Note

Non-trivial Intersecting Families

P. Frankl
CNRS, 15 Quai A. France, 75007 Paris, France

AND

Z. Füredi

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary

Communicated by the Managing Editors
Received April 16, 1984

Abstract

The Erdös-Ko-Rado theorem states that if \mathbf{F} is a family of k-subsets of an n-set no two of which are disjoint, $n \geqslant 2 k$, then $|\mathbf{F}| \leqslant\binom{ n-1}{k-1}$ holds. Taking all k-subsets through a point shows that this bound is best possible. Hilton and Milner showed that if $\cap \mathbf{F}=\varnothing$ then $|\mathbf{F}| \leqslant\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1$ holds and this is best possible. In this note a new, short proof of this theorem is given. 1986 Academic Press. Inc.

1. Introduction

Suppose X is an n-element set and \mathbf{F} is a family of k-subsets of X. The family \mathbf{F} is called intersecting if $F \cap F^{\prime} \neq \varnothing$ holds for all $F, F^{\prime} \in \mathbf{F}$. For $n<2 k$ every \mathbf{F} is intersecting. From now on assume $n \geqslant 2 k$.

If all members of \mathbf{F} contain a fixed element of X then, obviously, \mathbf{F} is intersecting. Such a family is called trivial. Clearly, a trivial intersecting family has at most $\binom{n-1}{k-1}$ members.

Erdös-Ko-Rado Theorem [1]. If $n \geqslant 2 k, \mathbf{F}$ is intersecting then $|\mathbf{F}| \leqslant\binom{ n-1}{k-1}$ holds.

Example 1. Take $F_{1} \subset X,\left|F_{1}\right|=k$ and $x_{1} \in X-F_{1}$. Define $\mathrm{F}_{1}=$ $\left\{F_{1}\right\} \cup\left\{F \subset X: x_{1} \in F,|F|=k, F \cap F_{1} \neq \varnothing\right\}$. It is easily checked that \mathbf{F}_{1} is intersecting and $\left|\mathbf{F}_{\mathbf{1}}\right|=\binom{n-1}{k-1}-\binom{n-k-1}{k-1}+1$.

Example 2. Take $F_{2} \subset X,\left|F_{2}\right|=3$ and define $\mathbf{F}_{2}=\{F \subset X ;|F|=k$, $\left.\left|F \cap F_{2}\right| \geqslant 2\right\}$. Again, \mathbf{F}_{2} is intersecting. For $k=2, \mathbf{F}_{1}=\mathbf{F}_{2}$ while for $k=3$, $\left|\mathbf{F}_{1}\right|=\left|\mathbf{F}_{2}\right|$ hold. If $n>2 k$ and $k \geqslant 4$ then $\left|\mathbf{F}_{1}\right|>\left|\mathbf{F}_{2}\right|$.

Hilton-Milner Theorem [4]. If $n>2 k$ and \mathbf{F} is a non-trivial intersecting family then $|\mathbf{F}| \leqslant\left|\mathbf{F}_{1}\right|$ holds. Moreover, equality is possible only for $\mathbf{F}=\mathbf{F}_{1}$ or $\mathbf{F}=\mathbf{F}_{2}$, the latter occurs only for $k \leqslant 3$.

Note that this theorem shows in a strong way that only trivial families attain equality in the Erdös-Ko-Rado theorem. The proof of the Hilton-Milner theorem is rather long and complicated. The aim of this note is to give a more concise argument.

2. The New Proof of the Hilton-Milner Theorem

Suppose for simplicity the elements of X are linearly ordered. Let \mathbf{F} be a non-trivial intersecting family of maximal size. We prove the statement by induction on k. If $k=2$, then F consists necessarily of the three edges of a triangle. For $x, y \in X, x<y$ we define $S_{x y}(\mathbf{F})=\left\{S_{x y}(F): F \in \mathbf{F}\right\}$, where

$$
\begin{aligned}
S_{x y}(F) & =(F-\{y\}) \cup\{x\} & & \text { if } x \notin F, y \in F,(F-\{y\}) \cup\{x\} \notin \mathbf{F} \\
& =F & & \text { otherwise. }
\end{aligned}
$$

Proposition 2.1 (see [1]). $\quad\left|S_{x y}(\mathbf{F})\right|=|\mathbf{F}|$ and $S_{x y}(\mathbf{F})$ is intersecting.
Apply repeatedly the operation $S_{x y}$ to F until we obtain either a family \mathbf{H} such that $S_{x y}(\mathbf{H})$ is trivial or a family \mathbf{G} which is stable, i.e., $S_{x y}(\mathbf{G})=\mathbf{G}$ holds for all $x<y$. In the second case we define $X_{0}=\varnothing$ in the first $X_{1}=\{x, y\}$. Then $H \cap X_{1} \neq \varnothing$ holds for all $H \in \mathbf{H}$. The maximality of $|\mathbf{H}|$ implies that all k-subsets containing X_{1} are in \mathbf{H}. Now apply repeatedly $S_{x y}$ to \mathbf{H} for $x<y, x, y \in\left(X-X_{1}\right)$. Since the sets containing X_{1} stay fixed, finally we obtain a family \mathbf{G}, satisfying:
(1) $G \cap X_{1} \neq \varnothing$ for all $G \in \mathbf{G}$,
(2) $S_{x y}(\mathbf{G})=\mathbf{G}$ for $x, y \in\left(X-X_{1}\right), x<y$.

For $i=0,1$ let Y_{i} be the set of first $2 k-2 i$ elements of $X-X_{i}$, $Y=X_{i} \cup Y_{i}$.

Lemma 2.2. For all $G, G^{\prime} \in \mathbf{G}, G \cap G^{\prime} \cap Y \neq \varnothing$ holds.
Proof. Consider first the case $Y=X_{1} \cup Y_{1}$. Suppose for contradiction $G \cap G^{\prime} \cap Y=\varnothing$ and $G, G^{\prime} \in \mathbf{G}$ are such that $\left|G \cap G^{\prime}\right|$ is minimal. Now (1) implies that G and G^{\prime} intersect X_{1} in different elements. Thus $G-X_{1}$,
$G^{\prime}-X_{1}$ are $(k-1)$-sets. Since $G \cap G^{\prime} \cap(X-Y) \neq \varnothing$, we may choose $x \in Y$, $x \notin G \cup G^{\prime}, y \notin Y, y \in G \cap G^{\prime}$. Then (2) implies $\left(G^{\prime}-\{y\}\right) \cup\{x\}={ }^{\text {def }} G^{\prime \prime} \in \mathbf{G}$. However, $G \cap G^{\prime \prime} \cap Y=\varnothing$ and $\left|G \cap G^{\prime \prime}\right|<\left|G \cap G^{\prime}\right|$, a contradiction.

The case $Y=X_{0} \cup Y_{0}$ is similar but easier (cf. [2]).
Let us define $\mathbf{A}_{i}=\{G \cap Y: G \in \mathbf{G},|G \cap Y|=i\}$.
Lemma 2.3.

$$
\left|\mathbf{A}_{i}\right| \leqslant\binom{ 2 k-1}{i-1}-\binom{k-1}{i-1} \quad \text { for } \quad 1 \leqslant i \leqslant k-1
$$

and

$$
\left|\mathbf{A}_{k}\right| \leqslant\binom{ 2 k-1}{k-1}-\binom{k-1}{k-1}+1=\binom{2 k-1}{k-1}
$$

Proof. Consider first the case $2 \leqslant i \leqslant k-1$. Suppose for contradiction

$$
\left|\mathbf{A}_{i}\right|>\binom{2 k-1}{i-1}-\binom{k-1}{i-1} \geqslant\binom{ 2 k-1}{i-1}-\binom{2 k-i-1}{i-1}+1 .
$$

In view of Lemma 2.2, \mathbf{A}_{i} is intersecting. Thus the induction hypothesis yields that \mathbf{A}_{i} is trivial, say $x \in \cap \mathbf{A}_{i}$. As G is nontrivial, we may choose $G \in \mathbf{G}, x \notin G$. By Lemma $2.2 A \cap G \neq \varnothing$ holds for all $A \in \mathbf{A}_{i}$. Consequently, $\left|\mathbf{A}_{i}\right| \leqslant\binom{ 2 k-1}{i-1}-\binom{k-1}{i-1}$ holds, as desired. The case $i=1$, i.e, $\mathbf{A}_{1}=\varnothing$, is obvious.
$\left|\mathbf{A}_{k}\right| \leqslant\binom{ 2 k-1}{k-1}=\frac{1}{2}\binom{2 k}{k}$ follows easily from the fact that \mathbf{A}_{k} is intersecting and therefore $A \in \mathbf{A}_{k}$ implies $(Y-A) \notin \mathbf{A}_{k}$.

Since for a fixed $A \in \mathbf{A}_{i}$ there are at most $\binom{n-2 k}{k-i} k$-element sets G with $G \cap Y=A$, we infer

$$
\begin{aligned}
|\mathbf{G}| & \leqslant \sum_{i=1}^{k}\left|\mathbf{A}_{i}\right|\binom{n-2 k}{k-i} \leqslant 1+\sum_{i=1}^{k}\left(\binom{2 k-1}{i-1}-\binom{k-1}{i-1}\right)\binom{n-2 k}{k-i} \\
& =1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}=\left|\mathbf{F}_{1}\right|,
\end{aligned}
$$

proving the inequality part of the Theorem.
To have equality we must have equality in Lemma 2.3, in particular $\left|\mathbf{A}_{2}\right|=\left({ }_{1}^{2 k-1}\right)-\left({ }_{1}^{k-1}\right)=k$. As \mathbf{A}_{2} is intersecting either it is a k-star or $k=3$ and it is a triangle. In the second case $\mathbf{G} \subseteq \mathbf{F}_{2}$ is immediate. In the first case let $\mathbf{A}_{2}=\left\{\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{1}, x_{k+1}\right\}\right\}$. If $G \in \mathbf{G}, x_{1} \notin G$ then necessarily $G=\left\{x_{2}, \ldots, x_{k+1}\right\}$, i.e., all other members of \mathbf{G} contain x_{1} and intersect G,
proving $\mathbf{G} \subseteq \mathbf{F}_{1}$. Recall that \mathbf{G} was obtained from \mathbf{F} by a series of exchange operations $S_{x, y}$. It is easy to check that if \mathbf{H} is intersecting and $S_{x y}(\mathbf{H})=\mathbf{F}_{i}$ then \mathbf{H} is isomorphic to \mathbf{F}_{i}, too $(i=1,2)$. Consequently, \mathbf{F} is isomorphic to either \mathbf{F}_{1} or \mathbf{F}_{2}.

3. Further Problems

If for $F, F^{\prime} \in \mathbf{F}\left|F \cap F^{\prime}\right| \geqslant t$ holds then \mathbf{F} is called t-intersecting, $t \geqslant 2$.
Theorem 3.1 (Erdös-Ko-Rado [1]). Suppose $n \geqslant n_{0}(k, t)$, F is t-intersecting then $|\mathbf{F}| \leqslant\binom{ n-t}{k-t}$.

The best possible bound for $n_{0}(k, t)$ is $(k-t+1)(t+1)$ as was shown by Frankl [2] for $t \geqslant 15$ and very recently by Wilson [5] for all t. They showed that for $n>(k-t+1)(t+1)$ equality holds only if \mathbf{F} consists of all k-subsets containing a fixed t-subset. Again, such an \mathbf{F} is called trivial.

Examples of non-trivial t-intersecting families are $\mathbf{F}_{1}=\{F \subset X,|F|=k$: $\left(Y_{0} \subset F, \quad Y_{1} \cap F \neq \varnothing\right) \quad$ or $\left.\quad\left(\left|Y_{0} \cap F\right|=t-1, Y_{1} \subset F\right)\right\}$, where $\quad\left|Y_{0}\right|=t$, $\left|Y_{1}\right|=k-t+1, Y_{0} \cap Y_{1}=\varnothing$, and $\mathbf{F}_{2}=\left\{F \subset X,|F|=k:\left|F \cap Y_{2}\right| \geqslant t+1\right\}$, where $\left|Y_{2}\right|=t+2$.

Theorem 3.2 ([3]). Suppose \mathbf{F} is a non-trivial t-intersecting family, $n>n_{1}(k, t)$. Then $|\mathbf{F}| \leqslant \max \left\{\left|\mathbf{F}_{1}\right|,\left|\mathbf{F}_{2}\right|\right\}$. Moreover, equality holds if and only if either $\mathbf{F}=\mathbf{F}_{1}, k>2 t+1$ or $\mathbf{F}=\mathbf{F}_{2}, k \leqslant 2 t+1$.

It would be interesting to know whether $n_{1}(k, t)<c k t$ holds.

References

1. P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
2. P. Frankl, The Erdös-Ko-Rado theorem is true for $n=c k t$, in "Combinatorics," Proc. Colloq. Math. Soc. J. Bolyai 18 (Keszthely, 1976), pp. 365-375, North-Holland, Amsterdam, 1978.
3. P. Frankl, On intersecting families of finite sets, J. Combin. Theory Ser. A 24 (1978), 146-161.
4. A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967), 369-384.
5. R. M. Wilson, The exact bound in the Erdös-Ko-Rado theorem, Combinatorica 4 (1984), 247-260.
