All Rationals Occur as Exponents

Peter Frankl
C.N.R.S., Paris, 15 Quai Anatole France, 75007, Paris, France
Communicated by the Managing Editors

Received July 3, 1985

Abstract

For integers $n \geqslant k \geqslant 1$ and $L \subset\{0,1, \ldots, k-1\}, m(n, k, L)$ denotes the maximum number of k-subsets of an n-set so that the size of the intersection of any two among them is in L. It is proven that for every rational number $r \geqslant 1$ there is a choice of k and L so that $c n^{r}<m(n, k, L)<d n^{r}$, where c, d depend on k and L but not on n. 1986 Academic Press. Inc.

1. Introduction

Suppose $n \geqslant k \geqslant 1, L \subseteq\{0,1, \ldots, k-1\}$. Let X be a finite set, $|X|=n$. A family \mathscr{F} of subsets of X is called an L-system if for any two distinct members F, F^{\prime} of \mathscr{F} one has $\left|F \cap F^{\prime}\right| \in L$. Define

$$
\begin{aligned}
m(n, L) & =\{\max |\mathscr{F}|: \mathscr{F} \text { is an } L \text {-system }\} ; \\
m(n, k, L) & =\{\max |\mathscr{F}|: \mathscr{F} \text { is an } L \text {-system and }|F|=k \text { for all } F \in \mathscr{F}\} .
\end{aligned}
$$

There is a wide variety of problems related to $m(n, L)$ and $m(n, k, L)$. For example, $m(n, k\{0,1, \ldots, t-1\}) \leqslant\binom{ n}{t} /\binom{k}{t}$ with equality holding if and only if a (n, k, t)-Steiner-system exists. This already shows that the determination of these functions is hopeless in general. Let us mention three general upper bounds:
(1) $m(n, L) \leqslant \sum_{0 \leqslant i \leqslant|L|}\binom{n}{i}$
(2)

$$
\begin{equation*}
m(n, k, L) \leqslant\binom{ n}{|L|} \tag{13}
\end{equation*}
$$

$$
m(n, k, L) \leqslant \prod_{l \in L}(n-l) /(k-l) \text { for } n>n_{0}(k)
$$

Let us mention some of the recent papers concerning $m(n, L)$ and $m(n, k, L):[5,6,7,8,9,10,11,14]$.

Let us use the notation $m(n, k, L)=\Theta\left(n^{\alpha}\right)$ to denote that there exist constants c, d depending on k and L but not on n so that $c n^{\alpha}<$ $m(n, k, L)<d n^{\alpha}$. It is not known whether such an α exists for all choices of k and L. However, if $\alpha=\alpha(k, L)$ exists then obviously $\alpha \geqslant 1$.

Theorem 1.1. For every rational number $r, r \geqslant 1$ there exists k and L so that $m(n, k, L)=\Theta\left(n^{r}\right)$.

The author has examined all cases with $k \leqslant 10$ and proved the existence of $\alpha(k, L)$. Actually $\alpha(k, L)$ is an integer for all cases with $k \leqslant 9$ and all but two cases with $k=10$. Its value in the exceptional cases is $\frac{5}{2}$. In fact Theorem 1.1 follows from the following result.

Theorem 1.2. Suppose that $s, d, a_{0}, a_{1}, \ldots, a_{d}$ are non-negative integers with $s \geqslant d \geqslant 1, a_{d} \geqslant 1$, and $a_{1}>\sum_{i \neq 1} a_{i}\binom{s-1}{i}$, define $p(x)=\sum_{i=0}^{d} a_{i}\binom{x}{i}$. Then

$$
m(n, p(s),\{p(0), \ldots, p(s-1)\})=\Theta\left(n^{s / d}\right) .
$$

2. Some Preparations

A family \mathscr{A} of sets is called closed under intersection (or shortly closed) if $A, A^{\prime} \in \mathscr{A}$ implies $A \cap A^{\prime} \in \mathscr{A}$. Clearly, to every family \mathscr{B} there is a smallest closed family $\overline{\mathscr{B}}$ with $\mathscr{B} \subseteq \overline{\mathscr{B}}, \overline{\mathscr{B}}$ is called the closure of \mathscr{B}.
For an arbitrary set D, the family $\overline{\mathscr{B}}_{D}=\{B \cap D: B \in \bar{B}\}$ is closed again.
By a simple averaging argument (cf, [3]) every $\mathscr{F} \subset\binom{X}{k}$ contains a subfamily $\mathscr{F}^{\prime},\left|\mathscr{F}^{\prime}\right| /|\mathscr{F}| \geqslant k!/ k^{k}$ and \mathscr{F}^{\prime} being k-partite, i.e., there exist disjoint sets X_{1}, \ldots, X_{k} satisfying $\left|F \cap X_{i}\right|=1$ for all $F \in \mathscr{F}^{\prime}$ and $i=1, \ldots, k$.

For a set G satisfying $\left|G \cap X_{i}\right| \leqslant 1$ define the canonical projection $\pi(G)$ of G by $\pi(G)=\left\{i:\left|G \cap X_{i}\right|=1\right\}$. Note that $|G|=|\pi(G)|$. Also, if \mathscr{A} is an arbitrary family and G as above, then the families $\mathscr{A}_{1 G}$ and $\pi\left(\mathscr{A}_{1 G}\right)=$ $\left\{\pi(A): A \in \mathscr{A}_{\mid G}\right\}$ are isomorphic.

Theorem 2.1 ([8]). Suppose \mathscr{F} is an (n, k, L)-system. Then there exists a positive constant $c(k, L)$, independent of n, a closed L-system $\mathscr{A} \subset 2^{\{1,2, \ldots k\}}$, and $\mathscr{F}{ }^{*} \subset \mathscr{F}$ so that
(i) $\mathscr{F P}^{*}$ is k-partite,
(ii) $\left|\mathscr{F}^{*}\right| \geqslant c(k, L)|\mathscr{F}|$,
(iii) For every $F \in \mathscr{F}^{*}$ one has $\pi\left(\overline{\mathscr{F}}_{F F}^{*}\right)=\mathscr{A}$.

Note that (iii) implies that $\overline{\mathscr{F}}^{*}$ is an L-system, i.e., the size of the intersection of any number of members of \mathscr{F}^{*} is in L.

Since we are only interested in the order of magnitude of $m(n, k, L)$, we may suppose $\mathscr{F}=\mathscr{F}^{*}$. To express this fact we say that \mathscr{F} is canonical, we call \mathscr{A} the intersection pattern of \mathscr{F}.

Let us mention without proof the following easy fact.
Proposition 2.2. Suppose $\left\{\mathscr{A}_{1}, \ldots, \mathscr{A}_{m}\right\}$ and $\left\{\mathscr{B}_{1}, \ldots, \mathscr{B}_{m}\right\}$ are two families of sets satisfying for all j and all $1 \leqslant i_{1}<\cdots<i_{j} \leqslant m$,

$$
\left|A_{i} \cap \cdots \cap A_{i j}\right|=\left|B_{i} \cap \cdots \cap B_{i j}\right| .
$$

Then they are isomorphic.
Suppose \mathscr{F} is a canonical family with intersection pattern \mathscr{A}. For $A, B \in \mathscr{A}$ satisyfing $A \subset B$ and $G \in \overline{\mathscr{F}}$ with $\pi(G)=A$ define

$$
\mathscr{J}_{G}(A, B)=\{H \in \overline{\mathscr{F}}: G \subset H, \pi(H)=B\} .
$$

We say that B covers A if $A, B \in \mathscr{A}, A \subset B$ but there is no $C \in \mathscr{A}$ with $A \subset C \subset B$.

Lemma 2.3 (Monotonity lemma). Suppose $A, B, C, D \in \mathscr{A}$ satisfy $A \subset B \subset D$, with D covering $B, A \subset C \subset D$ and $C \nsubseteq B$. Then for all $G, H \in \mathscr{\overline { F }}$ satisfying $\pi(G)=A, \pi(H)=B$, and $G \subset H$ one has

$$
\left|\mathscr{f}_{G}(A, C)\right| \geqslant\left|\mathscr{\mathscr { F }}_{H}(B, D)\right| .
$$

Proof. Suppose $\mathscr{J}_{H}(B, D)=\left\{K_{1}, \ldots, K_{s}\right\}$. Let L_{i} be the unique subset of K_{i} satisfying $\pi\left(L_{i}\right)=C-$ such L_{i} exists because $C \subset D=\pi\left(K_{i}\right)$. In view of Theorem 2.1 (iii) $L_{i} \in \overline{\mathscr{F}}$ holds.
Since $A \subset C$ and $G \subset H, G \subset L_{i}$ holds. To conclude the proof we must show that the L_{i} 's are distinct.
Consider $\pi\left(K_{i} \cap K_{j}\right)$ for $i \neq j$. Since $K_{i} \neq K_{j}$, it is a proper subset of D, containing B. As D covers $B, \pi\left(K_{t} \cap K_{j}\right)=B$ follows. Thus $K_{i} \cap K_{j}=H$. Consequently $L_{i} \cap L_{j} \subseteq H$. But $\pi\left(L_{i}\right)=\pi\left(L_{j}\right)=C$ and $C \nsubseteq \pi(H)=B$ proving $L_{i} \neq L_{j}$.

3. The Lower Bound in Theorem 1.2

The construction we use here was given in [4]. Since we need it in the proof of the upper bound, we repeat it shortly.
Let b be an integer and Z a set of cardinality $a_{0}+a_{1} b+$ $a_{2}\binom{b}{2}+\cdots+a_{d}\binom{b}{d}$ which we consider as the disjoint union of a_{i} copies of $\left({ }^{[1, b]}\right), i=0, \ldots, d$. For $A \subseteq[1, b]$, let $\varphi(A)$ be the corresponding subset of Z
with $|\varphi(A)|=\sum_{i=0}^{d} a_{i}\left(\left|{ }_{i}^{\mid}\right|\right)$. It is very easy to check that for $A, B \subseteq[1, b]$, $\varphi(A \cap B)=\varphi(A) \cap \varphi(B)$ holds. Thus for s arbitrary the family $\{\varphi(A)$: $A \subset[1, b],|A| \leqslant s\}$ is a closed $\{p(0), \ldots, p(s-1)\}$-system showing $m(p(b), p(s),\{p(0), \ldots, p(s-1)\}) \geqslant\binom{ b}{s}$. By choosing $b=\Omega\left(n^{1 / a}\right)$ the desired lower bound follows.

4. Proof of the Upper Bound Part of Theorem 1.2

W.l.o.g. let \mathscr{F} be a canonical closed L-system, $L=\{p(0), \ldots, p(s-1)\}$, let \mathscr{A} be the sample family on [1,p(s)]. Also, let $\mathscr{P}=\mathscr{P}^{(s)}$ be the sample family from our construction (the point set Y of $\mathscr{P}^{(s)}$ is the disjoint union of a_{0} copies of the singleton $\binom{[1, s]}{0}, a_{1}$ copies of $\binom{[1, s]}{\left.i^{s}\right)}, \ldots, a_{d}$ copies of $\binom{[1, s]}{d}$, say

$$
Y=\bigcup_{i=0}^{d} \bigcup_{1 \leqslant j \leqslant a_{i}} Y_{a_{i}}^{i} .
$$

For a subset $B \subset[1, s]$ denote by $\rho(B)$ the subset of size $p(|B|)$ of Y which is the union of the corresponding subsets of $Y_{a_{i}}^{i}$. Then

$$
\mathscr{P}=\{\rho(B): B \subseteq[1, s]\} .
$$

Note that as a lattice \mathscr{P} is isomorphic to $A^{[1, s]}$, in particular, all maximal chains have the same size s.

We are going to show that \mathscr{A} can be embedded into \mathscr{P}, that is, there exists a 1-1 map $\varphi:[1, p(s)] \rightarrow Y$ so that $\varphi(A) \in \mathscr{P}$ holds for all $A \in \mathscr{A}$.

Call a subset $C \subset[1, p(s)]$ an atom if $C \cap A \neq \varnothing$ implies $C \subseteq A$ for all $A \in \mathscr{A}$. An element $x \in A \in \mathscr{A}$ is a generic point for A if for all $B \in \mathscr{A}, x \in B$ implies $A \subseteq B$.

Note that if C is an atom, $|C|=a_{1}$, then $\mathscr{A} \cup\{C\}$ will be a closed family. Adding atoms of size a_{1} successively one obtains finally a family \mathscr{A}^{\prime} to which one cannot add atoms of size a_{1}. When proving the imbeddability we may assume $\mathscr{A}=\mathscr{A}^{\prime}$.

Call a set $A \in \mathscr{A}$ with $|A|=p(i)$ filled if it contains i atoms of size a_{1}. For a filled set let $D(A)$ be the union of its atoms, $|D(A)|=i a_{1}$.

Claim 4.1. All $A \in \mathscr{A}$ are filled.
Proof of Claim 4.1. The claim clearly holds if $|A|=a_{1}$. Let A be a counterexample of minimal size $|A|=p(i)$. Set $\mathscr{B}=\{B \in \mathscr{A}, B \subsetneq A\}$.

Define $M=M(A)=\bigcup_{B \in B} B$. Since $A-M$ is an atom,

$$
|A-M|<a_{1} \text { holds. }
$$

Define also,

$$
K=K(A)=\bigcup_{B \in \mathscr{B}} D(B) .
$$

Then $K \subset M, K$ is the union of atoms of size a_{1}, thus

$$
|K|=j a_{1} \quad \text { holds with some } j<i .
$$

For definiteness let C_{1}, \ldots, C_{j} be these atoms. For $B \in \mathscr{B}$ define $T(B)=$ $\left\{v: C_{v} \subset B\right\}$. Since B is filled, $|T(B)|=\left\lfloor|B| / a_{1}\right\rfloor$ holds. If for $B, B^{\prime} \in \mathscr{B}$, $\mid T(B) \cap T\left(B^{\prime}\right)=t$ then $t a_{1} \leqslant\left|B \cap B^{\prime}\right| \leqslant t a_{1}+|B-D(B)|<(t+1) a_{1}$ holds. Therefore $\left|B \cap B^{\prime}\right|=p(t)$.

Consequently, the map $B \rightarrow \rho(T(B))$ defines an embedding of \mathscr{B} into $\mathscr{P}^{(j)}$ (here we used Proposition 2.2). In particular

$$
\begin{equation*}
|M|=\left|\bigcup_{B \in \mathbb{Z}} B\right| \leqslant\left|\bigcup_{P \in \mathcal{P}^{(j)}} P\right|=p(j) . \tag{1}
\end{equation*}
$$

Thus $p(i)=|A|<p(j)+a_{1}<p(i)$, a contradiction.
Applying the claim to $[1, p(s)] \in \mathscr{A}$, we see that there are s atoms C_{1}, \ldots, C_{s} of size a_{1} in it. Define for all $A \in \mathscr{A}, T(A)=\left\{v: C_{v} \subset A\right\}$. Then $A \rightarrow \rho(T(A))$ gives the desired embedding of \mathscr{A} into $\mathscr{P}^{(s)}$.

Note that this implies that every $A \in \mathscr{A}$ with $|A|=p(d)$ has a generic point (no $B \in \mathscr{A}$ with $B \varsubsetneqq A$ can contain elements which are mapped on a copy of ($\left.{ }_{d}^{[1, s]}\right)$). In particular, if $s=d$, then $|\mathscr{F}| \leqslant n$ follows and this will be the starting case of the induction.

Also, we can add to \mathscr{F} all subsets of members of \mathscr{F} which have projection in \mathscr{P}, i.e., the family

$$
\mathscr{H}=\{H: \pi(H) \in \mathscr{P}, \exists F \in \mathscr{F}, H \subseteq F\}
$$

is still closed.
Suppose $s>d$ and the upper bound is proved for $s-1$. Define

$$
\mathscr{H}_{1}=\{H \in \mathscr{H}:|H|=p(s-1)\} .
$$

By induction
(4) $\left|\mathscr{H}_{1}\right| \leqslant \Omega\left(n^{(s-1) / d}\right)$ holds.

Set $\mathscr{H}_{0}^{(0)}=\mathscr{F}, \mathscr{H}_{1}^{(0)}=\mathscr{H}_{1}$. If $\mathscr{H}_{0}^{(i)}$ and $\mathscr{H}_{1}^{(i)}$ are defined and some member $G \in \mathscr{H}_{1}^{(i)}$ is contained in less than $n^{1 / d}$ members of $\mathscr{H}_{0}^{(i)}$ then define $\mathscr{H}_{1}^{(i+1)}=\mathscr{H}_{1}^{(i)}-\{G\}, \mathscr{H}_{0}^{(i+1)}-\left\{H \in \mathscr{H}_{0}^{(i)}: G \subset H\right\}$ and continue. In view of (4) altogether less than $n^{1 / d} O\left(n^{(s-1) / d}\right)=O\left(n^{s / d}\right)$ sets are thrown away. Thus
it will be sufficient to prove the upper bound for the remaining family, which we denote, by abuse of notation, by \mathscr{F}. Define

$$
\mathscr{H}_{i}=\{H \in \mathscr{H}:|H|=p(s-i)\}, \quad 0 \leqslant i \leqslant s .
$$

Claim 4.2. Suppose $G \in \mathscr{H}_{i}, \quad i>0, \quad A, C \in \mathscr{P}, \quad \pi(G)=A \subset C, \quad|C|=$ $p(s-i+1)$. Then $\left|\mathscr{J}_{G}(A, C)\right| \geqslant n^{1 / d}$.

Proof. Apply induction on i. The case $i=1$ is fine by the construction. Let $A_{0}\left(C_{0}\right)$ be the subset of $[1, s]$ satisfying $\varphi\left(A_{0}\right)=A\left(\varphi\left(C_{0}\right)=C\right)$, respectively. Of course, $\left|A_{0}\right|=\left|C_{0}\right|-1=s-i$. Let j be an arbitrary element of $[1, s]-C_{0}$. Define $B=\varphi\left(A_{0} \cup\{j\}\right), D=\varphi\left(C_{0} \cup\{j\}\right)$. Take $G, H \in \mathscr{H}$ with $G \subset H, \pi(G)-A, \pi(H)=B$. By the induction hypothesis and by Lemma 2.3 we have

$$
\left|\mathscr{F}_{C}(A, C)\right| \geqslant\left|\mathscr{F}_{H}(B, D)\right| \geqslant n^{1 / d} .
$$

Claim 4.3. For $1 \leqslant i \leqslant s-1$ one has $\left|\mathscr{H}_{i}\right| \leqslant\left(s /\left({ }_{i}^{s}\right)\right)\left|\mathscr{H}_{1}\right| n^{-(i-1) / d}$.
Proof. The statement is trivial for $i=1$. Suppose it has been proved for $i-1$. Consider the bipartite graph with vertex set $\mathscr{H}_{i}, \mathscr{H}_{i-1}$ with (G, H) forming an edge if $G \in \mathscr{H}_{i}, H \in \mathscr{H}_{i-1}$, and $G \subset H$. Now the degree of H is $s-i+1$ while the degree of G is at least $\mathrm{in}^{1 / d}$. This implies

$$
\begin{aligned}
\left|\mathscr{H}_{i}\right| \leqslant \frac{s-i+1}{i} n^{-1 / d}\left|\mathscr{H}_{i-1}\right| & \leqslant\left|\mathscr{H}_{1}\right| \frac{\binom{s}{i-1}}{s} \frac{s-i+1}{i} n^{-(i-1) / d} \\
& =\left|\mathscr{H}_{1}\right| \frac{\binom{s}{i}}{s} n^{-(i-1) / d}
\end{aligned}
$$

Now the upper bound is immediate: for an arbitrary $F \in \mathscr{F}=\mathscr{H}_{0}$ let $A_{1}(F), \ldots, A_{s}(F)$ be the s atoms in F, i.e., $\pi\left(A_{i}(F)=\varphi(\{i\})\right.$. Then no other member F^{\prime} of \mathscr{F} contains $A_{1}(F), \ldots, A_{s}(F)$ because otherwise $\left|F \cap F^{\prime}\right| \geqslant$ $s a_{1}>p(s-1)$, a contradiction. Consequently,

$$
|\mathscr{F}| \leqslant\binom{\left|\mathscr{H}_{s-1}\right|}{s}=O\left(n^{s / d}\right) .
$$

5. Concluding Remarks

First of all let us mention an old conjecture of Erdös and Simonovits which has an apparent similarity with Theorem 1.1.

For a class \mathscr{C} of graphs let ex (n, \mathscr{C}) denote the maximum number of edges in a graph with no subgraphs isomorphic to a member of \mathscr{C}.

Conjecture 5.1 [2]. For every rational number $r, 1<r<2$, there exists a finite class \mathscr{C} of bipartite graphs so that $\operatorname{ex}(n, \mathscr{C})=\Theta\left(n^{r}\right)$ holds.
Suppose $p(x)=\sum_{i=0}^{d} a_{i}\left(e_{i}^{x}\right)$, where $a_{d} \geqslant 1, a_{i}$ is integer for $i=0, \ldots, d-1$. Then there exists a smallest non-negative integer $t=t(p)$ so that substituting $y=x-t$ into $p(x)$ will give a polynomial $q(y)=p(y+t)=$ $\sum_{i=0}^{t} b_{i}\left(\frac{y}{i}\right)$ with $b_{d}=a_{d}$ and $b_{i} \geqslant 0$, integer.

Conjecture 5.2. Suppose $p(x)=\sum_{i=0}^{d} a_{i}\binom{x}{i}$ and $t=t(p)$ are as above. Then for $s \geqslant s_{0}(p)$ one has

$$
m(n, p(s),\{p(j): 0<j<s\})=\Theta\left(n^{(s-t) / d}\right) .
$$

We can prove the above conjecture in several special cases not covered by Theorem 1.2 and can obtain as well a general upper bound of the form $O\left(n^{a(p)+s / d}\right)$, where $a(p)$ is a constant depending only on the polynomial p.

References

1. M. Deza, P. Erdös, and P. Frankl, Intersection theorems for systems of finite sets, Proc. London Math. Soc. (3) 36 (1978), 369-384.
2. P. Erdös, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25-42.
3. P. Erdös and D. J. Kleitman, Coloring graphs to maximize the proportion of multicolored k-edges, J. Combin. Theory 5 (1968), 164-169.
4. P. Frankl, Constructing finite sets with given intersection, Ann. Discrete Math. 17 (1983), 289-291.
5. P. Frankl, Families of finite sets with three intersections, Combinatorica 4 (1984), 141-148.
6. P. Frankl and Z. Füredi, On hypergraphs without two edges intersecting in a given number of vertices, J. Combin. Theory Ser. A 36 (1984), 230-236.
7. P. Frankl and Z. Füredi, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985), 160-176.
8. Z. FÜredi, On finite set-systems whose every intersection is a kernel of a star, Discrete Math. 47 (1983), 129-132.
9. Z. Füredi, Families of finite sets with 3 intersections, Combinatorica, in press.
10. L. Pyber, An extension of a Frankl-Füredi theorem, Discrete Math. 52 (1984), 253-268.
11. V. Rödl, A packing and covering problem, European J. Combin. 6 (1985), 69-78.
12. D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.
13. P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
14. P. Frankl and V. Rödl, Forbidden intersections, Transactions AMS, in press.
