All Rationals Occur as Exponents

PETER FRANKL

C.N.R.S., Paris, 15 Quai Anatole France, 75007, Paris, France Communicated by the Managing Editors

Received July 3, 1985

For integers $n \ge k \ge 1$ and $L \subset \{0, 1, ..., k-1\}$, m(n, k, L) denotes the maximum number of k-subsets of an n-set so that the size of the intersection of any two among them is in L. It is proven that for every rational number $r \ge 1$ there is a choice of k and L so that cn' < m(n, k, L) < dn', where c, d depend on k and L but not on n. © 1986 Academic Press, Inc.

1. INTRODUCTION

Suppose $n \ge k \ge 1$, $L \subseteq \{0, 1, ..., k-1\}$. Let X be a finite set, |X| = n. A family \mathscr{F} of subsets of X is called an L-system if for any two distinct members F, F' of \mathscr{F} one has $|F \cap F'| \in L$. Define

$$m(n, L) = \{ \max | \mathcal{F} | : \mathcal{F} \text{ is an } L \text{-system} \};$$

$$m(n, k, L) = \{ \max | \mathcal{F} | : \mathcal{F} \text{ is an } L \text{-system and } | F | = k \text{ for all } F \in \mathcal{F} \}.$$

There is a wide variety of problems related to m(n, L) and m(n, k, L). For example, $m(n, k\{0, 1, ..., t-1\}) \leq {n \choose t}/{k \choose t}$ with equality holding if and only if a (n, k, t)-Steiner-system exists. This already shows that the determination of these functions is hopeless in general. Let us mention three general upper bounds:

(1)
$$m(n, L) \leq \sum_{0 \leq i \leq |L|} {n \choose i}$$
 [13]
(2) $m(n, k, L) \leq {n \choose |L|}$ [12]
(3) $m(n, k, L) \leq \prod_{l \in L} (n-l)/(k-l) \text{ for } n > n_0(k)$ [1].

Let us mention some of the recent papers concerning m(n, L) and m(n, k, L): [5, 6, 7, 8, 9, 10, 11, 14].

0097-3165/86 \$3.00

Let us use the notation $m(n, k, L) = \Theta(n^{\alpha})$ to denote that there exist constants c, d depending on k and L but not on n so that $cn^{\alpha} < m(n, k, L) < dn^{\alpha}$. It is not known whether such an α exists for all choices of k and L. However, if $\alpha = \alpha(k, L)$ exists then obviously $\alpha \ge 1$.

THEOREM 1.1. For every rational number $r, r \ge 1$ there exists k and L so that $m(n, k, L) = \Theta(n^r)$.

The author has examined all cases with $k \le 10$ and proved the existence of $\alpha(k, L)$. Actually $\alpha(k, L)$ is an integer for all cases with $k \le 9$ and all but two cases with k = 10. Its value in the exceptional cases is $\frac{5}{2}$. In fact Theorem 1.1 follows from the following result.

THEOREM 1.2. Suppose that s, d, $a_0, a_1, ..., a_d$ are non-negative integers with $s \ge d \ge 1$, $a_d \ge 1$, and $a_1 > \sum_{i \ne 1} a_i {s-1 \choose i}$, define $p(x) = \sum_{i=0}^d a_i {x \choose i}$. Then

$$m(n, p(s), \{p(0), ..., p(s-1)\}) = \Theta(n^{s/d}).$$

2. Some Preparations

A family \mathscr{A} of sets is called *closed under intersection* (or shortly *closed*) if $A, A' \in \mathscr{A}$ implies $A \cap A' \in \mathscr{A}$. Clearly, to every family \mathscr{B} there is a smallest closed family $\overline{\mathscr{B}}$ with $\mathscr{B} \subseteq \overline{\mathscr{B}}, \overline{\mathscr{B}}$ is called the closure of \mathscr{B} .

For an arbitrary set D, the family $\overline{\mathscr{B}}_{|D} = \{B \cap D: B \in \overline{\mathscr{B}}\}$ is closed again. By a simple averaging argument (cf, [3]) every $\mathscr{F} \subset {X \choose k}$ contains a subfamily $\mathscr{F}', |\mathscr{F}'|/|\mathscr{F}| \ge k!/k^k$ and \mathscr{F}' being k-partite, i.e., there exist disjoint sets $X_{1,...,}, X_k$ satisfying $|F \cap X_i| = 1$ for all $F \in \mathscr{F}'$ and i = 1,..., k.

For a set G satisfying $|G \cap X_i| \leq 1$ define the canonical projection $\pi(G)$ of G by $\pi(G) = \{i: |G \cap X_i| = 1\}$. Note that $|G| = |\pi(G)|$. Also, if \mathscr{A} is an arbitrary family and G as above, then the families $\mathscr{A}_{|G}$ and $\pi(\mathscr{A}_{|G}) = \{\pi(A): A \in \mathscr{A}_{|G}\}$ are isomorphic.

THEOREM 2.1 ([8]). Suppose \mathscr{F} is an (n, k, L)-system. Then there exists a positive constant c(k, L), independent of n, a closed L-system $\mathscr{A} \subset 2^{\{1,2,\dots,k\}}$, and $\mathscr{F}^* \subset \mathscr{F}$ so that

- (i) \mathcal{F}^* is k-partite,
- (ii) $|\mathscr{F}^*| \ge c(k, L) |\mathscr{F}|,$
- (iii) For every $F \in \mathcal{F}^*$ one has $\pi(\bar{\mathcal{F}}_{|F}^*) = \mathscr{A}$.

Note that (iii) implies that $\overline{\mathscr{F}}^*$ is an *L*-system, i.e., the size of the intersection of any number of members of \mathscr{F}^* is in *L*.

PETER FRANKL

Since we are only interested in the order of magnitude of m(n, k, L), we may suppose $\mathscr{F} = \mathscr{F}^*$. To express this fact we say that \mathscr{F} is *canonical*, we call \mathscr{A} the *intersection pattern* of \mathscr{F} .

Let us mention without proof the following easy fact.

PROPOSITION 2.2. Suppose $\{\mathscr{A}_1, ..., \mathscr{A}_m\}$ and $\{\mathscr{B}_1, ..., \mathscr{B}_m\}$ are two families of sets satisfying for all j and all $1 \leq i_1 < \cdots < i_i \leq m$,

 $|A_i \cap \cdots \cap A_{i_i}| = |B_i \cap \cdots \cap B_{i_i}|.$

Then they are isomorphic.

Suppose \mathscr{F} is a canonical family with intersection pattern \mathscr{A} . For $A, B \in \mathscr{A}$ satisfying $A \subset B$ and $G \in \overline{\mathscr{F}}$ with $\pi(G) = A$ define

$$\mathscr{J}_G(A, B) = \{ H \in \widetilde{\mathscr{F}} : G \subset H, \, \pi(H) = B \}.$$

We say that B covers A if $A, B \in \mathcal{A}, A \subset B$ but there is no $C \in \mathcal{A}$ with $A \subset C \subset B$.

LEMMA 2.3 (Monotonity lemma). Suppose A, B, C, $D \in \mathcal{A}$ satisfy $A \subset B \subset D$, with D covering B, $A \subset C \subset D$ and $C \not\subseteq B$. Then for all G, $H \in \overline{\mathcal{F}}$ satisfying $\pi(G) = A$, $\pi(H) = B$, and $G \subset H$ one has

$$|\mathcal{J}_G(A, C)| \ge |\mathcal{J}_H(B, D)|.$$

Proof. Suppose $\mathscr{J}_H(B, D) = \{K_1, ..., K_s\}$. Let L_i be the unique subset of K_i satisfying $\pi(L_i) = C$ —such L_i exists because $C \subset D = \pi(K_i)$. In view of Theorem 2.1 (iii) $L_i \in \overline{\mathscr{F}}$ holds.

Since $A \subset C$ and $G \subset H$, $G \subset L_i$ holds. To conclude the proof we must show that the L_i 's are distinct.

Consider $\pi(K_i \cap K_j)$ for $i \neq j$. Since $K_i \neq K_j$, it is a proper subset of D, containing B. As D covers B, $\pi(K_i \cap K_j) = B$ follows. Thus $K_i \cap K_j = H$. Consequently $L_i \cap L_j \subseteq H$. But $\pi(L_i) = \pi(L_j) = C$ and $C \notin \pi(H) = B$ proving $L_i \neq L_j$.

3. The Lower Bound in Theorem 1.2

The construction we use here was given in [4]. Since we need it in the proof of the upper bound, we repeat it shortly.

Let b be an integer and Z a set of cardinality $a_0 + a_1b + a_2(\frac{b}{2}) + \cdots + a_d(\frac{b}{d})$ which we consider as the disjoint union of a_i copies of $\binom{[1,b]}{i}$, i = 0, ..., d. For $A \subseteq [1, b]$, let $\varphi(A)$ be the corresponding subset of Z

with $|\varphi(A)| = \sum_{i=0}^{d} a_i({}^{|A|})$. It is very easy to check that for $A, B \subseteq [1, b]$, $\varphi(A \cap B) = \varphi(A) \cap \varphi(B)$ holds. Thus for s arbitrary the family $\{\varphi(A): A \subset [1, b], |A| \leq s\}$ is a closed $\{p(0), ..., p(s-1)\}$ -system showing $m(p(b), p(s), \{p(0), ..., p(s-1)\}) \geq {b \choose s}$. By choosing $b = \Omega(n^{1/a})$ the desired lower bound follows.

4. PROOF OF THE UPPER BOUND PART OF THEOREM 1.2

W.l.o.g. let \mathscr{F} be a canonical closed L-system, $L = \{p(0), ..., p(s-1)\}$, let \mathscr{A} be the sample family on [1, p(s)]. Also, let $\mathscr{P} = \mathscr{P}^{(s)}$ be the sample family from our construction (the point set Y of $\mathscr{P}^{(s)}$ is the disjoint union of a_0 copies of the singleton $\binom{\lceil 1, s \rceil}{0}$, a_1 copies of $\binom{\lceil 1, s \rceil}{1}$,..., a_d copies of $\binom{\lceil 1, s \rceil}{d}$, say

$$Y = \bigcup_{i=0}^{d} \bigcup_{1 \leq j \leq a_i} Y_{a_i}^i.$$

For a subset $B \subset [1, s]$ denote by $\rho(B)$ the subset of size p(|B|) of Y which is the union of the corresponding subsets of Y_{a}^{i} . Then

$$\mathscr{P} = \{ \rho(B) : B \subseteq [1, s] \}.$$

Note that as a lattice \mathcal{P} is isomorphic to $A^{[1,s]}$, in particular, all maximal chains have the same size s.

We are going to show that \mathscr{A} can be embedded into \mathscr{P} , that is, there exists a 1-1 map φ : $[1, p(s)] \to Y$ so that $\varphi(A) \in \mathscr{P}$ holds for all $A \in \mathscr{A}$.

Call a subset $C \subset [1, p(s)]$ an *atom* if $C \cap A \neq \emptyset$ implies $C \subseteq A$ for all $A \in \mathcal{A}$. An element $x \in A \in \mathcal{A}$ is a generic point for A if for all $B \in \mathcal{A}$, $x \in B$ implies $A \subseteq B$.

Note that if C is an atom, $|C| = a_1$, then $\mathcal{A} \cup \{C\}$ will be a closed family. Adding atoms of size a_1 successively one obtains finally a family \mathcal{A}' to which one cannot add atoms of size a_1 . When proving the imbeddability we may assume $\mathcal{A} = \mathcal{A}'$.

Call a set $A \in \mathcal{A}$ with |A| = p(i) filled if it contains *i* atoms of size a_1 . For a filled set let D(A) be the union of its atoms, $|D(A)| = ia_1$.

CLAIM 4.1. All $A \in \mathcal{A}$ are filled.

Proof of Claim 4.1. The claim clearly holds if $|A| = a_1$. Let A be a counterexample of minimal size |A| = p(i). Set $\mathscr{B} = \{B \in \mathscr{A}, B \subseteq A\}$. Define $M = M(A) = \bigcup_{B \in \mathscr{B}} B$. Since A - M is an atom,

$$|A - M| < a_1$$
 holds.

Define also,

$$K = K(A) = \bigcup_{B \in \mathscr{B}} D(B).$$

Then $K \subset M$, K is the union of atoms of size a_1 , thus

 $|K| = ja_1$ holds with some j < i.

For definiteness let $C_1, ..., C_j$ be these atoms. For $B \in \mathscr{B}$ define $T(B) = \{v: C_v \subset B\}$. Since B is filled, $|T(B)| = \lfloor |B|/a_1 \rfloor$ holds. If for B, $B' \in \mathscr{B}$, $|T(B) \cap T(B') = t$ then $ta_1 \leq |B \cap B'| \leq ta_1 + |B - D(B)| < (t+1)a_1$ holds. Therefore $|B \cap B'| = p(t)$.

Consequently, the map $B \to \rho(T(B))$ defines an embedding of \mathscr{B} into $\mathscr{P}^{(j)}$ (here we used Proposition 2.2). In particular

$$|M| = \left| \bigcup_{B \in \mathscr{B}} B \right| \leq \left| \bigcup_{P \in \mathscr{P}^{(j)}} P \right| = p(j).$$
(1)

Thus $p(i) = |A| < p(j) + a_1 < p(i)$, a contradiction.

Applying the claim to $[1, p(s)] \in \mathcal{A}$, we see that there are s atoms $C_1, ..., C_s$ of size a_1 in it. Define for all $A \in \mathcal{A}$, $T(A) = \{v: C_v \subset A\}$. Then $A \to \rho(T(A))$ gives the desired embedding of \mathcal{A} into $\mathcal{P}^{(s)}$.

Note that this implies that every $A \in \mathcal{A}$ with |A| = p(d) has a generic point (no $B \in \mathcal{A}$ with $B \subseteq A$ can contain elements which are mapped on a copy of $\binom{[1,s]}{d}$). In particular, if s = d, then $|\mathcal{F}| \leq n$ follows and this will be the starting case of the induction.

Also, we can add to \mathcal{F} all subsets of members of \mathcal{F} which have projection in \mathcal{P} , i.e., the family

$$\mathscr{H} = \{ H: \pi(H) \in \mathscr{P}, \exists F \in \mathscr{F}, H \subseteq F \}$$

is still closed.

Suppose s > d and the upper bound is proved for s - 1. Define

$$\mathscr{H}_1 = \{ H \in \mathscr{H} \colon |H| = p(s-1) \}.$$

By induction

(4) $|\mathscr{H}_1| \leq \Omega(n^{(s-1)/d})$ holds.

Set $\mathcal{H}_0^{(0)} = \mathcal{F}$, $\mathcal{H}_1^{(0)} = \mathcal{H}_1$. If $\mathcal{H}_0^{(i)}$ and $\mathcal{H}_1^{(i)}$ are defined and some member $G \in \mathcal{H}_1^{(i)}$ is contained in less than $n^{1/d}$ members of $\mathcal{H}_0^{(i)}$ then define $\mathcal{H}_1^{(i+1)} = \mathcal{H}_1^{(i)} - \{G\}$, $\mathcal{H}_0^{(i+1)} - \{H \in \mathcal{H}_0^{(i)}: G \subset H\}$ and continue. In view of (4) altogether less than $n^{1/d}O(n^{(s-1)/d}) = O(n^{s/d})$ sets are thrown away. Thus

204

it will be sufficient to prove the upper bound for the remaining family, which we denote, by abuse of notation, by \mathcal{F} . Define

$$\mathscr{H}_i = \{ H \in \mathscr{H} : |H| = p(s-i) \}, \qquad 0 \le i \le s.$$

CLAIM 4.2. Suppose $G \in \mathcal{H}_i$, i > 0, $A, C \in \mathcal{P}$, $\pi(G) = A \subset C$, |C| = p(s-i+1). Then $|\mathcal{J}_G(A, C)| \ge n^{1/d}$.

Proof. Apply induction on *i*. The case i = 1 is fine by the construction. Let $A_0(C_0)$ be the subset of [1, s] satisfying $\varphi(A_0) = A$ ($\varphi(C_0) = C$), respectively. Of course, $|A_0| = |C_0| - 1 = s - i$. Let *j* be an arbitrary element of $[1, s] - C_0$. Define $B = \varphi(A_0 \cup \{j\})$, $D = \varphi(C_0 \cup \{j\})$. Take $G, H \in \mathcal{H}$ with $G \subset H$, $\pi(G) = A$, $\pi(H) = B$. By the induction hypothesis and by Lemma 2.3 we have

$$|\mathscr{J}_G(A, C)| \ge |\mathscr{J}_H(B, D)| \ge n^{1/d}$$

CLAIM 4.3. For $1 \le i \le s - 1$ one has $|\mathscr{H}_i| \le (s/\binom{s}{i}) |\mathscr{H}_1| n^{-(i-1)/d}$.

Proof. The statement is trivial for i = 1. Suppose it has been proved for i-1. Consider the bipartite graph with vertex set \mathcal{H}_i , \mathcal{H}_{i-1} with (G, H) forming an edge if $G \in \mathcal{H}_i$, $H \in \mathcal{H}_{i-1}$, and $G \subset H$. Now the degree of H is s-i+1 while the degree of G is at least $in^{1/d}$. This implies

$$|\mathscr{H}_{i}| \leq \frac{s-i+1}{i} n^{-1/d} |\mathscr{H}_{i-1}| \leq |\mathscr{H}_{1}| \frac{\binom{s}{i-1}}{s} \frac{s-i+1}{i} n^{-(i-1)/d}$$
$$= |\mathscr{H}_{1}| \frac{\binom{s}{i}}{s} n^{-(i-1)/d}.$$

Now the upper bound is immediate: for an arbitrary $F \in \mathscr{F} = \mathscr{H}_0$ let $A_1(F), ..., A_s(F)$ be the s atoms in F, i.e., $\pi(A_i(F) = \varphi(\{i\}))$. Then no other member F' of \mathscr{F} contains $A_1(F), ..., A_s(F)$ because otherwise $|F \cap F'| \ge sa_1 > p(s-1)$, a contradiction. Consequently,

$$|\mathscr{F}| \leq \left(\frac{|\mathscr{H}_{s-1}|}{s} \right) = O(n^{s/d}).$$

5. CONCLUDING REMARKS

First of all let us mention an old conjecture of Erdös and Simonovits which has an apparent similarity with Theorem 1.1.

PETER FRANKL

For a class \mathscr{C} of graphs let $ex(n, \mathscr{C})$ denote the maximum number of edges in a graph with no subgraphs isomorphic to a member of \mathscr{C} .

Conjecture 5.1 [2]. For every rational number r, 1 < r < 2, there exists a finite class \mathscr{C} of bipartite graphs so that $ex(n, \mathscr{C}) = \Theta(n^r)$ holds.

Suppose $p(x) = \sum_{i=0}^{d} a_i {x \choose i}$, where $a_d \ge 1$, a_i is integer for i = 0, ..., d-1. Then there exists a smallest non-negative integer t = t(p) so that substituting y = x - t into p(x) will give a polynomial $q(y) = p(y+t) = \sum_{i=0}^{t} b_i {y \choose i}$ with $b_d = a_d$ and $b_i \ge 0$, integer.

Conjecture 5.2. Suppose $p(x) = \sum_{i=0}^{d} a_i {x \choose i}$ and t = t(p) are as above. Then for $s \ge s_0(p)$ one has

$$m(n, p(s), \{p(j): 0 < j < s\}) = \Theta(n^{(s-t)/d}).$$

We can prove the above conjecture in several special cases not covered by Theorem 1.2 and can obtain as well a general upper bound of the form $O(n^{a(p)+s/d})$, where a(p) is a constant depending only on the polynomial p.

References

- M. DEZA, P. ERDÖS, AND P. FRANKL, Intersection theorems for systems of finite scts, Proc. London Math. Soc. (3) 36 (1978), 369-384.
- 2. P. ERDÖS, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25-42.
- 3. P. ERDÖS AND D. J. KLEITMAN, Coloring graphs to maximize the proportion of multicolored k-edges, J. Combin. Theory 5 (1968), 164-169.
- 4. P. FRANKL, Constructing finite sets with given intersection, Ann. Discrete Math. 17 (1983), 289-291.
- 5. P. FRANKL, Families of finite sets with three intersections, *Combinatorica* 4 (1984), 141-148.
- 6. P. FRANKL AND Z. FÜREDI, On hypergraphs without two edges intersecting in a given number of vertices, J. Combin. Theory Ser. A 36 (1984), 230-236.
- P. FRANKL AND Z. FÜREDI, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985), 160–176.
- Z. FÜREDI, On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983), 129-132.
- 9. Z. FÜREDI, Families of finite sets with 3 intersections, Combinatorica, in press.
- 10. L. PyBER, An extension of a Frankl-Füredi theorem, Discrete Math. 52 (1984), 253-268.
- 11. V. RÖDL, A packing and covering problem, European J. Combin. 6 (1985), 69-78.
- 12. D. K. RAY-CHAUDHURI AND R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), 737-744.
- P. FRANKL AND R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
- 14. P. FRANKL AND V. RÖDL, Forbidden intersections, Transactions AMS, in press.