERDÖS, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford (2) 21 (1976), 25-32.
- 3. A. E. BROUWER AND A. SCHRIJVER, Uniform hypergraphs, in "Packing and Covering in Combinatorics," Math. Centre Tracts, No. 106, pp. 39–73, 1979.
- V. CHVÁTAL, M. R. GAREY, AND D. S. JOHNSON, Two results concerning multicolourings, Ann. Discrete Math. 2 (1978), 151-154.
- 5. E. J. COCKAYNE AND P. J. LORIMER, The Ramsey numbers for stripes, J. Austral. Math. Soc. Ser. A 19, 252-256.
- 6. P. ERDÖS, A problem of independent r-tuples, Ann. Univ. Budapest 8 (1965), 93-95.
- P. ERDÖS, Problems and results on finite and infinite combinatorial analysis, *in* "Infinite and Finite Sets," (A. Hajnal, R. Rado, V. T. Sós, Eds.), Proc. Colloq. Math. Soc. J. Bolyai 10, (Keszthely, Hungary 1973) pp. 403–424, Bolyai–North-Holland, Amsterdam, 1976.
- P. ERDÖS, C. KO, AND R. RADO, Intersection theorems for system of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-320.
- 9. P. ERDÖS AND M. SIMONOVITS, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181-192.
- P. FRANKL, On Sperner families satisfying an additional condition, J. Combin. Theory Ser. A 20 (1976), 1-11.
- P. FRANKL, The Erdös-Ko-Rado theorem is true for n = ckt, in "Combinatorics," Proc. Colloq. Math. Soc. J. Bolyai, No. 18, Keszthely, 1976, pp. 365-375, Bolyai-North-Holland, Amsterdam, 1978.

FRANKL AND FÜREDI

- 12. P. FRANKL, On intersecting families of finite sets, J. Combin. Theory Ser. A 24 (1978), 146-161.
- 13. P. FRANKL, On the chromatic number of the general Kneser-graph, J. Graph Theory 9 (1985), 217-220.
- Z. FÜREDI, An extremal problem concerning Kneser-conjecture, Studia Sci. Math. Hungar. 18 (1983), 335-341.
- 15. M. R. GAREY AND D. S. JOHNSON, The complexity of near optimal graph colouring, J. Assoc. Comput. Math. 23 (1976), 43–49.
- 16. D. GELLER AND S. STAHL, The chromatic number and other functions of the lexicographic product, J. Combin. Theory Ser. B 19 (1975), 87-95.
- 17. A. GYÁRFÁS, On the Ramsey number of disjoint hyperedges, J. Graph Theory, in press.
- 18. A. HAJNAL AND B. ROTHSCHILD, A generalization of the Erdös-Ko-Rado theorem of finite sets, J. Combin. Theory Ser. A 15 (1973), 359-362.
- 19. A. J. W. HILTON, unpublished see [7].
- 20. A. J. W. HILTON AND E. C. MILNER, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.
- G. KATONA, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.
- 22. M. KNESER, Aufgabe 300, J. Deutsch. Math. Verein. 58 (1955).
- 23. L. Lovász, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A 25 (1978), 319-324.
- L. Lovász, "Combinatorial Problems and Exercises," Akadémiai Kiadó, Budapest-North-Holland, Amsterdam, 1979. (Problem 1.33).
- 25. A. RÉNYI, "Probability Theory," North-Holland-American Elsevier, Amsterdam, 1970.
- 26. S. STAHL, n-tuple colourings and associated graphs, J. Combin. Theory Ser. B 20 (1976), 185-203.
- 27. R. M. WILSON, The exact bound in the Erdös-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.
- 28. N. ALON, P. FRANKL, AND L. LOVASZ, The chromatic number of Kneser hypergraphs, Transaction A.M.S., to appear.
- 29. I. BÁRÁNY, S. B. SCHLOSSMAN, AND A. SZÜCS, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. (2) 23 (1981), 158-164.
- 30. P. ERDÖS, Problems and results in combinatorial analysis, in "Colloq. Internat. Theory Combin., Rome 1973", Acad. Naz. Linear, Rome, 1976, pp. 3–17.
- 31. M. HUJTER, On a problem of Frankl, manuscript.