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For integers nzk>1 and L< {0, 1,..,k—1}, m(n, k, L) denotes the maximum
number of k-subsets of an n-set so that the size of the intersection of any two
among them is in L. It is proven that for every rational number r>1 there is a
choice of k and L so that cn” <mi(n, k, L) <dn’, where ¢, d depend on k and L but
not on #.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Suppose n2k>1, L<{0, 1,.,k—1}. Let X be a finite set, |X|=n. A
family & of subsets of X is called an L-system if for any two distinct mem-
bers F, F/ of # one has | Fn F'| € L. Define

m(n, L) = {max | % |: # is an L-system};

m(n, k, L)= {max | # |: ¥ is an L-system and | F| =k for all Fe # }.

There is a wide variety of problems related to m(n, L) and m(n, k, L).
For example, m(n, k{0, 1,.., 1 —1}) < (7)/(*) with equality holding if and
only if a (n, k, ¢)-Steiner-system exists. This already shows that the deter-
mination of these functions is hopeless in general. Let us mention three
general upper bounds:

(1) mn L)< ¥ (';) [13]

0<ig|L|

2) m(n, k,L)S(IZl) [12]

(3) m(n, k, L)< [] (n—1)/(k—1) for n> ny(k) [1].
leL
Let us mention some of the recent papers concerning m(n, L) and
m(n, k, L): {5, 6, 7, 8,9, 10, 11, 14].
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Let us use the notation m(n, k, L) = @(n*) to denote that there exist con-
stants ¢,d depending on k and L but not on n so that "<
m(n, k, L) <dn® 1t is not known whether such an « exists for all choices of
k and L. However, if a = a(k, L) exists then obviously a> 1.

THEOREM 1.1. For every rational number r,r > 1 there exists k and L so
that m(n, k, L)y=@(n").

The author has examined all cases with k£ < 10 and proved the existence
of a(k, L). Actually a(k, L) is an integer for all cases with k£ <9 and all but
two cases with k=10. Its value in the exceptional cases is 3. In fact

Theorem 1.1 follows from the following result.

THEOREM 1.2. Suppose that s,d, ay,a,,..., a; are non-negative integers
withs>2d>1,a,21,and a, >3, ., a(°7"), define p(x)=3¢_,a(%). Then

m(n, p(s), { p(0),..., p(s —1)}) = O(n*?).

2. SOME PREPARATIONS

A family o of sets is called closed under intersection (or shortly closed) if
A, A' € of implies 4 N A’ € o/, Clearly, to every family % there is a smallest
closed family # with # < %, # is called the closure of .

For an arbitrary set D, the family #,, = {Bn D: Be #} is closed again.

By a simple averaging argument (cf, [3]) every # < ({) contains a sub-
family &', | #'|/|F | 2 k!/k* and &' being k-partite, i.c., there exist disjoint
sets X,,..., X satisfying |FnX;|=1for all Fe#' and i=1,.., k.

For a set G satisfying | G n X;| < 1 define the canonical projection n(G) of
G by =n(G)={i: |G X;|=1}. Note that |G| =|xn(G)|. Also, if & is an
arbitrary family and G as above, then the families s and n(#g)=
{n(A): Ae o,;} are isomorphic.

TueoReM 2.1 ([8]). Suppose # is an (n, k, L)-system. Then there exists
a positive constant c(k, L), independent of n, a closed L-system of < 2"k}
and F* < F so that
(1) F* is k-partite,
(ii) 1F*12ck, L)|#|,
(iii) For every Fe F* one has n(F %)= .

Note that (iii) implies that F* is an L-system, ie., the size of the inter-
section of any number of members of #* is in L.
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Since we are only interested in the order of magnitude of m(n, k, L), we
may suppose & =% *. To express this fact we say that & is canonical, we
call o/ the intersection pattern of F.

Let us mention without proof the following easy fact.

PROPOSITION 2.2. Suppose {,,..., o, } and {B,,.., B,,} are two families
of sets satisfying for all j and all 1 <i; < -+ <i; <m,

| A, e NA =B, NB,|

Then they are isomorphic.

Suppose # is a canonical family with intersection pattern /. For
A, Be s/ satisyfing A< B and Ge Z with n(G)= A define

J:{A, B)={He F:G< H,n(H)=B).

We say that B covers A if A, Be &/, A<B but there is no Ce .o/ with
AcCcB.

LEmMA 2.3 (Monotonity lemma). Suppose A, B, C, Ded satisfy
Ac Bc D, with D covering B, AcCc D and C & B. Then for all G, He &
satisfying n(G)= A, n(H)= B, and G < H one has

| fo(A, OV 2| Fu(B, D)|.

Proof. Suppose # (B, D)={K,,.., K,}. Let L, be the unique subset of
K; satisfying n(L;)= C—such L, exists because C<= D =n(K,). In view of
Theorem 2.1 (iii) L; € # holds.

Since A< C and Ge H, G L, holds. To conclude the proof we must
show that the L/s are distinct.

Consider n(K; N K;) for i # j. Since K; #K;, it is a proper subset of D,
containing B. As D covers B, n(K;n K;)=B follows. Thus K; " K, = H.
Consequently L, n L, < H. But n(L,)=n(L,;)=C and C ¢ n(H)= B prov-
ing L, #L;. 1|

3. THE Lower BOUND IN THEOREM 1.2

The construction we use here was given in [4]. Since we need it in the
proof of the upper bound, we repeat it shortly.

Let b be an integer and Z a set of cardinality a,+a,b+
ay(8)+ -+ +a,(5) which we consider as the disjoint union of a, copies of
(14,81), i=0,..,d. For A< [1, b], let ¢(A4) be the corresponding subset of Z
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with |(4)| =39, a('4"). It is very easy to check that for 4, B&[1, 5],
o(4n B)=¢p(4) " o(B) holds. Thus for s arbitrary the family {p(A4):
Ac[1,b], |Al<s} is a closed {p(0),., p(s—1)}-system showing
m(p(b), p(s), {p(0),.... p(s —1)}) = (%). By choosing b= Q(n"“) the desired
lower bound follows.

4. PrROOF OF THE UPPER BOUND PART OF THEOREM 1.2

W.lLo.g. let # be a canonical closed L-system, L = { p(0),..., p(s — 1)}, let
o be the sample family on [1, p(s)]. Also, let 2 =2") be the sample
family from our construction (the point set ¥ of '’ is the disjoint union of
a, copies of the singleton (['y*7), a, copies of (';*),...., a, copies of ('),
say

d
r= U Y.
i=01l</s4q;
For a subset B [1,s] denote by p(B) the subset of size p(|B|) of ¥
which is the union of the corresponding subsets of Y/, . Then

P={p(B):B<[1,s]}.

Note that as a lattice 2 is isomorphic to 41"*], in particular, all maximal
chains have the same size s.

We are going to show that o/ can be embedded into £, that is, there
exists a 1-1 map ¢: [1, p(s)] — Y so that ¢(4)e # holds for all 4e.«/.

Call a subset Cc[1, p(s)] an atom if Cn A# ¢ implies C< A4 for all
Ae.o/. An element xe A € of is a generic point for A if for all Be o/, xe B
implies 4 < B.

Note that if C is an atom, |C|=a,, then &/ U {C} will be a closed
family. Adding atoms of size a, successively one obtains finally a family &/’
to which one cannot add atoms of size a;. When proving the imbeddability
we may assume of = o/’

Call a set Ae.of with | A| = p(i) filled if it contains i atoms of size a,.
For a filled set let D(A) be the union of its atoms, |D(A4)| =ia,.

CLaM 4.1. All Ae s are filled.

Proof of Claim 4.1. The claim clearly holds if |4|=a,. Let A be a
counterexample of minimal size | 4| = p(i). Set #={Be o/, BS A}.
Define M = M(A)=\Jz. 4 B. Since A — M is an atom,

|A— M| <a, holds.
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Define also,

K=K(4)= |J D(B).

BeA

Then K< M, K is the union of atoms of size a,, thus

| K| = ja, holds with some j <.

For definiteness let C,,.., C; be these atoms. For Be # define T(B)=
{v: C, = B}. Since B is filled, |T(B)|=||B|/a,] holds. If for B, B'c %,
[T(B)nT(B') =t then ta, <|BnB'|<ta, +|B- D(B)| <(t+ 1)a, holds.
Therefore | Bn B'| = p().

Consequently, the map B — p(T(B)) defines an embedding of # into 2
(here we used Proposition 2.2). In particular

U B

Be®

M| = <

U P]=p(j). 1)

Pepl)

Thus p(i)=1|4| < p(j) + a, < p(i), a contradiction. |

Applying the claim to [1, p(s)]e s/, we see that there are s atoms
C,,..., C, of size a, in it. Define for all Ae.of, T(4)={v:C, = A}. Then
A — p(T(A)) gives the desired embedding of &/ into 2

Note that this implies that every 4 e .of with | 4] = p(d) has a generic
point (no Be o/ with BS A4 can contain elements which are mapped on a
copy of (t%*1)). In particular, if s = d, then | # | < n follows and this will be
the starting case of the induction.

Also, we can add to # all subsets of members of # which have projec-
tion in 2, i.., the family

# ={H n(H)e®? IFeF, HS F}

is still closed.
Suppose s > d and the upper bound is proved for s — 1. Define

A ={He#:|H|=p(s—1)}.

By induction
@) || <Q(n"~ ) holds.

Set # P =F, K =2.If H#{ and H#" are defined and some member
Ge#{ is contained in less than n'¢ members of #§’ then define
K V=D— (G}, #{+*V— {HeH#§. G= H} and continue. In view of
(4) altogether less than n'/“0O(n"~/¥) = O(n*?) sets are thrown away. Thus
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it will be sufficient to prove the upper bound for the remaining family,
which we denote, by abuse of notation, by #. Define

H={HeH: |H =pis—i)}, 0<i<s

CLamm 4.2. Suppose GeH,, i>0, A,CeP, n(G)=AcC, |[Cl=
p(s—i+1). Then | g5(A, C)| =n"

Proof. Apply induction on i The case =1 is fine by the construction.
Let 4,(C,) be the subset of [1, s] satisfying ¢(A4,) = A4 (¢(C,) = C), respec-
tively. Of course, | A, =|Col —1=5—1i Let j be an arbitrary element of
[1,s]—C,. Define B=¢(Aqu {j}), D=¢(Cyu{j}). Take G, He #
with Gc H, n(G)=A, n(H)=B. By the induction hypothesis and by
Lemma 2.3 we have

|fG(A’ C)|>|jH(B’ D)|>nl/d- l

CLAIM 43. For 1 <i<s—1 one has | #| < (s/(3)) | A | n U1V

Proof. The statement is trivial for i = 1. Suppose it has been proved for
i — 1. Consider the bipartite graph with vertex set #, #,_, with (G, H) for-
ming an edge if Ge s, He #,_,, and Gc H. Now the degree of H is
s—i+1 while the degree of G is at least in'/“. This implies

( A) )
i-1 gn‘“*l)/d
N I
<S
I

= || En
§

i+ 1

s—1 B
|H <A | <A

Now the upper bound is immediate: for an arbitrary Fe % = #, let
A(F),..., A(F) be the s atoms in F, ie., n(4,(F)=¢({i}). Then no other
member F' of # contains A,(F),..., A,(F) because otherwise |FNF'|>
sa, > p(s—1), a contradiction. Consequently,

Ig-,<<|%;—l|>=0(ns/d) l

5. CONCLUDING REMARKS

First of all let us mention an old conjecture of Erdos and Simonovits
which has an apparent similarity with Theorem 1.1.

582a/42/2-4



206 PETER FRANKL

For a class & of graphs let ex(n, ¥) denote the maximum number of
edges in a graph with no subgraphs isomorphic to a member of €.

Conjecture 5.1 [2]. For every rational number r, 1 <r <2, there exists
a finite class € of bipartite graphs so that ex(n, )= @(n") holds.

Suppose p(x)=37?_,a/*), where a, > 1, a, is integer for i=0,..,d—1.
Then there exists a smallest non-negative integer ¢=1¢(p) so that sub-
stituting y=x—¢ into p(x) will give a polynomial q(y)=p(y+1t)=
2i_ob(?) with b, =a, and b, =0, integer.

Conjecture 5.2. Suppose p(x)=Y7%_,a(*) and r=1t(p) are as above.
Then for s > sq(p) one has

m(n, p(s), {p(j):0< j<s})=O(n'~ 49,

We can prove the above conjecture in several special cases not covered by
Theorem 1.2 and can obtain as well a general upper bound of the form
O(n“P*/1) where a(p) is a constant depending only on the polynomial p.
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